Ruído de fase de lasers semicondutores — Parte II

M. F. FERREIRA (*), J. F. ROCHA e J. L. PINTO Universidade de Aveiro

A largura espectral e o ruído de fase dos lasers semicondutores podem ser devidamente condicionados pelo recurso a uma realimentação óptica externa. Algumas características desse condicionamento, bem como da influência do ruído de fase no desempenho dos sistemas ópticos coerentes, serão revistas neste artigo.

1. Introdução

Num artigo prévio [1] referimos a grande largura espectral dos lasers semicondutores solitários, assim como a existência de picos satélites no seu espectro de emissão, que não é Lorentziano. Tais características impedem a utilização imediata destes lasers em aplicações que exigem um grau considerável de pureza espectral, como sejam as comunicações ópticas coerentes, os sensores interferométricos ou a espectroscopia de alta resolução.

Um dos processos melhor sucedidos para conseguir a purificação espectral dos lasers semicondutores consiste na incorporação de um reflector externo, que proporcione ao laser uma realimentação adicional. Verifica-se, nomeadamente, que a largura espectral do laser diminui aproximadamente com o inverso do quadrado do comprimento da cavidade externa [2].

Tal realimentação é susceptível, contudo, de provocar tanto o estreitamento como o alargamento da linha espectral [3, 4, 5, 6, 7], podendo, neste último caso, dar-se o que alguns autores denominam por «colapso da coerência» do laser [8, 9], gerando-se eventualmente uma espécie de «dinâmica caótica» [10, 11, 12, 13].

No presente artigo ocupar-nos-emos apenas das características relativas a um funcionamento estável do laser, que na prática é conseguido para algumas situações de realimentação externa forte [14]. Abordaremos nas secções 2 e 3 o condicionamento da largura espectral e do ruído de fase, respectivamente, pela realimentação externa. Na secção 4 referir-se-á sucintamente a influência desse ruído de fase no desempenho dos sistemas ópticos coerentes, concluindo-se na secção 5 com um breve sumário.

2. Largura espectral de um laser semicondutor com realimentação externa

Na Fig. 1 representa-se o sistema constituído pelo laser semicondutor e pelo reflector externo. Uma análise desse sistema, válida

Fig. 1-Laser semicondutor com realimentação externa.

para um grau arbitrário de realimentação, conduz-nos, a partir da eq. (8) da ref. [1], ao seguinte resultado para a largura espectral [15, 16, 17, 18]

$$\Delta \nu = \Delta \nu_{o} / \left[1 + \frac{1}{\tau_{i}} \left\{ \alpha \operatorname{Re} \left(\frac{d \ln r_{D}}{d \omega} \right) - \operatorname{Im} \left(\frac{d \ln r_{D}}{d \omega} \right) \right\} \right]^{2}$$
(1)

(*) Bolseiro do I.N.I.C.

onde Δv_0 é a largura espectral do laser solitário, dada pela eq. (5) da ref. [1], τ_i é o tempo de ida e volta na cavidade (activa) laser, Re e Im significam «a parte real de ...» e «a parte imaginária de ...», representando r_D o coeficiente de reflexão efectivo para a face direita do laser da Fig. 1, dado por [19]:

$$r_{\rm D}(\omega) = \frac{r_2 + r_a(\omega) \ e^{-i \ \omega} \ \tau_{\rm p}}{1 + r_2 \ r_a(\omega) \ e^{-i \ \omega} \ \tau_{\rm p}}$$
(2)

 τ_p é o tempo de excursão na cavidade externa. Na Fig. 2 mostra-se a dependência de $\Delta \nu / \Delta \nu_o$ relativamente ao coeficiente de reflexão da face intermédia do laser (r₂), para uma cavidade externa de 15 cm de comprimento. Consideram-se vários valores do coeficiente de reflexão externa (r₃) e duas situações no que respeita

Fig. 2–Largura espectral normalizada ($\Delta \nu/\Delta \nu_0$) em função do coeficiente de reflexão da face intermédia, para vários valores do coeficiente de reflexão externa. As linhas a cheio correspondem a um funcionamento coincidente com o mínimo da curva do ganho limiar do laser, enquanto as curvas tracejadas se referem

a um funcionamento fora desse mínimo.

