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se alguém lhe perguntar e tiver que explicar, então já não sabe. 
Esta é talvez uma das mais citadas referências do teólogo. Con-
tudo, para mim, a passagem mais relevante é quando ele pergun-
ta: O que fazia Deus antes de criar o mundo? E responde: “Se, 
porém, antes do céu e da terra não havia tempo algum, porque 
perguntam o que fazias então? Não poderia haver então se não 
existia o tempo.” Agostinho estava preocupado com a possível 
ociosidade de Deus. Eu acho interessante sublinhar que a sua 
resposta não é diferente da dada pela cosmologia moderna. O 
Universo começou num big bang que ocorreu há cerca de 13,8 
mil milhões de anos. Foi então que começou o tempo.

A esta noção de tempo vou chamar o tempo do calendário. Mas 
há outras, como veremos.

Movimento
Imagine que a leitora vai a Nova York. Partiu do aeroporto Hum-
berto Delgado a meio da tarde, o avião ganhou a sua altitude de 
cruzeiro e está um tempo magnífi co. A tripulação serviu-lhe uma 
refeição, fechou as cortinas das janelas e diminuiu as luzes da ca-
bine. A minha estimada leitora inclinou a cadeira e começa a ver 
um fi lme do seu agrado. Nestas circunstâncias, nada lhe garante 
que está em movimento em vez de parada. Bem sei que ouve o 
ruído dos motores e, como não perdeu a memória, sabe que vai 
a caminho da América. Lembra-se de ter descolado de Lisboa e 
pouco depois viu a linha da costa portuguesa. O que eu quero 
dizer é que não existe nada, nenhuma experiência que possa 
fazer a bordo que evidencie que voa a cerca de 800 km por hora, 
sobre o oceano Atlântico. Qualquer experiência que possa fazer 
no interior do avião dará o mesmo resultado que daria se o avião 
estivesse parado na pista do aeroporto. Parado ou com veloci-
dade constante são equivalentes. A isto chama-se o princípio de 
inércia.

É por causa desta equivalência que a humanidade levou milhares 
de anos até se convencer que a Terra não estava parada, no 
centro do Universo, mas que se desloca à volta do Sol com uma 
velocidade que, em média, é de cerca de 30 km/s. Um obser-
vador, que se situasse fora do plano da órbita e a Norte, veria a 
Terra a descrever uma elipse, quase circular, deslocando-se no 
sentido contrário ao do movimento dos ponteiros de um relógio. 
A Terra roda deixando sempre o Sol à sua esquerda! Até parece 
um slogan de publicidade política!
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O tempo do calendário
Era o fi m de uma tarde quente de verão. Estou numa quinta, no 
Alentejo, sentado à sombra de uma casa. Na minha frente estão 
duas grandes olaias e uma palmeira, que dá ao conjunto um ar 
semi-aristocrático. À medida que anoitece observo os pardais: 
vindos em bando vão saltitando de árvore em árvore até encon-
trarem os seus ramos para passarem a noite. A noite vai caindo e 
os pardais sabem que é tempo de dormir.

 Para os nossos antepassados, antes do aparecimento da agri-
cultura, há cerca de 12 mil anos, foi esta a sua primeira noção de 
tempo. O tempo, associado ao movimento de rotação da Ter-
ra que, evidentemente, na altura, era associado ao movimento 
aparente do Sol, que voltava cada dia. Nascia a Leste, percorria 
o céu e escondia-se a Oeste. Entre cada sucessivo nascimento 
do Sol, um dia. Quem diria que era a Terra que rodava de Oeste 
para Leste.

Depois de descoberto este primeiro relógio é bem possível que 
fosse a periodicidade das fases da Lua, que constituísse o próxi-
mo referencial de tempo. Agora entre cada sucessiva Lua Nova 
teremos um intervalo de cerca de 28 dias, que pode ainda ser 
dividido em intervalos de 7 dias, correspondentes às quatro fases 
da Lua. Finalmente, o desenvolvimento de sociedades agrárias 
levou necessariamente ao reconhecimento da periodicidade das 
estações do ano. Tínhamos descoberto o ano. 

