Ruído de fase de lasers semicondutores — Parte I

M. F. FERREIRA (*), J. F. ROCHA e J. L. PINTO Universidade de Aveiro

Uma largura espectral excessiva e um espectro de emissão não-Lorentziano são duas características dos lasers semicondutores não previstas pela teoria clássica dos lasers. A descrição desses fenómenos é revista neste artigo.

1. Introdução

A existência de lasers semicondutores monomodo operando à temperatura ambiente e a conveniência da sua utilização em muitas aplicações exigindo um elevado grau de coerência, tais como a espectroscopia de alta resolução, os sensores interferométricos e as comunicações ópticas coerentes, determinaram nos últimos anos um renovado interesse pelo estudo da largura espectral e do ruído de fase que os caracterizam. Esse estudo conduziu ao reconhecimento de algumas particularidades dos lasers semicondutores, não conformes à teoria tradicional.

O objectivo deste artigo e do sequente – «Ruído de Fase de Lasers Semicondutores – Parte II» – é proporcionar uma panorâmica das particularidades aludidas. Sem se pretender referir exaustivamente todo o trabalho que, neste campo, tem ultimamente sido realizado, dar-se-á especial relevo aos aspectos que, de algum modo, influenciam o desempenho das comunicações ópticas coerentes, actualmente ainda em fase de investigação e desenvolvimento laboratorial.

No presente artigo trataremos da largura espectral e do ruído de fase próprio de um laser semicondutor (Fabry-Perot) solitário, dedicando-se o artigo sequente à consideração dos mesmos fenómenos em lasers sujeitos a realimentação óptica externa, bem como à sua influência no desempenho dos sistemas ópticos de comunicação coerentes.

2. Largura espectral de um laser semicondutor solitário

Num laser semicondutor os fotões podem ser gerados quer por emissão estimulada, que

é o processo responsável pela amplificação laser e em que a radiação emitida por um átomo se encontra exactamente em fase com a radiação circunvizinha desse átomo, quer por emissão espontânea, determinada pelo tempo de vida finito dos portadores no nível de energia superior do laser. Estas emissões espontâneas alteram descontinuamente a fase e a intensidade do campo eléctrico, como se representa na Fig. 1. Nesta figura, o ponteado

Fig. 1 — Representação complexa do campo. Cada ponto representa a extremidade do vector campo em sucessivos instantes de um dado intervalo de tempo [11].

significa a extremidade do vector campo em instantes sucessivos de um certo intervalo de tempo.

Os fotões emitidos espontaneamente têm por efeito adicionar um pequeno vector ao vector campo de amplitude E e fase ϕ , resul-

^(*) Bolseiro do INIC.

tando um novo campo com amplitude $E + \Delta E$ e fase $\phi + \Delta \phi$. Como a fase da emissão espontânea é arbitrária o campo resultante situa-se algures no pequeno círculo a tracejado indicado na Fig. 1.

Devido ao acoplamento entre o campo da radiação e a concentração de portadores, a intensidade do campo sofre oscilações de relaxação, até regressar ao seu valor de equilíbrio. A fase, entretanto, não possuindo qualquer força restauradora do valor inicial, e em consequência de sucessivas emissões espontâneas, caracteriza-se por um movimento tipicamente Browniano, tendo Lax [1] verificado que a variância da diferença da fase, em dois instantes distanciados no tempo de τ , depende linearmente desse intervalo, de acordo com a expressão:

$$\sigma^{2}(\tau) = \langle [\phi(t+\tau) - \phi(t)]^{2} \rangle = \frac{R}{2I} \tau \qquad (1)$$

onde R é a taxa total de emissão espontânea e I é o número total de fotões (intensidade), proporcional à potência emitida pelo laser. Estas alterações de fase apresentam uma distribuição Gaussiana [1, 2], podendo escrever-se a correlação do campo no instante $t + \tau$ com o campo no instante t na forma:

$$\langle E^*(t+\tau) E(t) \rangle \gtrsim E(t)^2 e^{i\omega\tau - \sigma^2/2}$$
 (2)

onde ω é a frequência da radiação (suposta monocromática). O espectro de emissão do laser é dado pela transformada de Fourier da eq. (2). Considerando a eq. (1), obtém-se um perfil Lorentziano, com uma largura espectral dada por

$$\Delta v_{\rm ST} = \frac{R}{4 \pi I} \tag{3}$$

A eq. (3), que estabelece uma proporcionalidade inversa entre a largura espectral e a potência emitida laser, é a bem conhecida fórmula modificada de Schawlow-Townes [3,4], que, até há pouco, era supostamente válida para todos os tipos de lasers. Todavia, num trabalho pioneiro, Fleming e Mooradian [5] observaram experimentalmente que a largura espectral de um laser semicondutor GaAlAs, apesar de ser inversamente proporcional à potência, era cerca de 50 vezes superior ao previsto pela eq. (3).

