# CONCENTRATION DEPENDENCE OF THE ISOTOPIC THERMAL DIFFUSION FACTOR FOR MIXTURES ${}^{3}\text{He} - {}^{4}\text{He}$ AND $H_2 - D_2$

### M. F. LARANJEIRA, M. ÁUREA CUNHA

### and

### M. E. FRONTEIRA E SILVA

Laboratório Calouste Gulbenkian de Espectrometria de Mossa e Física Molecular COMISSÃO DE ESTUDOS DE ENERGIA NUCLEAR -1. A. C. - Instituto Superior Técnico - Lisboa

SUMMARY — Experimental data for mixtures of  ${}^{3}He$  —  ${}^{4}He$  and  $H_{2}$  —  $D_{2}$  have been interpreted by means of the isotopic approach for the thermal diffusion factor, including a concentration-dependent term.

It is shown that for  ${}^{3}He - {}^{4}He$  mixtures the approach is quite satisfactory, regarding the mass effect and the concentration dependence. For  $H_{2} - D_{2}$  mixtures the mass coefficient  $(m_{1} - m_{2})/(m_{1} + m_{2})$  is already too large and general expressions for  $\alpha_{T}$  might be preferred.

### 1-INTRODUCTION

In a previous paper (1), we have theoretically studied, in terms of the Lennard-Jones and the exponential-six models, the convergence and the concentration dependence of the isotopic approach to the thermal diffusion factor,  $\alpha_T$ , as given by the expression

$$a_{\tau} = a_0 M_{12} [1 + \gamma (x_1 - x_2) M_{12}]$$

$$M_{12} = \frac{m_1 - m_2}{m_1 + m_2}; x_1 + x_2 = 1$$
[1]

where

 $\alpha_0$  is the reduced isotopic thermal diffusion factor;

 $\gamma$  is a small, slowly varying function of the temperature;

Portgal. Phys. - Vol. 5, fasc. 3, pp. 61-70, 1968 - Lisboa

### LARANJEIRA, M. F., et al. — Thermal diffusion in ${}^{g}He - {}^{4}He$ and $H_{g} - D_{g}$

 $m_1$ ,  $m_2$  and  $x_1$ ,  $x_2$  are, respectively, the molecular masses and the mole fractions of isotopes of kind 1 and 2.

According to Kihara-Mason and Chapman-Cowling schemes of approximations,  $\gamma$  is respectively given by

$$[\tau]^{K} = \frac{5 - 3A^{*}}{2(5 + 2A^{*})}$$
[2]

$$[\tilde{\gamma}]^{C} = [\tilde{\gamma}]^{K} + (5 - 4B^{*}) \frac{3/5 + 15/8(5 + 2A^{*})}{5 + 2A^{*} + 3(5 - 4B^{*})/8}$$
[3]

where the upper-scripts K and C refer to the scheme of approximation and  $A^*$  and  $B^*$  are the usual ratios of reduced collision integrals.

The Chapman-Cowling first approximation to the reduced isotopic thermal diffusion factor, which we denote by  $\left[\alpha_0\right]_1^C$ , is given by the expression

$$\left[\alpha_{0}\right]_{1}^{C} = \frac{15 (6 C^{\star} - 5)}{16 A^{\star}} \cdot \frac{2 A^{\star} + 5}{2 A^{\star} + 5 + 3 (5 - 4 B^{\star})/8}$$
 [4]

Kihara expression for the first approximation,  $\left[\alpha_0\right]_1^K$ , can be obtained from equation [4] by dropping the factor  $(5 - 4B^*)$ .

Second approximations for both schemes are too complicated and can be found in ref. (2).

In the majority of practical cases,  $(5-4B^*) > 0$ . Hence,  $[\gamma]^C > [\gamma]^K$  and, therefore, the Chapman-Cowling scheme predicts somewhat higher concentration dependence for the isotopic thermal diffusion factor.

For the same reason, usually we have

$$\left[\alpha_{0}\right]_{1}^{K} > \left[\alpha_{0}\right]_{1}^{C}$$

At least for higher temperatures, say for  $T^* > 3$ , the convergence  $\alpha_0$  is faster for Kihara-Mason scheme of approximation (1).

The information on the validity of equation [1] for light isotopes is rather scarce, both theoretically and experimentally.

As far as we know, the concentration-dependent term involving the quantity  $\gamma$  has always been neglected in experiments, even in the case of  ${}^{3}He - {}^{4}He$  mixtures (3, 4, 5, 6), which, nevertheless, provides a good example for comparison with theory.