à curva de ganho limiar do laser: coincidência (caso em que se pode mostrar ser $\omega \tau_p = n.360^\circ$, n inteiro) ou não ($\omega \tau_p = 276^\circ$) com o mínimo dessa curva. Como se pode observar (curva a' da Fig. 2), a largura espectral pode ser substancialmente reduzida (cerca de 5 ordens de grandeza) por recurso a uma realimentação forte ($\geq 10\%$) e a uma cavidade longa. Tal possibilidade foi verificada experimentalmente por Wyatt [20, 21]. No caso de a realimentação ser proporcionada por um espelho simples ($r_3 = constante$), verifica-se que o modo de funcionamento do laser corresponde praticamente ao mínimo da curva de ganho limiar [18], circunstância em que uma reflectividade mínima da face intermédia do laser favorece um maior estreitamento da linha espectral (linhas a cheio da Fig. 2).

Sendo a realimentação garantida, todavia, por uma rede reflectora $(r_3 = r_3(\omega))$, melhora-se a estabilidade e o comportamento unimodal do laser [22], com a vantagem acrescida de permitir a sintonização deste numa gama de algumas centenas de angstroms [23], podendo determinar-se o seu funcionamento fora dos mínimos da referida curva [18, 21]. Neste caso, a largura espectral mínima é conseguida para uma reflectividade não nula da face intermédia do laser (curvas tracejadas da Fig. 2).

A incorporação de uma cavidade externa ao laser pode proporcionar igualmente uma redução significativa das variações em frequência (chirp), segundo um factor que, em dadas circunstâncias, é a raiz quadrada do factor de redução da largura espectral [18, 24, 25].

Espectro do ruído de fase e espectro de emissão de um laser semicondutor com realimentação externa

A realimentação externa de um laser semicondutor afecta, para além da sua largura espectral, todo o seu espectro do ruído de fase. As curvas tracejadas da Fig. 3 referem-se a cavidades de diferentes comprimentos $(0.8 \text{ cm} < L_p < 13.5 \text{ cm})$, em situações de realimentação fraca ($r_3 < 0.05$). Constata-se um abaixamento considerável do patamar relativo à região das baixas frequências (as cinco curvas proporcionam a mesma largura espectral), bem como a possibilidade de deslocamento para frequências mais elevadas do pico de ressonância, chegando a acontecer mesmo a sua quase eliminação (curva d) [26, 27]. Nesta última circunstância o espectro de emissão é praticamente Lorentziano.

Na ausência de efeitos parasitas, a banda de modulação em pequeno sinal de um semicondutor é determinada pela frequência das

Fig. 3-Espectro do ruído de fase de um laser semicondutor solitário (curva *a*) e com realimentação externa, caracterizada por K $\tau_p = 0.5$ (K=coeficiente de realimentação) e τ_p Vr=0.8 (b), τ_p Vr=0.6 (c), τ_p Vr=0.3 (d), τ_p Vr=0.1 (c) e τ_p Vr=0.05 (f). Vr é a frequência de ressonância [27].

oscilações de relaxação [28]. Na Fig. 4 representam-se os valores normalizados $\overline{\Omega}/\overline{\Omega}_0$ e T/T₀, da frequência das oscilações de relaxação e da constante de decaimento dessas oscilações, respectivamente, sendo $\overline{\Omega}_0$ e T₀ os respectivos valores para o laser solitário. Constata-se que, num modo de funcionamento não coincidente com o mínimo da curva de ganho limiar (curvas tracejadas da Fig. 4), a banda de modulação de um laser com realimentação pode ser sensivelmente o dobro da do laser solitário correspondente [25, 28]. Entretanto, a constante de decaimento das oscilações de relaxação diminui com a realimentação do laser (curvas ponteadas da Fig. 4), o que é indesejável do ponto de vista dos sistemas de comunicacão [29]. Ouando o funcionamento do laser coincide com o mínimo da curva de ganho limiar, não é possível qualquer aumento da frequência das oscilações de relaxação através da realimentação [25] (curvas a cheio da Fig. 4).

