O Modelo Molecular de «Weiss»

2. Antiferromagnetismo

por J. M. MACHADO DA SILVA (Laboratório de Física da Faculdade de Ciências do Porto)

Introdução.

Um exemplo simples de aplicação do modelo molecular de Weiss diz respeito ao ferromagnetismo. O primeiro artigo desta série ocupava-se deste problema [1]. Vamos procurar estudar, dentro das mesmas linhas de simplicidade, o antiferromagnetismo, deixando para mais tarde o estudo do ferrimagnetismo.

Antiferromagnetismo.

Os mais simples antiferromagnetes conhecidos são cristais de compostos iónicos formados por duas sub-redes R_1 , R_2 , interpenetrantes conforme se vê na fig. 1. Estas sub-redes são equivalentes no que diz respeito ao número de pontos das sub-redes e às interacções entre os dipolos localizados em R_1 e R_2 .

Fig. 1 -- Estrutura magnética de um antiferromagnete simples.

Os momentos magnéticos dipolares de cada uma das sub-redes estão alinhados a T = 0 K segundo a mesma direcção mas em sentidos *opostos* de tal modo que a magnetização M do conjunto das duas redes é nula. Esta é a característica mais relevante do antiferromagnetismo; em-

Fig. 2 — Curva de magnetização relativa a cada uma das sub-redes R₁, R₂.

bora cada uma das sub-redes R_1 , R_2 se comporte em primeira aproximação como um ferromagnete, i.e. a magnetização de cada uma das sub-redes M_{R_1} , M_{R_2} seja máxima a T = 0 K, decresça com o aumento de temperatura e se anule a uma temperatura T_N , conhecida por temperatura de Néel (v. fig. 2), a magnetização total é nula visto ser $M_{R_1} = -M_{R_2}$. Este facto vai ser responsável pelo comportamento, muito interessante, da susceptibilidade magnética (¹) em função da temperatura (v. fig. 3): a susceptibili-

Fig. 3 — Susceptibilidade magnética por unidade de massa de um antiferromagnete (Mn0) em função da temperatura.

dade na zona de altas temperaturas $(T > T_N)$ cresce quando diminuimos T e nos aproximamos de T_N atingindo um máximo a esta temperatura, decrescendo, no caso de um policristal (²), para um valor não nulo quando T \rightarrow 0. Notemos que no caso de um ferromagnete a susceptibilidade, na zona de altas tempera-

Fig. 4 — Susceptibilidade magnética de um ferromagnete (Ni).

turas, cresce de maneira idêntica à de um antiferromagnete, mas na vizinhança de T_c , χ cresce além de todo o limite (v. fig. 4) dado que, mesmo com $H_{ext} = 0$, os momentos magnéticos dipolares começarão a alinhar-se sendo em consequência $M \neq 0$.

O calor específico (v. fig. 5) apresenta, como para um ferromagnete, um máximo

Fig. 5 – Calor específico de um antiferromagnete ($CoCl_2.6H_2O$):

----- curva teórica segundo o modelo de Weiss - - - curva experimental.

a $T = T_N$; a existência de um calor especîfico associado com a transição antiferromagnética está ligada ao alinhamento dos momentos magnéticos de cada uma das sub-redes R_1 , R_2 quando se arrefece

(1) A susceptibilidade magnética % é definida
como lim_{Hext→0} ∂ M / ∂ Hext
sendo Hext o camgo magnético aplicado exteriormente.

(2) Veremos adiante que a susceptibilidade magnética é anisotrópica a temperaturas $T < T_N$, podendo no caso de um monocristal anular-se a T = 0 K se $\underset{ext}{H_{ext}}$ tiver a direcção de $\underset{N_{R_1}(M_{R_2})}{M_{R_1}(M_{R_2})}$, ou conservar-se constante no intervalo $0 \leq T \leq T_N$ se $\underset{ext}{H_{ext}}$ for perpendicular a $\underset{N_{R_1}(M_{R_2})}{M_{R_1}(M_{R_2})}$. o cristal desde $T >> T_N$ até T = 0; por outras palavras o calor específico C_M está associado à variação de entropia (S), entre estados de grande desalinhamento $(T > T_N)$ e estados de grande alinhamento $(T < T_N)$:

$$C_{\rm M} = T \frac{dS}{dT}.$$

Modelo de «Weiss».