Quando dizemos que o 25 de abril foi há cinquenta anos quere-
mos dizer que, desde esse acontecimento, a Terra deu cinquenta 
voltas ao Sol. Para termos o calendário como hoje o conhecemos 
foram precisos ainda várias melhorias tais como a divisão do ano 
em meses e, acima de tudo, resolver o problema de que cada 
ano não tem um número inteiro de dias. Mais fácil foi resolver o 
problema de fi xar o ano 1. Como se trata de uma escolha arbi-
trária, várias civilizações fi zeram-no de forma diferente. Entre nós 
é usual fi xar o ano 1 como o que é atribuído ao nascimento de 
Jesus Cristo. Faz agora todo o sentido dizer que a 23 de maio 
de 1179, uma bula do Papa Alexandre III reconheceu, a Afonso 
Henriques e aos seus sucessores, o direito a intitularem-se reis 
de Portugal.

Santo Agostinho, bispo da cidade africana de Hipona, viveu na 
viragem do século IV para o século V. Nas “Confi ssões”, uma das 
suas obras mais conhecida, diz que sabe o que é o tempo, mas 
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Voltemos á nossa viagem de avião. Seja v a velocidade do avião 
em relação ao ar, os tais 800 km/h. Mas imaginemos que existe 
um vento de cauda, com a velocidade v'. A velocidade do avião 
em relação ao solo será a soma. Se designarmos por l a distância 
a percorrer, o tempo gasto no percurso será:

(1)

Imaginemos que, na viagem de regresso, apanhamos vento com 
a mesma velocidade, mas de frente. O tempo da viagem será.

(2)

O tempo total para o percurso de ida e volta, será evidentemente 
a soma, o que dá:

(3)

Por razões que serão claras nos próximos parágrafos, fi zemos

(4)

Sem vento, em qualquer das viagens, o tempo total das viagens 
será evidentemente 2l/v, que é o valor que se obtém da equação 
anterior quando β=0. 

Pergunta: Em que condições é que a viagem de ida e volta é 
mais rápida? Quando não existe vento. Talvez um exemplo a aju-
de a convencer-se. Para uma velocidade do vento de 120 km/h, 
β=0,15. O que dá uma duração da viagem de ida e volta cerca de 
2,2% maior. O que ganhamos com vento de cauda não compen-
sa o que vamos perder quando o vento é de frente. Se acertou na 
resposta sem ter feito a conta parabéns. Tem uma boa intuição.
Antes de deixar este exemplo do avião, que será muito útil no 
próximo capítulo, quero recordar-lhe que no Atlântico Norte o 
vento dominante é de Oeste para Leste. Se já foi a Nova Yorque 
lembra-se, com certeza, que a viagem de regresso a casa demo-
rou menos.

Referenciais
Vamos imaginar que queremos estudar o movimento de uma 
bola de bilhar em relação à mesa. Agora já sabemos que o movi-
mento é sempre relativo. O que devo fazer? Coloco duas réguas 
graduadas, por exemplo em centímetros, uma colocada no sen-
tido do comprimento da mesa e outra no sentido da largura. No 
ponto onde as réguas se cruzam, marco o zero de cada régua. 
A primeira vou designar por eixo dos x e a outra por eixo dos y. 
Cada posição da bola fi ca agora bem especifi cada por um par de 
números, que são as suas coordenadas sobre a mesa. Para além 
disto, precisamos também de um relógio. À medida que o tempo 
vai passando, se a bola se mover, vai ocupar diferentes posições, 
cada uma especifi cada pelo seu par de coordenadas. Em rigor, 
não preciso de um relógio. É melhor usar um cronómetro, pois 
pouco importa se inicio a minha experiência às 15 horas ou às 17 
horas e 23 minutos.

Nem todos os movimentos ocorrem num plano. Vivemos num es-
paço tridimensional e, por isso, no caso mais geral, vamos preci-
sar de outro eixo, perpendicular aos dois anteriores e com o zero 
no mesmo ponto do cruzamento, que designarei por ponto O. 

Estar, por exemplo, no instante t=5 no ponto x=1, y=2,8 e z=-3,9 
é o que em Física se designa por um acontecimento, i. e., estar 
num certo instante num certo sítio.

Agora já sabemos o que é um referencial de inércia: são três 
réguas perpendiculares entre si, com o zero no ponto O e um 
cronómetro.

