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ABSTRACT — An approximate method, to calculate energy levels of 

quantum systems bound by a potential, is introduced which uses the virial 

theorem and an independent minimization procedure at each energy level. 

Results obtained are presented and discussed. 

I — INTRODUCTION 

Recently, an approximate method to calculate energy levels 

of quantum systems bound by a large class of potentials was 

introduced by Gersch and Braden [1]. One of its most appealing 

features is the use of the Heisenberg uncertainty principle, one 

of the basic principles expressing the physical content of quantum 

mechanics. The careful and criterious application of approximate 

methods to deal with the Schrédinger equation is always wellcome, 

as such methods may help to develop an intuitive understanding 

of the behaviour of microscopic systems and of how such behaviour 

is affected by changes in the parameters defining the system. 

The variation method is amongst the most powerful approxi- 

mate methods and highly sophisticated generalizations of Ritz 

technique have been devised to calculate energy levels beyond 

the ground-state E,. These calculations may, for example, start 

with a linear combination of functions, 4,;,; =X, Cy 4, not 

necessarily orthogonal among them, and, by a convenient minimi- 

zation procedure with respect to the c,’s, successive approximate 

eigenvalues are then found. The closer these functions are to 

exact wave-functions, the closer to the exact eigenvalues are the 

successive E,’s [2]. 
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Our purpose with this note is mainly pedagogical. We shall 
be dealing with a simple, non-orthodox, application of the variation 
method which we believe has some connection with the work of 

ref. [1]. We will enforce the virial theorem (as well as the 
Hellmann-Feynman theorem), by performing, at each level sepa- 
rately, an independent minimization procedure with respect to a 
convenient trial wavefunction and a variation parameter 8 

dE/oB = 0, (1) 

dropping the constraint of orthogonality among the trial wave- 
functions corresponding to different levels. We, nevertheless, find 
that the calculated levels are in very good agreement with the 

exact ones. An effort is made to understand why this happens. 

The great advantage of the technique is to give simple 

analytical expressions for the energies, in terms of the parameters 

of the system under study. Even when more than one term is 

taken in the potential, a simple pocket calculator can easily handle 

such expressions. The method can thus hopefully play a useful 

role, both at the pedagogical level and at the level of research, 

in estimates of energy levels of models under investigation (for 

example, in elementary particle spectroscopy). We only use 

knowledge that a student, having followed a basic course in 

Quantum Mechanics, should have. 

In section II we introduce the method and apply it to some 

important types of potentials. In section II] we put together and 

complete our arguments and draw conclusions. 

II— THE METHOD AND APPLICATIONS 

With straightforward dimensional arguments one can easily 

show how condition (1) fulfills the virial theorem as well as the 

Hellman-Feynman theorem [3]. (See the Appendix for a more 

general proof). 

Consider a potential 

Vix)-2z (2) 
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and a trial wavefunction depending on the minimization parame- 

ter 8, w(x, 8), such that 

¥(x,B)= VB $(é) (*) (3a) 

with 

£= 6x (3b) 

and 

[FCx) ¥ Ox) de =f oC) 6) =I (3c) 

The variable é is here a convenient dimensionless quantity. 

The energy eigenvalue, for any level, can be written as 

1 @ 
2 dx? 
  <E>, = mid S + oS = aie hee |! 

be 

v designating the order of the level and » the reduced mass. 

With (2) and (3) the energy <E> _ is a function of » and £, 

E=E(un, 8), @ itself being, through “the Schrédinger equation, 

a function of ». 

We have 

2 
<T>,~A°/n and <V>,~1/8", (5) 

the dimensionless numerical constants of proportionality in (5) 

being obtained from integrals over £. 

The minimization condition (1), then becomes, with the help 

of expressions (5), 

a<E> /d8 =2 <T>,8*—p <V>, f+ =0, (6) 

giving 

2 <T>, = p <Vo,.: (7) 

the form of the virial theorem for power behaved potentials. 

(*) This condition is fulfilled for (trial) wavefunctions of a power 

behaved potential (h.o. potential, for example). 
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From the very same condition (1), we still have, using (5) 

and (6), 

d<E>, _9<E>, 4, 9SE>, d8, _  <T>, | (8) 
dp Op 0B, du be 

a statement of the Hellman-Feynman theorem. 