A aplicação do modelo molecular de «Weiss» ao antiferromagnetismo segue os mesmos moldes que no caso do ferromagnetismo.

Enunciamos no primeiro artigo [1] desta série quais as hipóteses de Weiss. Estas podem-se resumir do seguinte modo: os dipolos magnéticos supostos localizados nos pontos da rede estão sujeitos a um campo magnético «equivalente» H^{eq} proporcional à magnetização na vizinhança do dipolo considerado: $H^{eq} = \lambda M$ (λ -constante de proporcionalidade ou constante de Weiss). No caso do antiferromagnetismo os átomos vizinhos de um dado dipolo magnético pertencem quer a R_1 quer a R_2 ; consequentemente o campo H^{eq} visto por cada um dos dipolos magnéticos será formado por dois termos, um proporcional a M_{R_1} e outro a M_{R_2} . Assim para os dipolos de R_1

 $\underset{\rightarrow}{\mathrm{H}_{\mathrm{R}_{1}}^{e\,q}} = -\mathrm{A} \underset{\rightarrow}{\mathrm{M}_{\mathrm{R}_{2}}} - \mathrm{B} \underset{\rightarrow}{\mathrm{M}_{\mathrm{R}_{1}}};$

dada a equivalência entre as duas redes $R_1 \ e \ R_2$, podemos escrever imediatamente $H_{R_2}^{eq}$ em função de $M_{R_1} \ e \ M_{R_2}$:

$$\operatorname{H}_{R_2}^{eq} = -\operatorname{A} \operatorname{M}_{R_1} - \operatorname{B} \operatorname{M}_{R_2},$$

sendo A > 0 e A > B.

Como se pode ver das equações anteriores, $H_{R_1}^{eq}$ e $H_{R_2}^{eq}$ serão nulos se M_{R_1} e M_{R_2} o forem. Contudo há dois casos em que M_{R_1} e M_{R_2} não se anulam; um é a temperaturas $T < T_N$, conforme já foi referido; outro é a temperaturas $T > T_N$ quando se aplica um campo magnético exterior H_{ext} . O campo H_{ext} alinha, em certa medida, os dipolos magnéticos de R_1 e R_2 segundo a sua própria direcção, «induzindo» deste modo, magnetizações (não nulas) M_{R_1} e M_{R_2} nas sub-redes R_1 e R₂. Podemos «medir» o comportamento do antiferromagnete, isto é, a sua «reacção» ao campo magnético H_{ext}, medindo a susceptibilidade magnética. Para isso recordemos a expressão da magnetização (já determinada para um ferromagnete em [1]) quando se supõe que a componente μ_2 do momento dipolar μ , segundo a direcção de $H = H_{ext} + H^{eq}$ toma apenas dois valores: $\pm \mu_m$:

(1)
$$M = M_m \operatorname{tg} h\left(\frac{\mu_m H}{k T}\right),$$

onde M_m é o valor máximo da magnetização; no caso de um antiferromagnete, M será quer M_{R_1} quer M_{R_2} e $M_m = \frac{N}{2} \mu_m$, sendo $\frac{N}{2}$ o número de dipoles magnéticos por unidade de volume e por sub-rede. No caso de campos H muito pequenos $(\mu_m H \ll K T)$, tg $h\left(\frac{\mu_m H}{K T}\right)$ pode ser substituido por $\frac{\mu_m H}{K T}$ sendo $H = H_{ext} + H^{eq}$ (1). H terá valores diferentes con-

⁽¹⁾ Pressupomos que H^{eq} é paralelo a H_{ext} , isto é, que M_{R_1} e M_{R_2} tem também a direcção de H_{ext} .