Consideremos um observador, a Ana, que está em repouso no 
referencial anterior a que chamaremos referencial S. Um outro 
observador, o Bruno, está em movimento, com velocidade cons-
tante, v ao longo do eixo dos x. Ele adota um referencial S’ onde 
cada acontecimento é descrito por t', x',y' e z'. Ver Fig. 1. O 
que pretendemos agora é analisar como é que a Ana e o Bruno 
descrevem o mesmo movimento de uma bola, por exemplo. Para 
facilitar a comparação, os dois concordaram em sincronizar o ins-
tante zero dos seus cronómetros quando o ponto O' coincide 
com O. Nesse instante, para qualquer ponto as três coordenadas 
em S’ são iguais às respetivas coordenadas em S, não é verda-
de? Isto continuará a ser verdade, para todos os instantes para 
as coordenadas segundo os eixos y' e z'. Mas para x' teremos x 
= x'+vt'. Em resumo, o dicionário que relaciona os dois referen-
ciais de inércia é:

(5)

Estas relações designam-se por transformada de Galileu, em ho-
menagem a Galileu Galilei (1564-1642) professor na Universidade 
de Pádua, um dos mais importantes físicos e astrónomos da era 
moderna.

Na língua portuguesa a palavra velocidade designa duas grande-
zas que são diferentes. Essas duas grandezas designam-se em 
inglês como speed e velocity. Quando dizemos que o limite de 
velocidade é de 50 km/h estamos a referir-nos à speed. Em por-
tuguês o mais correto seria dizer o módulo da velocidade. Mas 
ninguém diz. A velocidade (velocity em inglês) não é apenas um 
número. É uma grandeza que tem direção e sentido. É na realida-
de especifi cada por três números, que são as suas componentes 

Figura 1 – S’ move-se em relação a S com velocidade constante v, ao 
longo do eixo dos x. No instante t a distância OO’ é vt.
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existirá extinção. Se pelo contrário os picos das duas ondas coin-
cidirem exatamente a onda resultante terá uma amplitude dupla.

Michelson e Morley fi zeram o seguinte: alinharam um dos braços 
do interferómetro na direção Oeste-Leste; o outro fi cou, eviden-
temente, orientado na direção Norte-Sul. Quanto tempo levou a 
luz a percorrer o braço O-E? Basta copiar o resultado da equação 
(3), atendendo a que agora a velocidade v é c e β=v/c  , isto é:

(7)

E quanto tempo demorou a luz a percorrer o braço N-S? Se a sua 
resposta foi

lamento, mas está errado. Contudo, está em boa companhia. 
Esse mesmo erro foi feito pelos dois físicos norte americanos. A 
resposta correta foi dada pela primeira vez pelo físico holandês H. 
Lorentz (1853-1928). Quando a luz do braço N-S caminha para 
o espelho, é preciso ter em conta que o espelho se está a mover, 
com a velocidade v. A luz segue uma trajetória que é a hipotenu-
sa de um triângulo retângulo, cujos catetos são l e ∆tv. (ver Fig.3). 
Como no regresso do espelho a luz também encontra o beam 
splitter deslocado da mesma distância, o resultado é:

(8)

A diferença entre os tempos de percurso da luz nos dois braços 
do interferómetro era suscetível de ser medida. Contudo, Michel-
son e Morley não mediram qualquer diferença. Repetiram a sua 
experiência durante alguns anos, introduzindo sucessivas melho-
rias nos seus equipamentos e o resultado foi sempre negativo. 

segundo os três eixos (ver anexo 1). Nos automóveis, o que é 
indicado no mostrador em frente do condutor é a speed. Para 
saber a velocity o condutor usa, além desta informação, os seus 
olhos para saber qual é a direção do movimento do carro. 

Voltemos aos nossos dois observadores. Bruno descreve o mo-
vimento de um móvel determinando, em função do tempo, as 
suas posições, i.e., determina x'(t'), y'(t') e z'(t'). A derivada des-
tas funções são as componentes do vetor velocidade, que de-
signaremos por v'x, v'y e v'z. Das equações (5) obtemos a lei de 
composição das velocidades:

(6)

Temos, deste modo, a relação entre as componentes do vetor 
velocidade, medidas pelo Bruno e as correspondentes com-
ponentes do vetor velocidade, medidos pela Ana. Foram estas 
relações que usámos no exemplo do voo para Nova York. Em 
particular, nesse exemplo, as componentes do vetor velocidade 
segundo os eixos dos y e dos z eram zero e só a primeira das 
equações (6) foi usada. Neste caso, e só neste caso, a speed
coincide com a velocity!