The argument is independent of p, although in practice 

the method is most suitable and easily applied to cases 

when p = n (integer), i.e., to polynomial potentials of the type 

V(x) =X a x" (n even) or V(r) =X a r, 
n>0 n>0 

We are still left with a large variety of possible trial functions. 

The 1-dimensional harmonic oscillator (h.o.) has the peculiarity 

that in this system the uncertainty relation for Ap, .Ax is maxi- 

mally realized; by this we mean that Ap,.Ax=//2 [6] 

(Ap, .Ax =(n+ 1/2) & for n>o). Thus, its wavefunctions 

should be a good choice for variation calculations, either in 1- or 

in 3-dimensional problems, in agreement with ideas of Gersch and 

Braden and the interpretation of {pdq = nh (see ref [10]). 

a) We start with a 1-dimensional system. In the spirit of 

the previous statements, the trial wavefunctions will be the h.o. 

wavefunctions 

  
a a -1/2 pox? _ V po 1/2 

U, N, H, (Vuox) e€ N, = (7t8— ’ (9) 

where the integer v gives the order of the level and H, are the 

Hermite polynomials; a = po is a strength parameter, » the 

frequency of the oscillator and » the reduced mass. We calculate 

equation (4) for <E>, and minimize the resulting equation with 

respect to » (w has dimensions of mass, but this is of no conse- 

quence here, as can be seen): 

d<E> /d0=0. (10) 

The key point is the application of (10) to each level 

separately. 
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As an exercise, we apply the procedure to the quartic oscilator: 

V(x) = ax‘, for which accurate approximate methods have been 

developed [1, 4]. Using u(x) = (@/yz)'/ exp (— 1/2 pox’) we 

calculate <axt>, and <T>, = <— 1/2y.d*/dx’>, correspon- 

ding to the ground-state: 

<ax'>o = 3/4 a( po)? , <p*/2m>o = 0/4 

Minimizing <E>,, we find » = (6a/y*)'/* and, as our best 

estimate for E,: 

<E>> (a/p?)7? = 3/8. 6. (11) 

Continuing for the excited states we construct Table I, where 

we compare our results with accurate numerical calculations [9]; 

we also quote Gersch and Braden [1] and the results of Hioie and 

Montroll [4] (taken from ref. [1]). Our results compare very 

TABLE I — Approximate energy levels of V= ax* 

  

  

State - a F lays Sie results ua sete 
v ” (ref. 9) (ref. 1) (ref. 4) 

v=0 3/8.6 1/3 = 0.6814 0.6680 1.1906 0.5461 

1 9/8.10 1/3 = 2.4237 2.3936 3.0001 2.3627 

2 15/8.(78/5)1/3 = 4.6850 4.6968 5.1514 4.6688 

3 21/8.(150/7)3/3 = 7.2911 7.3367 7.5598 7.3121 

4 27/8.(83/3)1/3 = 10.167 10.244 10.179 10.222 

5 33/8.(366/11)1/3 = 13.267 13.379 12.980 13.358 

6 16.565 16.712 15.943 16.692 

7 20.037 20.221 19.050 20.201 

8 23.668 23.890 22.289 23.869 

9 27.446 27.706 25.651 27.685         
  

It (*) <E>,/(a/p2 1/8 
(*) <E>,/(a/,2)18 

1.1906 n4/? (n=1,2,...3 N=Vv +1) 

1.376 (v + 1/2)4/8 (v =0,1,2,...) I 

Our results can be put into a form ~ (v + 1/2 )4/3, except that the parameter 

in front of (v + 1/2 )4/% slightly decreases with increasing v . 
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well with the exact ones, the first level being much better than 

the values obtained in refs [1] and [4]. 

The case of several terms in V(x) is handled in exactly the 

same way. When V(x) has a part odd in x, an extension of 

the method is possible. In such cases the introduction of a second 

variation parameter is desirable in order to displace the origin 

of the variable (x—x-—X,). For a complete treatment of the 

double-well potential and the anharmonic potential using the 

present method, the reader is advised to consult ref [5]. 

b) For three-dimensional potentials the method is a straight- 

forward generalization of the one-dimensional case. The wave- 

functions of the three-dimensional h.o. are constructed from 

products of the one-dimensional wavefunctions 

Vivi ve ve (XY, Z) x et/anurt H, (ex) H, (ay) H,, (az) (12) 

with parity (-1)”’, v=vitvw+yvs , and r? = x? + y?4+ z?. 