Vol. V, Fasc. 8

$$M_{R_1} = \frac{\mu_m M_m}{K T} (H_{ext} - A M_{R_1} - B M_{R_2})$$

е

$$M_{R_2} = \frac{\mu_m M_m}{K T} (H_{ext} - A M_{R_1} - B M_{R_2}).$$

Destas duas equações obtém-se fàcilmente $M_{R_1} + M_{R_2}$ e consequentemente a susceptibilidade X. X será simplesmente $\frac{M_{R_1} + M_{R_2}}{H_{ext}}$, isto é, $\chi = \frac{C}{T - \theta}$, com

$$C = N \cdot \frac{\mu_m^2}{K} e \theta = -\frac{1}{2} C (A+B).$$

Na zona de baixas temperaturas $(T < T_N)$, o problema da determinação teórica da susceptibilidade torna-se mais complicado matemàticamente, porque embora a magnetização total do cristal seja nula, não é nula a magnetização de cada uma das suas sub-redes. Existindo um campo magnético exterior, este induz uma magnetização total não nula cujo valor vai depender da orientação do campo H_{ext} relativamente à direcção de magnetização. Se a direcção de Hext é a da perpendicular à magnetização $M_{R_1}(M_{R_2})$, o efeito de H_{ext} será o de alterar a direcção de M_{R_1} e de $M_{R_2}(1)$ sem contudo alterar $M_{R_1}(M_{R_2})$. Sob a acção conjunta de Hext e de Heq atingir--se-à uma situação de equilíbrio quando (v. fig. 6) M_{R_1} e M_{R_2} forem paralelos à soma vectorial de Hext com os campos moleculares actuando em R₁ e R₂ respectivamente; isto é:

$$- \underbrace{\operatorname{A} M_{R_1}}_{- \operatorname{A} M_{R_2}} - \underbrace{\operatorname{B} M_{R_2}}_{+ \operatorname{A} M_{R_1}} + \underbrace{\operatorname{H}_{ext}}_{+ \operatorname{ext}} / / \underbrace{\operatorname{M}_{R_1}}_{+ \operatorname{A} M_{R_1}} + \underbrace{\operatorname{H}_{ext}}_{+ \operatorname{A} M_{R_1}} / \underbrace{\operatorname{A} M_{R_1}}_{+ \operatorname{A} M_{R_1}} + \underbrace{\operatorname{H}_{ext}}_{+ \operatorname{A} M_{R_1}} / \underbrace{\operatorname{A} M_{R_1}}_{+ \operatorname{A} M_{R_1}} + \underbrace{\operatorname{H}_{ext}}_{+ \operatorname{A} M_{R_1}} / \underbrace{\operatorname{A} M_{R_2}}_{+ \operatorname{A} M_{R_2}} + \underbrace{\operatorname{A} M_{R_2}}_{+ \operatorname{A} M$$

 $H_{\text{ext}}\cos\theta = AM_{R_{\text{i}}}\sin2\theta = 2AM_{R_{\text{i}}}\sin\theta\cos\theta$

A susceptibilidade χ_1 será, por conseguinte

$$\chi_{i} = \frac{\delta M_{R_{i}} + \delta M_{R_{2}}}{H_{ext}} = \frac{M_{R_{i}} + M_{R_{2}}}{H_{ext}} \sin \theta = \frac{1}{A},$$

sendo, portanto, independente da temperatura.

Fig. 6 — Diagrama relativo à determinação de χ_1 .