Note-se, por fim, que o caso de cavidades externas longas ($\tau_p \ge 2\pi/\overline{\Omega}$), em condições de realimentação fraca ou forte, proporcionando embora larguras espectrais admiravelmente pequenas, se caracteriza por um espectro do ruído de fase apresentando grandes picos a múltiplos da frequência de ressonância dessas

Fig. 4—Frequência e constante de decaimento das oscilações de relaxação, normalizadas pelos valores correspondentes do laser solitário em função do coeficiente de reflexão externa. As curvas tracejadas e ponteadas representam aquelas grandezas, respectivamente, numa situação de não coincidência com o mínimo da curva de ganho limiar, enquanto as curvas a cheio se referem à frequência das oscilações de relaxação quando se verifica tal coincidência.

cavidades, como se pode observar da Fig. 5. Tal facto, determinando valores elevados da variância da fase $\sigma^2(\tau)$, revela-se pernicioso

Fig. 5-Espectro do ruído de fase de um laser semicondutor acoplado a uma cavidade externa (passiva) de 1 metro de comprimento, para dois valores do coeficiente de realimentação externa: $r_3 = .02$ e $r_3 = .6$. A curva *a* refere-se ao laser solitário.

para o desempenho dos sistemas ópticos de comunicação coerentes [25, 30, 31], como se verá a seguir.

4. Influência do ruído de fase nas comunicações ópticas coerentes

As comunicações ópticas coerentes conhecem hoje um enorme esforço de investigação e desenvolvimento em muitos laboratórios do mundo, dadas as suas vantagens relativamente aos sistemas ópticos de detecção directa [32]. De facto, através da mistura de um sinal fraco com um campo oscilador local, o sinal detectado é susceptivel de ser suficientemente ampliado, de modo a chegar-se próximo do limite físico de detectabilidade, imposto pelo ruído quântico [2, 33]. Além disso, os canais de comunicação podem ser estreitamente espaçados, permitindo uma única fibra e/ou amplificador óptico para a transmissão simultânea de um número elevado desses canais.

O sistema PSK («Phase Shift Keying») homodino permite teoricamente atingir o limite do ruído quântico (9 fotões/bit, para uma taxa de erro de 10^{-9}), enquanto os sistemas DPSK («Differential Phase Shift Keying», FSK-DD («Frequency Shift Keying with Delay Demodulation»), ASK («Amplitude Shift Keying») e FSK («Frequency Shift Keying») com duplo filtro apresentam penalizações na sua sensibilidade de 3,5 dB, 5,5 dB, 7 dB e 10 dB respectivamente [34].

Verifica-se, entretanto, que quanto maior aproximação ao limite do ruído quântico (na ausência do ruído de fase) proporciona um dado sistema, mais sensível ele é ao ruído de fase [2].

O desempenho dos sistemas ópticos coerentes no que concerne à influência do ruído de fase é determinado pela variância da fase $\sigma^2(\tau)$, definida pela eq. (7) da ref. [1]. Admitindo-se um perfil Lorentziano para o espectro de emissão do laser, temos que $\sigma^2(\tau) = 2\pi .\Delta v.[\tau]$, sendo Δv a largura espectral do laser. Deste modo, os vários sistemas podem ser caracterizados quanto à largura espectral máxima tolerada, face a uma determinada taxa de erro de bit. Assim, para uma taxa de erro de 10^{-9} , o sistema PSK homodino necessita de lasers com larguras espectrais inferiores a cerca de 0,05%do ritmo de transmissão, os sistemas heterodinos DPK-DD admitem larguras espectrais máximas de cerca de 0,5% do ritmo de transmissão e os sistemas heterodinos ASK e FSK com duplo filtro cerca de 10% desse ritmo de transmissão [34].

Contudo, ao contrário do que é geralmente admitido na caracterização dos sistemas coerentes, o perfil de emissão dos lasers semicondutores solitários ou com realimentação externa não é geralmente Lorentziano, como se viu na secção anterior. Apenas para cavidades externas pequenas e em dadas condições de realimentação e legítimo admitir um espectro Lorentziano, como pode observar-se na Fig. 6, onde se com-

Fig. 6-Variância da fase $\sigma^2(\tau)$. As curvas a cheio dizem respeito ao laser solitário, com perfil Lorentziano (LS) ou perfil real (a). As curvas a tracejado referem-se ao laser com realimentação externa, correspondendo às curvas da Fig. 3. A curva LR corresponde a um perfil Lorentziano [27].

para a variância de fase $\sigma^2(\tau)$ para as duas situações: perfil Lorentziano e perfil real. As curvas apresentadas correspondem às da Fig. 3, podendo ver-se que a curva *d* se acorda razoavelmente com a linha LR, correspondente a um perfil Lorentziano [27]. Em geral, contudo, os valores reais da variância de fase são superiores (por vezes, substancialmente) aos previstos com base nesse perfil [27, 35].