Indeed, the mass coefficient,  $M_{12} = 1/7$ , might a priori be regarded as sufficiently small and, on the other hand, the concentration dependence as predicted by equation [1] is experimentally significant.

LARANJEIRA, M. F., et al. — Thermal diffusion in  ${}^{g}He - {}^{4}He$  and  $H_{g} - D_{g}$ 

In this paper, we also use the mixtures  $H_2 - D_2$  for comparison with the theory, in order to have an idea about the experimental limits of application of equation [1], regarding the mass influence and the concentration dependence, which is also an approach to the more general linear dependence of  $1/a_T$  with concentration (7, 8, 9, 10, 11).

### 2 — MIXTURES OF ${}^{3}He - {}^{4}He$

Recently, PAUL, HOWARD & WATSON (12) carried out accurate determinations of the variation with concentration of the thermal diffusion factor for  ${}^{3}He - {}^{4}He$  mixtures.

Instead of using the isotopic approach of equation [1], those authors interpret the experimental data in terms of the general expressions for the thermal diffusion factor, considering the Chapman-Cowling first approximation,  $[\alpha_T]_1^C$ , and Kihara-Mason first and second approximations,  $[\alpha_T]_1^K$  and  $[\alpha_T]_2^K$ , respectively.

It was also assumed that  $1/\alpha_T$  was linear with concentrations, as proposed by one of us (7, 8, 9).

The exponential-six model was used, with intermolecular potential parameter  $\alpha = 12.8$  and  $\epsilon/k = 9.34^{\circ} K$  previously determined (6) by thermal diffusion for mixtures of  $50^{\circ}/_{0}^{\circ} He = 50^{\circ}/_{0}^{\circ} He$ .

Experimental errors of  $a_T$  were of the order of  $1.5^{\circ}/_{0}$  and the mean temperature was approximately 160° K, which corresponds to a mean reduced temperature  $T^* = 17.34$ .

Following the authors' interpretation, our least square fit of experimental data gives

$$1/\alpha_{T} (\exp) = 14.7_{6} x_{4} + 14.0_{1} x_{3}$$
 [5]

where  $x_3$  and  $x_4$  denote the mole fractions of <sup>3</sup>He and <sup>4</sup>He, respectively.

Therefore, the limiting values of  $a_T(\exp)$  as  $x_4 = 1$  and  $x_3 = 1$  are, respectively,

$$[\alpha_T(\exp)]_{x_4=1} = 0.071_4$$
;  $[\alpha_T(\exp)]_{x_3=1} = 0.068_2$  [6]

If we interpret now the experimental data in terms of the isotopic approach of equation [1], we have, instead, a linear dependence:

$$a_{T}(\exp) = 0.071_{2} x_{4} + 0.067_{6} x_{3}$$
 [7]

63

Portgal. Phys. - Vol. 5, fasc. 3, pp. 61-70, 1968 - Lisboa

which also provides a good fit, as shown in fig. 1. Also, the corresponding values of  $[\alpha_T(\exp)]_{x_4=1}$  and  $[\alpha_T(\exp)]_{x_3=1}$  are practically the same as those mentioned above, eq. [6].

Therefore, both linear dependences may be accepted and are not in practical contradiction, since the concentration dependence is small.

For comparison of the experiments with theory we use:

a) The general expressions for the thermal diffusion factor, as done by PAUL, HOWARD & WATSON (12):

$$\alpha_{T} = (6 C^{\star} - 5) \cdot \frac{x_{1} S_{1} - x_{2} S_{2}}{x_{1}^{2} Q_{1} + x_{2}^{2} Q_{2} + x_{1} x_{2} Q_{12}} \cdot (1 + x_{12}) \qquad [8]$$

where the letters have their usual meaning, and  $x_{12}$  refers to higher approximations, i.e.,  $x_{12} = 0$  for first approximations.

b) The expressions for the isotopic approach, i.e., by applying equation [1]. In this equation we use the first and the second approximations to the reduced isotopic thermal diffusion factor,  $\alpha_0$ , according to Chapman-Cowling and Kihara-Mason schemes.