Parte dessa largura espectral excessiva foi justificada atendendo à inversão incompleta da população entre os níveis de energia do laser, fenómeno peculiar dos lasers semicondutores. Isso traduz-se pela incorporação na eq. (3) de um factor n_e-o denominado factor de emissão espontânea-dado pela razão entre a taxa de emissão espontânea por modo e a taxa de emissão estimulada por fotão do laser, e cujo valor é cerca de 2,5 [6]. A outra parte do alargamento foi elegantemente justificada por Henry [7]: durante as oscilações de relaxação, sequentes a qualquer emissão espontânea, a densidade de portadores flutua também; consequentemente, as partes real (n') e imaginária (n") do índice de refracção variam, determinando esta última alteração no ganho, tendente a restabelecer o equilíbrio de intensidade, enquanto da variação da parte real resulta uma flutuação adicional da fase e, por via disso, um maior alargamento da linha espectral. O respectivo factor de alargamento é $(1 + \alpha^2)$, onde

$$\alpha = \frac{\Delta n'}{\Delta n''} \tag{4}$$

é a razão entre as variações da parte real e da parte imaginária do índice de refracção.

A largura espectral dum laser semicondutor é dada, então, por [7, 8]:

$$\Delta v = \Delta v_{\rm ST} \ n_{\rm s} (1 + \alpha^2) \tag{5}$$

Um parâmetro α semelhante ao anterior é suposto ocorrer igualmente para os lasers gasosos [9], sendo a sua ordem de grandeza, todavia, igual ou inferior à unidade.

No que concerne aos lasers semicondutores permanece por receber explicação satisfatória o facto de ser não nula a ordenada na origem das rectas indicadas na Fig. 2, baseadas em dados experimentais [10]. Este valor, não muito significativo à temperatura ambiente, torna-se apreciável para temperaturas suficientemente baixas [11, 12].

Fig. 2 – Largura espectral de um laser semicondutor GaAlAs de frequência única em função do inverso da potência emitida, às temperaturas de 273 K, 195 K e 77 K [10].

3. Espectro do ruído de fase e espectro de emissão de um laser semicondutor solitário

Seguindo o mesmo processo indicado anteriormente para a determinação do espectro de emissão do laser, pode agora obter-se o espectro das flutuações de frequência, calculando a transformada de Fourier da função de autocorrelação dessas flutuações:

onde

$$\dot{\phi}(t) = \frac{d\phi(t)}{dt}$$

 $\dot{S\phi}(\Omega) = F \left\{ \langle \dot{\phi}(t+\tau) \dot{\phi}(t) \rangle \right\}$

(6)

é a frequência angular instantânea da radiação óptica e Ω é a frequência angular referida à frequência central do laser. A variância da fase $\sigma^2(\tau)$ pode ser obtida a partir de S $\phi(\Omega)$ na forma [2, 13]:

$$\sigma^{2}(\tau) = \frac{2}{\pi} \int_{0}^{\infty} \left[\dot{S\phi}(\Omega) / \Omega^{2} \right] (1 - \cos \Omega \tau) d\Omega$$
(7)

A eq. (1) resulta da eq. (7) quando $S\phi(\Omega) = \frac{R}{2I} = \text{constante. Todavia, Daino e col. [2]}$ observaram experimentalmente que este espectro não é constante, como se supunha, mas apresenta um pico de ressonância à frequência das oscilações de relaxação, de modo semelhante ao que acontece com o espectro do ruído de intensidade [14, 15]. Este facto novo foi explicado teoricamente [13, 16, 17, 18] com base nos mesmos argumentos que justificam o excesso da largura espectral do laser semicondutor, sendo consequência do valor relativamente elevado do parâmetro α da eq. (4), que estabelece o acoplamento entre as flutuações da fase e da amplitude.

Fig. 3 – Espectro do ruído de fase de um laser semicondutor solitário para três valores da potência emitida por uma das suas faces: $P_0 = .5 \text{ mW}$, 2 mW e 5 mW.

A Fig. 3 representa o espectro do ruído de fase (flutuações da frequência instantânea) para um laser semicondutor solitário. Da sua observação ressalta, para além do pico de ressonância, a cerca de 1 GHz da frequência central do laser, a existência de um patamar relativamente elevado na região das baixas frequências, facto que determina o valor «excessivo» da largura espectral. Na verdade, não havendo variação apreciável de S $\phi(\Omega)$ perto de $\Omega = 0$, temos que essa largura espectral é dada por [19, 20]:

$$\Delta \nu = \frac{S\phi(0)}{2\pi} \tag{8}$$

A existência de um pico de ressonância em $S\dot{\phi}(\Omega)$ tem como consequência imediata o facto de o espectro de emissão do laser não ser já Lorentziano, mas apresentar picos satélites, separados do pico central por múltiplos da frequência das oscilações de relaxação (Fig. 4).