A velocidade da Luz
No fi nal do século XIX sabia-se que a luz era uma onda. Assim 
como as ondas sonoras se propagam no ar, pensava-se que 
existia um fl uido, chamado éter, no qual as ondas luminosas se 
propagavam. Como a luz do Sol e das estrelas mais longínquas 
chega até nós, este éter deveria estar por toda a parte.

Imagine que dispunha de um feixe de luz laser. Pode ser um des-
ses ponteiros eletrónicos que agora substituíram os ponteiros de 
madeira do meu tempo de escola. Tinha medido que a veloci-
dade da luz desse laser no seu laboratório era c. Agora levava 
o seu ponteiro laser na viagem a Nova Yorque e quando o avião 
seguia com velocidade constante, v, sobre o Atlântico, ligava o 
laser e apontava-o na mesma direção e sentido do movimento 
do avião. Pergunta: em relação ao solo qual será a velocidade 
da luz?  Usando o mesmo raciocínio do capítulo 2, a resposta 
deve ser c+v. 

Para verifi carem se isto era assim ou não, dois físicos america-
nos, Albert Michelson (1852-1931) e Edward Morley (1838-1923), 
realizaram em 1887 uma experiência do tipo da que lhe acabei de 
sugerir com o avião. Usaram um dispositivo, chamado interferó-
metro e o avião era a Terra no seu movimento em torno do Sol.

O interferómetro é um equipamento que tem uma fonte de luz. 
Esta luz incide num dispositivo (beam splitter) que separa o feixe 
luminoso incidente em dois feixes: Um segue em frente e o outro 
é desviado numa direção perpendicular. Ambos os feixes percor-
rem a mesma distância l e incidem num espelho. São refl etidos e 
voltam a percorrer a mesma distância até ao beam splitter, onde 
são sobrepostos. (ver Fig. 2). Quando duas ondas são sobre-
postas, a onda resultante é extremamente sensível a qualquer 
pequena diferença entre as duas. Por exemplo, no limite em que 
aos picos de uma das ondas correspondam os vales da outra 

Figura 2 – Esquema de um interferómetro.

Figura 3 – Quando a luz se desloca para o espelho com velocidade c o 
espelho move-se com velocidade v.
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Posteriormente, outros físicos repetiram esta experiência e o re-
sultado foi sempre o mesmo.

A evidência experimental indica que, em qualquer referencial de 
inércia, a luz se propaga, no vazio, com a mesma velocidade em 
módulo. Nesta frase sublinhei algumas palavras que são cruciais. 
Quando digo luz não é só a luz visível. Pode ser raios X, ondas 
de rádio, de TV, radar, etc. No vazio signifi ca no espaço onde não 
existe matéria, por oposição à água, por exemplo, ou até mesmo 
ao ar. Embora no ar a velocidade da luz seja praticamente igual 
à do vazio. O que é constante é o módulo da velocidade, o seu 
valor é:

(9)

O valor desta constante é conhecido com tanta precisão que foi 
adotado para defi nir o metro. Desde 1983, o metro é a distância 
percorrida pela luz, no vazio, em 1 a dividir por 299792458 do 
segundo. Se quiser uma ordem de grandeza a luz anda cerca de 
um metro em 3 nanossegundo (10-9  s).

Gostaria de terminar este capítulo convidando os meus leitores a 
verifi carem que:

(10)

Se multiplicarmos ambos os membros desta equação por c, te-
mos a diferença dos comprimentos de onda das duas ondas. O 
que, para um interferómetro com um braço de 1 m, daria uma 
diferença de 10 nm. Este número dá-nos uma ideia da precisão 
que é preciso ter neste tipo de experiências.

A transformação de Lorentz
No capítulo anterior aprendemos que c, cujo valor no sistema 
internacional de unidades é dado pela relação (9), é o mesmo 
em todos os referenciais de inércia. Como esta afi rmação vai ter 
uma implicação profunda no nosso conceito de tempo, vou voltar 
a pedir a colaboração da Ana e do Bruno para fazer mais uma 
hipotética experiência.