The concentration dependence is brought in evidence, in both procedures, by means of the ratio

$$R_{43} = [\alpha_T]_{x_4 = 1} / [\alpha_T]_{x_3 = 1}$$
[9]

which for the isotopic approach is simply

$$R_{43} = \frac{1 + \gamma M_{43}}{1 - \gamma M_{43}}$$
[10]

For  ${}^{3}He - {}^{4}He$  mixtures,  $M_{43} = 1/7$  and the Kihara and Chapman values of  $\gamma$ , given by eq. [2] and [3], are, respectively

 $[\gamma]^{K} = 0.1054$  ;  $[\gamma]^{C} = 0.1607$ 

The comparison of the theory with experiments is summarized in table I and is illustrated in fig. 1 in terms of the isotopic approach. Theoretical curves have been normalized in the figure to cut the experimental one at  $x_4 = 0.50$ .

By means of the ratio  $R_{43}$ , equations [9] and [10], table I shows that the same kind of approximations to the thermal diffusion factor, either given by the general expression or by the isotopic approach, practically predict the same concentration dependence.

LARANJEIRA, M. F., et al. — Thermal diffusion in <sup>8</sup>He — <sup>4</sup>He and  $H_2 - D_2$ 

In this aspect, the Chapman-Cowling approximations are in better accordance with experiments.



Fig. 1 — Thermal diffusion factor for  ${}^{3}He - {}^{4}He$  mixtures.

. Experimental data, ref. (12).

——— Least square fit for  $\alpha_T$  linear with concentration.

--- Theoretical curve for Chapman-Cowling scheme.

- — Theoretical curve for Kihara-Mason scheme.

Theoretical curves correspond to the isotopic approach, eq. [1], have been normalized to cut the experimental one at  $x_3 = 50$  %.

On the other hand, the values of  $[a_T]_{x_4} = 4.5$  in the table show that the Kihara-Mason scheme of approximation is more convergent, what is the common behaviour predicted by us in ref. (1), at least for higher reduced temperatures. In this case,  $T^* = 17.34$ .

As an over all conclusion, we may say that the isotopic approach of equation [1] for the thermal diffusion factor is valid for  ${}^{3}He - {}^{4}He$  mixtures, and is as good as the very complicated general expressions

Portgal. Phys. - Vol. 5, fasc. 3, pp. 61-70, 1968 - Lisboa

LARANJEIRA, M. F., et al. — Thermal diffusion in <sup>3</sup>He — <sup>4</sup>He and  $H_g = D_g$ 

of equation [8], regarding the mass influence as well as the concentration dependence.

| Г | A | BI | LE | ΙI |
|---|---|----|----|----|
|   |   |    |    |    |

Comparison of the theory with experiments for  ${}^{3}He - {}^{4}He$  mixtures

| Approximations for $\alpha T$             |             |             |    |                  |     |     |     | R <sub>34</sub> | $[\alpha_T]_{x_4} = 0.5$              |  |  |  |
|-------------------------------------------|-------------|-------------|----|------------------|-----|-----|-----|-----------------|---------------------------------------|--|--|--|
| a) General exp<br>with concen             | oress       | ion<br>on : | s, | 1/a <sub>7</sub> | r 1 | ine | ar  |                 |                                       |  |  |  |
| Experimental .                            |             |             |    |                  |     |     |     | 1.054           | 0.0695                                |  |  |  |
| 1st Chapman .                             |             |             |    |                  |     |     |     | 1.051           | $7 \ ^{0}/_{0}$ lower than exp.       |  |  |  |
| 1st Kihara                                |             |             |    |                  |     |     |     | 1.031           | 4.4 %                                 |  |  |  |
| 2nd Kihara                                |             |             |    |                  |     |     | 3.  | 1.034           | 3.8º/0 > > >                          |  |  |  |
| <li>b) Isotopic app<br/>concentratio</li> | oroa<br>n : | ch,         | αT | lin              | ear | wi  | ith |                 |                                       |  |  |  |
| Experimental .                            |             |             |    |                  |     |     |     | 1.053           | 0.0694                                |  |  |  |
| 1st Chapman .                             |             |             |    |                  |     |     |     | 1.047           | $6.2 \ ^{0}/_{0}$ lower than exp.     |  |  |  |
| 2nd Chapman .                             |             |             |    |                  |     |     |     | 1.047           | 1.3 <sup>0</sup> / <sub>0</sub> > > > |  |  |  |
| 1st Kihara                                |             |             | 5  |                  |     |     |     | 1.032           | 3.6% >>>                              |  |  |  |
| 2nd Kihara                                | 2.51        |             |    |                  | -   |     |     | 1.03,           | 2.1%                                  |  |  |  |

## 3 – MIXTURE OF $H_2 - D_2$

For this mixture we might expect that the isotopic approach might not be valid. Indeed, the mass coefficient,  $M_{12} = 1/3$ , is rather large and certainly higher powers of  $M_{12}$  would be considered in equation [1].