Fig. 4 — Espectro de emissão de um laser semicondutor para três valores da constante de amortecimento das oscilações de relaxação: $T = .5 \times 10^9 \text{ s}^{-1}$, $1 \times 10^9 \text{ s}^{-1}$ e $1 \times 10^{10} \text{ s}^{-1}$.

4. Conclusão

Os lasers semicondutores solitários, comparativamente a outros tipos de lasers, caracterizam-se por uma grande largura espectral $(\Delta v. P_0 = 50 - 100 \text{ MHz.mW})$ e pela existência de picos satélites no seu espectro de emissão, o qual já não pode considerar-se Lorentziano. Ambos os fenómenos, que se devem ao acoplamento entre as flutuações da fase e da amplitude do campo, não eram previstos pela teoria clássica dos lasers.

Com as características evidenciadas, os lasers semicondutores solitários não podem ser utilizados de imediato em várias aplicações, impondo-se como necessário o recurso a técnicas adicionais de purificação espectral.

REFERÊNCIAS

- MAX, M. «Classical noise V: Noise in selfsustained oscillators», *Phys. Rev.*, V, 160, 290 (1967).
- [2] DAINO, B., SPANO, P., TAMBURRINI, M. e PIAZZOLA, S. — «Phase noise and spectral line shape in semiconductor lasers», *IEEE J. Quan*tum Electron., QE-19, 266 (1983).
- [3] SCHAWLOW, A. L. e TOWNES, C. H. «Infrared and optical masers», *Phys. Rev.*, V. 112, 1940 (1958).

- [4] HEMPSTEAD, R. D. e LAX, A. «Classical noise VI: Noise in self-sustained oscillations near threshold», *Phys. Rev.*, V. 161, 350 (1967).
- [5] FLEMING, M. W. e MOORADIAN, A. «Fundamental line broadening of single-mode GaAlAs diode lasers», Appl. Phys. Lett., V. 38, 511 (1981).
- [6] HENRY, C. H., LOGAN, R. A. e WERRIT, F. R.-«Measurement of gain and absorption spectra in AlGaAs buried heterostructure lasers», J. Appl. Phys., V. 51, 3042 (1980).
- [7] HENRY, C. H. «Theory of the linewidth of semiconductor lasers», *IEEE J. Quantum Electron.*, QE-18, 259 (1982).
- [8] VAHALA, K. e YARIV, A. «Semiclassical theory of noise in semiconductor lasers, part I», *IEEE J. Quantum Electron.*, QE-19, 1096 (1983).
- [9] RISKEN, H. e SEYBOLD, R. «Linewidth of a detuned single-mode laser near threshold», *Phys. Lett.*, V. 38A, 63 (1972).
- [10] WELFORD, D. e MOORADIAN, A. -- «Output power and temperature dependence of the linewidth of single frequency cw (GaAl)As diode lasers», Appl. Phys. Lett., V. 40, 865 (1982).
- [11] MOORADIAN, A. «Laser linewidth», *Physics Today*, V. 38, 43 (1985).
- [12] HENRY, C. H. «Phase noise in semiconductor lasers», J. Lightwave Technol., LT-4, 298 (1986).
- [13] HENRY, C. H. «Theory of the phase noise and power spectrum of a sigle-mode injection laser», *IEEE J. Quantum Electron.*, QE-19, 1391 (1983).
- MCCUMBER, D. E. «Intensity fluctuations in the output of cw laser oscillators», *Phys. Rev.*, V. 141, 306 (1966).
- [15] LAX, M. «Rate equations and amplitude noise», *IEEE J. Quantum Electron.*, QE-3, 37 (1967).
- [16] VAHALA, M. e YARIV, A- «Semiclassical theory of noise in semicondutor lasers, part II», *IEEE J. Quantum Electron.*, QE-19, 1102 (1983).
- [17] SPANO, P., PIAZZOLA, S. e M. TAMBURRINI, M. — «Phase noise in semiconductor lasers: a theoretical approach», *IEEE J. Quantum Electron.*, QE-1195 (1983).
- [18] SCHIMPE, R. e HARTH, W. «Theory of FM noise of single-mode lasers», *Electron. Lett.*, V. 19, 136 (1983).
- [19] SCHNK, N. e PETERMMAN, K. «Minimum bit rate of DPSK transmission for a semiconductor laser with a long external cavity and strong linewidth reduction», J. Lightwave Technol, LT-5, 1309 (1987).
- [20] TROMBORG, B., OLESEN, H., PAN, X. e SAITO, S. — «Transmission line description of optical feedback and injection locking for Fabry-Perot and DBF lasers», *IEEE Quantum Electron.*, QE-23, 197 (1987).