Vamos para Monte Real onde existe uma base da Força Aérea 
Portuguesa (FAP). A Ana posiciona-se a meio da pista, escolhe 
esse ponto para a origem do seu referencial, a que chamarei 
SA, escolhe para eixo dos x, uma reta ao longo da pista, para 
eixo dos y escolhe uma reta, perpendicular à primeira, segun-
do a largura da pista e o eixo dos z é perpendicular à pista. A 
Ana também tem um cronómetro e deste modo está habilita-
da a determinar as coordenadas espaçotemporais de qualquer 
acontecimento:t,x,y,z.

Entretanto, o Bruno pede emprestado um F16 à FAP. Satisfeito o 
pedido, estaciona o avião, no sítio onde está a Ana, e dispara um 
míssil, paralelo à pista, no sentido positivo do eixo dos x. Ambos 
medem a velocidade do míssil e concordam que essa velocidade 
é vB. Posto isto, o Bruno levanta voo, dá algumas voltas para se 
ambientar e passa sobre a pista em voo com velocidade cons-
tante v. A certa altura, mantendo sempre o avião com velocidade 
constante, Bruno dispara outro míssil exatamente igual ao ante-
rior. A Ana dirá que, para ela, isto é, no seu referencial de inércia, 
a velocidade do míssil é vA , dada por:

(11)

Terminada esta experiência, o Bruno regressa à base e aterra. 
Mas agora pedem à FAP que substitua o lançador de misseis por 
um laser. Satisfeito, mais uma vez, o pedido, vão repetir a expe-
riência anterior. Disparam o laser com o avião parado e medem 
cB. Depois, o Bruno dispara o laser quando o avião voa sobre a 
pista com velocidade constante v e a Ana vai medir a velocidade 
da luz do laser, no seu referencial, e o resultado é:

(12)

Como compatibilizar as relações (11) e (12)? Como compreender 
que o que é válido para o míssil não é válido para a luz? E como 
compatibilizar este novo conhecimento com a transformação de 
Galileu, eqs. (5) e a lei das velocidades, eqs. (6)? A procura de 
respostas para estas perguntas ocupou vários físicos no fi nal do 
século XIX tais como, H. Lorentz, G. FitzGerald (1851-1901) e 
H. Poincaré (1854-1912). Mas foi o célebre físico Albert Einstein 
(1879-1955) quem deu o contributo mais relevante para este pro-
blema [1]. 

Comecemos pela lei das velocidades. É fácil ver que as eqs. (6) 
são incompatíveis com uma velocidade que é igual nos dois re-
ferenciais. Pode demonstrar-se (ver anexo 2) que a forma correta 
das eqs. (6) é a seguinte:

(13)

Nestas equações, gama é uma constante dada por:

(14)

E beta é já nossa conhecida. É a razão entre a velocidade relativa 
dos dois referenciais de inércia e a velocidade da luz, i. e.

Sugiro que os leitores verifi quem o que acontece quando no refe-
rencial S as componentes do vetor velocidade são: vx=c; vy=vz=0. 
O que obtemos é v'x=c; v'y=v'z=0. Por outras palavras, esta nova 
lei de composição das velocidades é compatível com a luz ter 
a mesma velocidade nos dois referenciais de inércia. Também 
gostaria de lhe mostrar que, para velocidades pequenas quan-
do comparadas com a velocidade da luz, as eqs. (6) são uma 
excelente aproximação das eqs. (13). Para isto o melhor é usar 
um exemplo. Antes disso vou inverter as eqs (13). Em vez de ter 
as componentes da velocidade no referencial S' em função das 
respetivas componentes da velocidade do mesmo móvel no refe-
rencial S, agora quero ter ao contrário, as velocidades em S em 
função das velocidades em S' .
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O resultado é:

(15)

Não precisa saber muita matemática para inverter as equações 
(13). Basta trocar v em -v.

Voltemos agora à experiência com o F16. Na forma (15) temos a 
velocidade no referencial fi xo, o da Ana, em função do referencial 
do Bruno. Um F16 pode voar a cerca de 2400 km/h. E admita-
mos que o míssil que o Bruno dispara voa a 3000 km/h. Nestas 
condições o denominador da primeira das eq. (15) é

É por este número ser tão próximo de 1 que, durante muito tem-
po, não nos demos conta que a lei de composição de velocida-
des dada pelas eqs. (6) não estava certa. Mas está quase certa. 
Isto é, mesmo no nosso exemplo do míssil disparado pelo Bruno, 
a Ana poderá continuar a dizer que a velocidade do míssil em re-
lação ao solo é de 5400 km/h. Em 5400 km/h que são 1500 m/s
estará a fazer um erro de 9 nm/s! 