Taking linear combinations, we can form wavefunctions 

appropriate to levels with a given orbital angular momentum I and 

parity (—1)% As an example we quote for the first few levels: 

State 

(IS)v=0 1=0 (4(po)*?/Va)¥? Y,, 

(1P) 1 1 (8(po)*?/3V 7)? 4 Yy, 

Qs), 2 0 (2 (po )2/3Vm)/? (2 po 2-3) Yo, 

(2D) 2 2 (4 ( po )™2/15 Vw )/? 2? You 

(3P) 3 1 (20 (po )7?/75V x)? (2 wo r—5r) Yun 

l l ~ ry, etc; 

all expressions are to be multiplied by exp (— 1/2 uo r*) and the 

Yjm refer to the spherical harmonics. 
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Let us calculate the energy levels of the linear potential 

V(r) =ar which, as is well-known to particle physicists, has 

had a large application in quark models for mesons and baryons. 

To be definite, we assume two particles of mass m, bound 

by V(r). Separating the centre-of-mass motion in the Schédinger 

equation, we are left with an equation in terms of the relative 

coordinates (r, 0, ¢). 

We find 

<E> 15 = 30/4 + 2a/V apo (13) 

After minimization (9 <E>,,/d0—=0), we get the best 

estimate for the ground-state: <E>,, = 9/4 (4a/3 V op )?/3, In 

Table II we compare our estimates for S-wave states ‘with the 

TABLE II — Linear Potential 

(M=<T>+<V>+ 2m) 

  

  

State Our results a 

1S 3.111 3.105 (input) 

sh 3.695 3.695 

a8 4.175 4.182 

4S 4.599 4.609 

5S 4.987 5.000 

1P 3.456 

2P 3.966     
  

(a=0.211 GeV?, m= 1.16 GeV ) 

exact solutions of the Schrédinger equation, obtained from the 

poles of the Airy functions—ref [6]. This paper deals with a 

simple application of the linear potential to the charmonium 

system and the values quoted are very approximately the masses 

of the first few S-resonances: y, y’, y”, etc. For completeness, 
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we show our results for the 1P and 2P-wave states. The results 
have an error smaller than 0.4 %. 

How well behaves the method, with h.o. wavefunctions in 

the case of the Coulomb potential? The results are not as good 
as the previous ones and we can hint at that from the following 

detail: in a Coulomb potential there is a degeneracy between, for 

instance, levels 1P and 2S, 2P and 3S, etc. If we calculate <E> 
with h.o. functions this degeneracy is artificially lifted, although 
by a small amount; the best approximation will be to take average 
values. In Table III we present the results for the first levels. 

TABLE III — Coulomb Potential 

(We take m=1,2=—1) 

  

  

  

  

  

  

  

Exact results 
State | Our results average (B_=-1/4n?; n=‘, «..) | ‘ ; as 

3 /27¥2\2 
v=1, 1=0| - — = = -0.212 -0.212 -0.250 

4 3Vx 

7 / 5Y2\2 
2 0|- — — ~ -0,06316 

4 \ 21x 
_ -0.0599 -0.0625 

5 / 4/2 \2 
1 1/- — — = -0.05659 

4 \ 15x 

11 / g9//2 \? 
3 0|- ral =) ~ -0.03184 

4 \ 660 x 
VE -0.0287 -0.0278 

9 2V 2 \* 
3 1) = ral =) ~ “o.oosea | 

4 \ 15x     
  

One detail in the table is worth mentioning. We do not get 

upper bounds for the excited states when working with S-wave 

h.o. functions, but do get them using P-wave functions. This 

comes from the fact that the last functions are, due to their 

parity, orthogonal to the S-wave functions of the lower level. 
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The method should, nevertheless, still be reliable when the 

Coulomb interaction appears as a perturbation to the main 

potential: V(r) = Vo + Veouw - 

In the phenomenological models of particle physics, V, is 

often taken to be the linear potential. Such models do work very 

well, as far as mass spectroscopy is concerned, and work along 

these lines can be found in refs [3] and [8], which provide an 

intructive example of the influence, on the behaviour of the 

system, of the different terms of a potential. 