Se H_{ext} é paralelo a $M_{R_1}(M_{R_2})$ a variação sofrida por $M_{R_1}(\partial M_{R_1})$ e por $M_{R_2}(\partial M_{R_2})$ pode-se fàcilmente calcular a partir da equação (1)

(2)
$$\underset{\rightarrow}{\mathbf{M}_{\mathbf{R}_{1}}} = \underset{\rightarrow}{\mathbf{M}_{m}} \operatorname{tg} h \left(\frac{\mu_{m} \left(-AM_{\mathbf{R}_{1}} - BM_{\mathbf{R}_{2}} \right)}{K T} \right)$$
$$\underset{\rightarrow}{\mathbf{M}_{\mathbf{R}_{1}}} + \underset{\rightarrow}{\delta} M_{\mathbf{R}_{1}} = \underset{\rightarrow}{\mathbf{M}_{m}} \operatorname{tg} h \cdot$$
$$\cdot \left(\frac{\mu_{m} \left(H_{\text{ext}} - A \left(M_{\mathbf{R}_{1}} + \delta M_{\mathbf{R}_{1}} \right) - B \left(M_{\mathbf{R}_{2}} + \delta M_{\mathbf{R}_{2}} \right)}{K T} \right)$$

e de igual modo para M_{R_2} e ∂M_{R_2} .

De (2), obtém-se ∂M_{R_1} em função de H_{ext} :

⁽¹⁾ Note se que estamos a considerar campos magnéticos suficientemente pequenos, isto é, $H_{ext} \ll |A M_{R_1}|, |B M_{R_2}|.$

(3)
$$\delta M_{R_1} = M_m (H_{ext} - A \delta M_{R_1} - B \delta M_{R_2}) \times tg h' \left(\frac{\mu_m (-A M_{R_1} - B M_{R_2})}{KT} \right)$$

sendo

$$\operatorname{tg} h' \left(\frac{\mu_{m} \left(- \operatorname{A} \operatorname{M}_{\operatorname{R}_{1}} - \operatorname{B} \operatorname{M}_{\operatorname{R}_{2}} \right)}{\operatorname{K} \operatorname{T}} \right)$$

a derivada, relativamente ao argumento, de tg $h\left(\frac{\mu_m(-AM_{R_1}-BM_{R_2})}{KT}\right)$ no ponto $(M_{R_1}, M_{R_2}, H_{ext} = 0).$

Analogamente δM_{R_2} será dado por:

$$\delta \underbrace{\mathbf{M}_{\mathbf{R}_{2}}}_{\mathbf{J}} = \underbrace{\mathbf{M}_{m}}_{\mathbf{J}} \left(\mathbf{H}_{ext} - \mathbf{B} \,\delta \,\mathbf{M}_{\mathbf{R}_{1}} - \mathbf{A} \,\delta \,\mathbf{M}_{\mathbf{R}_{2}}\right)$$
$$\cdot \operatorname{tg} h' \left(\frac{\mu_{m} \left(-\mathbf{B} \,\mathbf{M}_{\mathbf{R}_{1}} - \mathbf{A} \,\mathbf{M}_{\mathbf{R}_{1}}\right)}{\mathbf{K} \,\mathbf{T}}\right).$$

A variação total δM será simplesmente $|\delta M_{R_1}| + |\delta M_{R_2}|$ visto $\delta M_{R_1} \in \delta M_{R_2}$ terem a mesma direcção e sentido (direcção e sentido de H_{ext}).

Conhecendo δM_R em função de H_{ex_t} facilmente se calcula a susceptibilidade paralela $\chi_{||} = \frac{\delta M_R}{H_{ext}}$:

$$\chi_{\parallel} = \frac{2 \,\mu_m \,\mathrm{M}_m \,\mathrm{tg} \,h' \left(\frac{\mu_m \,(\mathrm{A} - \mathrm{B}) \,\mathrm{M}_{\mathrm{R}_1}}{\mathrm{K} \,\mathrm{T}}\right)}{\mathrm{K} \mathrm{T} + (\mathrm{A} + \mathrm{B}) \,\mu_m \mathrm{M}_m \mathrm{tg} \,h' \left(\frac{\mu_m (\mathrm{A} - \mathrm{B}) \,\mathrm{M}_{\mathrm{R}_1}}{\mathrm{K} \,\mathrm{T}}\right)}$$

 $\chi_{||}(T)$ está representada na fig. 7 conjuntamente com χ_1 e χ .