Quando o Bruno fi zer a experiência com o laser, terá vx'=c e 
vy'=vz'=0. Espero que a leitora verifi que que a Ana medirá  vx=c 
e  vy=vz=0. Mas imagine que o Bruno resolve que, em vez de 
disparar o laser para a frente, no sentido do movimento do F16, 
resolve disparar para o lado, na direção perpendicular à do movi-
mento. Então teremos: vy'=c e vx'=vz'=0. Qual será, neste caso, a 
velocidade da luz medida pela Ana? A substituição destes valores 
na eq. (15) dá:

(16)

Este resultado é extremamente importante. Para a Ana o vetor 
velocidade da luz não tem apenas componente segundo o eixo 
dos y. Tem também segundo x. Basta esta constatação para 
verifi car que o vetor velocidade da luz não é igual nos dois 
referenciais de inércia. Mas o que tem de ser igual é o módulo 
do vetor velocidade. O módulo de um vetor é a raiz quadrada da 
soma dos quadrados das componentes. Olhe para as eqs (16), 
faça os quadrados das componentes e some. Obtém c! 

Estas novas leis de composição de velocidades estão em fl agran-
te contradição com a transformação de Galileu dada pelas eqs. 
(5). Aliás, todas as leis do eletromagnetismo estão em completo 
desacordo com a transformação da Galileu. No fi nal do século 
XIX tinha-se percebido que a luz, todas as formas de luz, são 
ondas eletromagnéticas. Hoje já todos ouvimos falar de campo 
elétrico e de campo magnético. Um campo elétrico variável no 
tempo induz um campo magnético também variável no tempo. A 
onda luminosa é este diálogo entre os campos a caminhar pelo 

espaço.

O dicionário entre as coordenadas do mesmo acontecimento em 
dois referenciais de inércia, compatível com as leis do eletromag-
netismo é dado pela transformação de Lorentz. Assim, em vez 
de (5) teremos:

(17)

Comparemos as eqs. (17) com as eqs. (5). As duas últimas são 
iguais. Faz sentido porque o movimento relativo dos dois refe-
renciais faz-se ao longo do eixo dos x. A segunda destas equa-
ções, a referente à coordenada espacial, é quase igual. Difere 
pela constante gama. Mesmo para uma velocidade como a do 
F16 das nossas experiências, temos γ=1+2,5×10-12. Mais uma 
vez o resultado não relativista é excelente. O mais surpreendente 
é a primeira das eqs. (16). Contrariamente à transformação de 
Galileu o tempo não é o mesmo nos dois referenciais de inércia. 
O tempo deixou de ser absoluto!

Tal como fi zemos para a transformação de Galileu, podemos in-
verter as equações (17). O resultado é:

(18)

A aplicação à mecânica das eqs. (17) e (18), feita por Einstein, 
designa-se por teoria da relatividade restrita.

A dilatação do tempo
No capítulo anterior apresentámos aquilo que chamei de dicioná-
rio: as relações que nos permitem obter as coordenadas espácio-
-temporais de um acontecimento no referencial S sabendo as 
respetivas coordenadas em S' ou vice-versa. Vamos agora usá-
-las, pois só assim podemos apreciar o seu signifi cado. Conside-
remos em S' dois acontecimentos. O acontecimento A com coor-
denadas tA' xA' yA' zA' e o acontecimento B com coordenadas tB' 
xB' yB' zB'. As diferenças entre as coordenadas homónimas são:
   

Imaginemos que os dois acontecimentos ocorrem no mesmo pon-
to do espaço, mas em instantes diferentes, i. e. ∆x'=∆y'=∆z'=0 
mas ∆t'≠0. As transformações (18) também são, evidentemente, 
válidas para os deltas. Aplicadas a este caso dão:
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(19)

Os dois acontecimentos ocorrem, no referencial S', no mesmo 
ponto do espaço. Mas não acredito que a leitora fi que surpreen-
dida por verifi car que no referencial S não ocorrem no mesmo 
ponto. Basta pensar que S' está em movimento com velocidade 
v em relação a S .