III - CONCLUSIONS 

We now put together those of the previous arguments which, 

in our view, justify the good results obtained with the method 

described. 

In the first place, the application of the independent minimi- 

zation procedure (1), with an appropriate choice of variation 

parameter, compels the expectation values of T and V to satisfy 

the virial theorem. There is an adaptation of the trial function to 

each state, in order to obtain the proper balance between the 

kinetic and potential energies of the state, as is required in 

spherically symmetric potentials. Certainly, both sides of the 

equality can still be wrong, differing from their exact values by 

the same amount, and we have to make sure that this difference 

is not large. 

It is important, at this point, to understand the role of the 

uncertainty principle in reducing the possibility of a wrong estimate 

of the energy eigenvalues. Having used as trial wavefunctions 

solutions of the Schrédinger equation with harmonic oscilator poten- 

tial, the constraint <Ax>. <Ap> =(<Ax> - <AP> Dn o. ah {2 

is naturally enforced. Intead of introducing an ad hoc, although 

quite reasonable, rule to fix <Ax> - <Ap>, as in ref [1], we have 

in our case <Ax> - <Ap> given by the wavefunctions of the h. 0. 

potential. As these trial wavefunctions are solutions of the 

Schrédinger equation they have the correct limiting behaviour as 

x—>0and x > o (r—0andr-— o in three dimensions ) and the 

correct nodal structure for the various eigenstates. They look like 

as wavefunctions should look: <Ax> -<Ap> cannot come very 
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wrong. This provides an additional constraint that guarantees, with 
the viral theorem, that the energy levels are reasonably estimated. 

However, one should not trust in detail these trial functions. 
In the virial theorem and in the uncertainty relations one only 
makes use of some of the lowest moments of the distribution 
| (x) |. Whenever the detailed structure of the wavefunctions 
is required, as it may happen in transition matrix elements, the 
optimized wavefunctions, in particular for the excited states, may 

give a poor approximation. It is clear that the closer the potential 

being studied is to the potential used to extract the trial wave- 

functions, the higher are the chances of the optimized wavefunc- 

tions to simulate accurately the real ones. 

Finally, we would like to finish by expressing the hope that 
our simple procedure will be useful for first estimates of energy 

levels for a large class of potentials. 

APPENDIX 

Let us write the trial wavefunction y, showing explicitly the 
parameter dependence: 

Yn = Yn (x; Qn > Bas moe Fe fa (A.1) 

Recalling that |¥|* has the meaning of a probability distri- 

bution, it is wise to choose the parameters { a,, 6,,... } in con- 

nection with the moments of the distribution. For instances, 

Oi, ~ CE, (A.2) 

being related to the mean and 

fy ~ (<> y— <E>p)? (A.3) 

being related to the dispersion. We shall keep only these two 

parameters. 

(*) True wavefunctions have no dependence of a f>--- on n. Such 

no dependence on n is equivalent to the orthogonality condition. 
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If the trial wavefunctions are solutions of the Schrédinger 

equation with a power behaved potentital, V. = a(x-b)", with r 

even, it can be easily shown, from scaling and translation 

invariance properties of the Schrédinger equation, that 

Yn (X3 Gn, Ba) =VBn $(&), (A.4) 

with é= 8,(xX-a,) and 

ao) May °.°) 

Jo vax) tdx=f 0 léa(ey [ede (A.5) 
—co —-o 

The energy for the nth-level can be written 

1 = d? = 
SLE Sere ae dé+ V d A.6 Ey 7 PF Orn oC) et+[o(é) VCE) CE) dE (A6) 

and the minimization conditions 

d<v|Hl]y>,/08, =90 and d<v¢|H|y>,/de,=0 (A.7) 

    

  

become 

d<vl/H|y>, 1 | aV | 
ese os |] 2 <TD <x — > 

0 Bn Bn * ox = 

(A.8) 

; im g <V>,=0 or Bn Aan Dan 1 a 

and 

|H - 
UBS JEL Ce <V>,=0. (A.9) 

0 ay Oey 

It is clear that (A.8), together with (A.9), implies the virial 

theorem. 

An application of the two-parameter minimization procedure to 

the double-well problem is given in ref [5]. 
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