5. Conclusões

Os lasers semicondutores solitários, comparativamente a outros tipos de lasers, caracterizam-se por uma grande largura espectral e pela existência de picos satélites no seu espectro de emissão, o qual já não pode considerar-se Lorentziano. Estes fenómenos podem ser convenientemente condicionados pelo recurso à realimentação externa. Por este processo, conseguem-se larguras espectrais da ordem de 1 KHz, facto que, acrescentado à sua pequena dimensão, baixo consumo de potência e longa duração, torna os lasers semicondutores particularmente preferíveis para muitas aplicações. No campo dos sistemas ópticos coerentes de comunicação, todavia, deve atender-se não tanto à largura espectral dos lasers, mas à variância da sua fase, a qual pode ser substancialmente diferente da prevista na hipótese de um modelo Lorentziano para o espectro de emissão.

REFERÊNCIAS

- M. FERREIRA, J. F. ROCHA e J. L. PINTO — «Ruído de fase de lasers semicondutores — Parte I», Gazeta de Física, Vol. 12, n.º 4, 144 (1989).
- [2] C. H. HENRY «Phase noise in semicondutor lasers», J. Lightwave Technol., LT-4, 298 (1986).
- [3] G. P. AGRAWAL «Line narrowing in a singlemode injection laser due to external optical feedback», IEEE J. Quantum Electron., QE-20, 468 (1984).
- [4] E. PATZAK, H. OLESEN, A. SAGIMURA, S. SAITO e T. MUKAI — «Spectral linewidth reduction in semiconductor lasers by an external cavity with weak optical feedback», Electron. Lett, V. 19, 938 (1983).
- [5] K. KIKUCHI e T. OKOSHI «Simple formula giving spectrum-narrowing ratio of semiconductor laser output obtained by optical feedback», Electron., Lett., V. 18, 10 (1982).
- [6] R. O. MILES, A. DANDRIGE, A. B. TVETEN, H. F. TAYLOR e T. G. GALLORENZI — «Feedback-induced line broadening in cw channel--substrate planar laser diodes», Appl. Phys. Lett., V. 37, 990 (1980).
- [7] L. GOLBERG, H. F. TAYLOR, A. DANDRIGE, J. F. WELLER e R. O. MILES — «Spectral cha-

racteristics of semicondutor lasers with optical feedback», IEEE Trans. Microwave Theory Tech., MTT-30, 401 (1980).

- [8] D. LENSTRA, B. H. VERBEEK e A. J. DER BOEF — «Coherence collapse in single-mode semiconductor lasers due to optical feedback», IEEE J. Quantum Electron., QE-21, 674 (1985).
- [9] M. OHTSU «Frequency stabilization in semiconductor lasers», Opt. Quantum Electron., QE-22, 762 (1986).
- [10] H. OLESEN, OSMUNDSEN e B. TROMBORG «Nonlinear dynamics and spectral behaviour for an external cavity laser», IEEE J. Quantum Electron., QE-22, 762 (1986).
- [11] H. KAWAGUCHI e K. OTSUKA «A new class of instabilities in a diode laser with an external cavity», Appl. Phys. Lett., V. 45, 934 (1984).
- [12] Y. CHO e T. UMEDA «Chaos in laser oscillators with delayed feedback», J. Opt. Soc. Am., V. 1, 497 (1984).
- [13] K. OTSUKA e H. TWARURA «Theory of optical multistability and chaos in a resonant-type semiconductor laser amplifier», Phys. Rev. A, V. 28, 3153 (1983).
- [14] R. W. TKACH e A. R. CRAPLYVY «Regimes of feedback effects in 1.5 m distributed feedback lasers», J. Lightwave Technol., Vol. LT-4, 1655 (1986).
- [15] B. TROMBORG, H. OLESEN, X. PAN e S. SAITO — «Transmission line description of optical feedback and injection locking for Fabry-Perot and DBF lasers», IEEE Quantum Electron., QE-23, 1875 (1987).
- [16] A. PATZAK, A. SUGIMURA, S. SAITO, T. MIKAI e H. OLESEN — «Semiconductor laser linewidth in optical feedback configurations», Electron. Lett, V. 19, 1026 (1983).
- [17] D. R. HJELME e A. R. MICKELSON «On the theory of external-cavity operated single-mode semiconductor lasers»; IEEE J. Quantum Electron., QE-23, 1000 (1987).
- [18] R. F. KAZARINOV e C. H. HENRY «The relation of line narrowing and chirp reduction resulting from the coupling of a semiconductor laser to a passive resonator», IEEE J. Quantum Electron., QE-23, 1401 (1987).
- [19] H. SATO e J. OHYA «Theory of spectral linewidth of external-cavity semiconductor lasers», IEEE J. Quantum Electron., QE-22, 1060 (1986).
- [20] R. WATT e W. J. DEVLIN «10 KHz linewidth 1.5 m InGaAsP external cavity laser with 55 mm tuning range», Electron. Lett., V. 19, 10 (1983).
- [21] R. WYATT «Spectral linewidth of external cavity semiconductor lasers with strong frequency-selection feedback», Electron. Lett., V. 21, 658 (1985).