Podemos verificar que para $T = T_N$ as susceptibilidades χ , $\chi_{||} \in \chi_1$ tem o mesmo valor: $\frac{1}{A}$. Para isso, necessitamos de saber qual o valor de T_N , isto é, a temperatura para a qual a magnetização das sub-redes se anula. Problema semelhante foi estudado no 1.º artigo desta série sobre o ferromagnetismo (1) e o resultado obtido pode ser utilizado directamente na determinação de T_N :

$$T_{N} = \frac{1}{2} \frac{N \mu_{m}^{2}}{K} (A - B) = \frac{1}{2} C (A - B).$$

A verificação referida no parágrafo anterior é imediata no caso de χ ; para

Fig. 7 — Susceptibilidade magnética por unidade de massa de um antiferromagnete (MnF). Note-se que o comportamento de χ_1 , χ_1 , e χ em função da temperatura é o previsto pelo modelo

molecular de Weiss.

 $\chi_{||}$ basta notar que tg $h' \left(\frac{\mu_m (A - B) M_{R_i}}{K T} \right)$ no ponto $T_N (M_{R_i} = 0)$ é exactamente 1, jsto é,

$$\chi_{ll} = \frac{2 \,\mu_m \,\mathrm{M}_m}{\mathrm{K} \,\mathrm{T}_\mathrm{N} + (\mathrm{A} + \mathrm{B}) \,\mu_m \,\mathrm{M}_m} = \frac{1}{\mathrm{A}}$$

Muitas das experiências de medida de susceptibilidade são feitas em amostras policristalinas em que é arbitrária por-

$$\Gamma_{\rm C} = \frac{N \,\mu_m^2}{K} \,\lambda = C \,\lambda \,.$$

⁽¹⁾ A temperatura de transição T_C para um ferromagnete com $\mu_s = \pm \mu_m$ é

tanto, a direcção de magnetização de cada um dos monocristais que formam a amostra, relativamente ao campo magnético exterior. Neste caso o campo magnético poderá, em geral, decompor-se segundo a direcção de $M_{R_1}(M_{R_2})$ e segundo duas outras direcções normais a M_{R_1} . Tendo em conta a equivalência das três direcções, a susceptibilidade medida será, portanto

$$\chi_{\rm P} = \frac{1}{3} \chi_{//} + \frac{2}{3} \chi_1.$$

Na figura 3 está representada χ_P em função da temperatura; note-se que para $T = T_N$, $\chi_P = \frac{1}{A}$ e que para T = 0, $\chi_P = \frac{2}{3A}$.

Os resultados do modelo de Weiss no que diz respeito ao calor específico e à susceptibilidade magnética podem-se sintetizar do seguinte modo: O calor específico experimental apresenta um máximo para $T = T_N$ de acordo com o resultado teórico mas para $T > T_N$ e para $T < T_N$ os valores experimentais afastam-se da previsão do modelo de Weiss (ver fig. 5). Esta discrepância é, em parte, devida à «interacção de curto-alcance» conforme foi discutido em [1].

O valor experimental da susceptibilidade, em geral, tem um comportamento que não se afasta acentuadamente do resultado teórico do modelo de Weiss (v. figuras 3 e 7). O acordo entre o modelo teórico e a experiência fica, contudo, parcialmente destruído não só devido à interacção de curto-alcance mas também ao facto (além dos referidos em [1]) de os dipolos magnéticos não se encontrarem localizados nos pontos da rede.

REFERÊNCIAS

[1] J. M. MACHADO DA SILVA, Gazeta de Física, 5, 127 (1971).

BIBLIOGRAFIA

- H. M. ROSENBERG, Low Temperature Physics (Oxford at the Clarendon Press, 1963).
- F. REIF, Statistical Physics (Berkeley physics course -- vol. 5. McGraw-Hill book company, 1967).