Also, there is some experimental evidence that the potential parameters for  $H_2$  and  $D_2$  are slightly different.

Nevertheless, the comparison of experimental data with theory is of interest, since it may provide some information about the limits of application of equation [1], regarding the mass influence and the concentration dependence.

We adopted the same procedure of the preceeding paragraph, using the experimental data for  $H_2 - D_2$  mixtures recently obtained by PAUL, HOWARD & WATSON (12), over the range from 0.080 to 0.900 in  $H_2$  mole fraction.

The exponential-six model was applied, with  $\alpha = 14.0$  and  $\varepsilon'_x = 37.3^{\circ} K$ , from ref. (13).

LARANJEIRA, M. F., et al. — Thermal diffusion in <sup>3</sup>He — <sup>4</sup>He and  $H_2 - D_2$ 

Experimental errors of  $a_T$  were estimated as about  $1^{0/0}$ , and the mean temperature was  $160^{\circ} K$ , i.e.,  $T^{\star} = 4.29$ .



Fig. 2 – Thermal diffusion factor for  $H_2 - D_2$  mixtures.

. Experimental data, ref. (12).

— Least square fit for  $\alpha_T$  linear with concentration.

-- Theoretical curve for Chapman-Cowling scheme.

- — Theoretical curve for Kihara-Mason scheme.

Theoretical curves correspond to the isotopic approach, eq. [1], have been normalized to cut the experimental one at  $x_2 = 50$  %.

Assuming that  $1/\alpha_T$  (exp) was linear with concentration, our least square fit gave

$$1/a_T(\exp) = 6.90_6 x_2 + 8.20_5 x_4$$
 [11]

67

Portgal. Phys. - Vol. 5, fasc. 3, pp. 61-70, 1968 - Lisboa

LARANJEIRA, M. F., et al. — Thermal diffusion in  ${}^{g}He - {}^{4}He$  and  $H_{g} - D_{g}$ 

where  $x_2$  and  $x_4$  represent, respectively, the mole fractions of  $H_2$  and  $D_2$ . Hence,

$$[\alpha_T (exp)]_{x_2=1} = 0.144_8$$
;  $[\alpha_T (exp)]_{x_4=1} = 0.121_0$ 

On the other hand, assuming  $\alpha_T$  linear in accordance with the isotopic approach, we have

$$a_{T}(\exp) = 0.144_{0} x_{2} + 0.121_{3} x_{3}$$
 [12]

This equation fits as well the experimental data within the magnitude of the errors, as shown in fig. 2. In this figure we also present the theoretical curves corresponding to the isotopic approach, which have been normalized to cut the experimental one at  $x_2 = 0.5$ .

### TABLE II

Comparison of the theory with experiments for  $H_2 - D_2$  mixtures

| Approximations for $\alpha T$                          |      |             |              |                |     |     |      |    | R <sub>42</sub> | $\left[\alpha_{T}\right]_{x_{2}}=0.5$ |       |        |        |
|--------------------------------------------------------|------|-------------|--------------|----------------|-----|-----|------|----|-----------------|---------------------------------------|-------|--------|--------|
| a) General<br>with con-                                | exp  | ores        | sior<br>on : | 18,            | 1/a | Т   | line | ar |                 |                                       |       |        |        |
| Experimental                                           |      |             |              |                |     |     |      |    | 1.188           |                                       | 0.13  | 2,     |        |
| 1st Chapman                                            |      |             |              |                |     |     | ÷    |    | 1.155           | 4.8 %                                 | highe | r than | i exp. |
| 1st Kihara .                                           |      |             |              |                |     |     |      |    | 1.124           | 4.6 %                                 | 0 2   |        | 2      |
| 2nd Kihara .                                           |      |             |              |                |     |     |      |    | 1.125           | 2.2 %                                 | 0 2   | 2      |        |
| <ul> <li>b) Isotopic</li> <li>concentration</li> </ul> | appr | road<br>1 : | ch,          | <sup>a</sup> T | lin | ear | wi   | th |                 | 1                                     | •     |        |        |
| Experimental                                           |      |             |              |                |     |     |      |    | 1.187           |                                       | 0.13  | 2.     |        |
| 1st Chapman                                            |      |             |              |                |     |     |      |    | 1.13            | 7.8 %                                 | highe | r than | ı exp. |
| 2nd Chapman                                            |      |             |              |                |     |     |      |    | 1.130           | 11 0/                                 | 0 2   | D      | ,      |
| 1st Kihara .                                           |      |             |              |                | a.  |     | -    |    | 1.08            | 11 0/                                 | 0 »   |        | 20     |
| 2nd Kihara .                                           |      |             |              |                |     |     | 1    |    | 1.08            | 10 %                                  | 0 »   | 2      | 20     |