- [22] N. A. OLSSON e J. P. VAN DER ZIEL «Tuning characteristics of an external cavity 1.5 m laser oscillator», Electron. Lett., V. 21, (1985).
- [23] M. W. FLEMING e A. MOORADIAN «Spectral characteristics of external cavity controlled semiconductor lasers», IEEE J. Quantum Electron., QE-7, 44 (1981).
- [24] G. DUAN, P. GALLION e G. DEBARGE «Analysis of frequency chirping of semiconductor lasers in the presence of optical feedback, Opt. Lett., V. 12, 800 (1987).
- [25] M. FERREIRA, G. F. ROCHA e J. L. PINTO FP and DFB semiconductor lasers with arbitrary external optical feedback», Proc. SPIE's — OE/Fibers' 89 (Boston, MA, 1989), paper 1175-06.
- [26] P. SPANO, S. PIAZZOLLA e M. TAMBURRINI «Theory of noise in semiconductor lasers in the presence of optical feedback», IEEE J. Quantum Electron., QE-20, 350 (1984).
- [27] M. FERREIRA, J. L. PINTO e J. R. F. ROCHA «Ruído de fase de lasers semicondutores em sistemas ópticos coerentes de comunicação», comunicação à 6.ª Conferência Nacional de Física, Aveiro, Portugal (1988).
- [28] G. P. AGRAWAL e C. H. HENRY «Modulation performance of a semiconductor laser coupled to an external high-Q resonator», IEEE J. Quantum Electron., QE-24, 134 (1988).
- [29] G. P. AGRAWAL e T. M. SHEN «Importance of rapid damping of relaxation oscillations for high-performance optical communication systems», Electron. Lett., V. 22, 1087 (1986).
- [30] N. SCHUNK e K. PETERMMAN «Minimum bit rate of DPSK transmission for a semiconductor laser with a long external cavity and strong linewidth reduction», J. Ligthwave Technol, LT-5, 1309 (1987).
- [31] K. KIKUCHI, T. OKOSHI, M. NAGAMATSU e N. HENMI — «Degradation of bit error rate in coherent optical communications due to spectral spread of the transmitter and local oscillator», J. Lightwave Technol., LT-2, 1024 (1984).
- [32] Y. YAMAMOTO e T. KIMURA «Coherent optical fiber transmission systems», IEEE J. Quantum Electron., QE-17, 919 (1981).
- [33] J. SALZ «Coherent Lightwave Communications», AT & T Tech. J., V. 64, 2153 (1985).
- [34] J. GARRETT e G. JACOBSEN «The influence of laser linewidth on coherent optical receivers with nonsynchronons demodulation», J. Lightwave Technol., LT-5, 551 (1987).

6.ºs OLIMPIADAS DE FÍSICA

Provas Regionais 1990

Delegação Regional de Coimbra (25 de Maio de 1990)

PROVA PARA O 9.º ANO

1.ª parte (1h 15min.)

I

O material de que dispões para a realização da prova permite que investigues algumas características de circuitos eléctricos. Começa por montar o circuito representado esquematicamente na Fig. 1.

Regula a fonte de alimentação de modo a que o valor indicado no amperímetro seja de 100 mA. A seguir liga a resistência $R_{P_1} = 18 \Omega$ em paralelo com a resistência de 150 Ω .

1. Como explicas o facto do amperímetro passar a indicar um valor diferente do que indicava anteriormente?

Roda lentamente o botão de regulação da fonte de alimentação, de maneira a que o valor indicado pelo amperímetro seja ainda 100 mA. Retira o amperímetro da posição em que se encontra e coloca-o no circuito tal como sugere a Fig. 2, de maneira a poderes medir o novo