The values of  $\gamma$  for Chapman and Kihara approximations are, respectively,

 $[\gamma]^{C} = 0.1831$ ;  $[\gamma]^{K} = 0.1165$ 

In table 11 we summarize the comparison between theory and experiments, following a procedure similar to the preceeding paragraph.

Portgal. Phys. - Vol. 5, fasc. 3, pp. 61-70, 1968 - Lisboa

LARANJEIRA, M. F., et al. — Thermal diffusion in <sup>3</sup>He — <sup>4</sup>He and  $H_2 - D_2$ 

It can be seen that the theoretical isotopic approach of equation [1] to the thermal diffusion factor gives rise to smaller concentration dependence and higher values of  $\alpha_T$  than those predicted by the general expression [8], the last ones being as well more in accordance with experiments.

Numerical differences are already significant, therefore we may conclude that a mass coefficient equal to 1/3, as that of  $H_2 - D_2$  mixtures, is too large for application of equation [1] to the isotopic thermal diffusion factor.

### 4 - CONCLUSIONS

The isotopic approach of equation [1] to the thermal diffusion factor represents the first terms of a series development of the general equation [8], when the mass coefficient,  $M_{12}$ , is assumed to be small and the potential parameters are equal for both isotopes.

The mixtures  ${}^{3}He - {}^{4}He$  and  $H_{2} - D_{2}$  provide significant examples for theoretical comparisons in the case of light isotopic mixtures and give practical information about the upper limits of  $M_{12}$  which may be accepted experimentally, in order that equation [1] be a valid approach regarding the mass influence and concentration dependence.

Of course, the major advantage of this equation over the general expression [8] is its formal simplicity, which reduces appreciably numerical computations, but it is also remarkable that it splits out in a simple way the major dependences of the thermal diffusion factor with potential models, molecular masses and concentrations of the isotopes, namely through  $\alpha_0$ ,  $M_{12}$  and  $\gamma$ , which therefore may be considered separately.

### BIBLIOGRAPHY

- LARANJEIRA, M. F., CUNHA, M. ÁUREA, & FRONTEIRA E SILVA, M. E. Portgal. Phys., 5, 3, 49 (1968).
- (2) MASON, E. A. J. Chem. Phys., 27, 75 (1957).
- (3) MORAN, T. I., & WATSON, W. W. Phys. Rev., 109, 1184 (1958).
- (4) van der VALK, F. & de VRIES, A. E. J. Chem. Phys., 34, 345 (1961).
- (5) SAXENA, S. C., KELLY, J. G., & WATSON, W. W. Phys. Fluids, 4, 1216 (1961).

Portgal. Phys. -- Vol. 5, fasc. 3, pp. 61-70, 1968 -- Lisboa

LARANJEIRA, M. F., et al. — Thermal diffusion in <sup>3</sup>He — <sup>4</sup>He and  $H_2 - D_2$ 

- (6) WATSON, W. W., HOWARD, A. J. MILLER, N. E., & SHIFFRIN, R. M. Z. Naturforsch, 18a, 242 (1963).
- (7) LARANJEIRA, M. F. Physica, 26, 409 (1960).
- (8) LARANJEIRA, M. F. Physica, 26, 417 (1960).
- (9) LARANJEIRA, M. F., & KISTEMAKER, J. Physica. 26, 431 (1960).
- (10) MASON, E. A., WEISSMAN, S., & WENDT, R. P. Phys. Fluids, 7, 174 (1964).
- (11) MASON, E. A., MUNN, R. J., & SMITH, F. J. Advances in Atomic and Molecular Physics, vol. 2. Academic Press, New York (1966).
- (12) PAUL, R., HOWARD, A. J., & WATSON, W. W. J. Chem. Phys., 43, 1622 (1965).