Pensemos que o referencial S' é um comboio que se move na li-
nha do Norte. Os dois acontecimentos são o mesmo passageiro, 
sentado, que olha para o seu cronómetro em dois instantes com 
uma diferença ∆t' de meia hora, por exemplo. Como o alfa pen-
dular segue, na lezíria do Tejo, com uma velocidade constante de 
150 km/h para o passageiro fi xo na estação o delta x é de 75 km.
Para além do fator de correção relativista gama é isto que a se-
gunda das equações anteriores nos está a dizer.

Mas o mais interessante é que a primeira das equações mostra 
que, para o observador na estação, o intervalo de tempo ∆t não 
é igual a ∆t' .Temos:

(20)

O intervalo de tempo medido pelo cronómetro no referencial em 
que ele está em repouso, chama-se tempo próprio. No nosso 
caso, o cronómetro está em repouso em S' . Como o fator gama 
é sempre maior que 1, o que a eq. (20) mostra é que, para o 
observador em repouso, o intervalo de tempo é maior. Por esta 
razão é usual designar a eq. (20) como a dilatação do tempo.

Não vou calcular qual a dilatação do tempo para o exemplo do 
alfa pendular. Recorde que mesmo para o exemplo do F16 já 
vimos que o gama é só 10-12 maior do que 1. Então, para um ∆t' 
de 5 dias o ∆t é cerca de 1 microssegundo maior do que 5 dias! 
Sendo assim imagino que alguns dos leitores estejam a pensar: 
quem é que preocupa com tamanha chinesice? Na verdade, o 
que acontece é que a maioria dos meus leitores só tem a expe-
riência de velocidades muito pequenas quando comparadas com 
a velocidade da luz. Mas existem partículas que se deslocam com 
velocidade incrivelmente próximas de c. Vejamos um exemplo.

No laboratório do CERN, que se situa perto de Genebra, na fron-
teira entre a Suíça e a França, existe um acelerador chamado 
LHC (Large Hadron Collider). Nesta máquina, feixes de protões 
atingem energias de 7 TeV (7x1012 eV) [2]. Sabendo a energia e a 
massa do protão facilmente se pode calcular o gama, usando a 
fórmula relativística mais conhecida, que é:

(21)

Na maior parte das vezes, esta equação, que até já foi capa de 
um número da revista Time [3], aparece escrita sem a constante 
gama. É verdade, aparece escrita para o caso particular da mas-
sa estar em repouso, ou seja, quando o gama é um. Mas, como 
eu escrevi é o caso geral. Usando a equação (21) e sabendo que 
para um protão se tem mc2=938 MeV (938x106 eV), obtemos 

γ=7462. Com este valor deve ser fácil observar a dilatação do 
tempo! Pois é. Mas os protões do LHC não levam um cronóme-
tro para marcar o seu tempo próprio. Tem toda a razão. Por isso 
vou terminar este capítulo com um exemplo que responde a esta 
objeção.

Os muões são partículas como os eletrões, mas que têm uma 
massa cerca de duzentas vezes maior. São eletrões obesos. Tal-
vez devido à sua obesidade são instáveis. Decaem dando origem 
a um eletrão e dois neutrinos. A sua vida média, medida no seu 
referencial em repouso é de 2,2x10-6 s. Com esta duração de 
vida, mesmo que se deslocassem com a velocidade da luz, o que 
é impossível, só poderiam percorrer uma distância de cerca de 
660 m. Contudo, sabemos que nas altas camadas da atmosfe-
ra, a dezenas de quilómetros, se formam muitos muões e a sua 
esmagadora maioria atinge o nível do mar. Na verdade, ao nível 
do mar por cada centímetro quadrado de superfície deteta-se, 
em média, um muão por minuto. A energia típica destes muões 
é da ordem dos 2 GeV (2x109 eV). Espero que todos os meus 
leitores verifi quem, usando a eq. (21), que γ=18,9. Agora, a dila-
tação do tempo, eq. (20), transforma os 2,2 microssegundos em 
41,6 microssegundos e os muões percorrem cerca de 12,5 km. 
Faltou dizer que, para o muão, mc2=105,6 MeV .

A gravidade também muda o tempo
Todos aprendemos na escola a lei da atração gravítica cujo enun-
ciado é: a matéria atrai matéria na razão direta das massas e na 
razão inversa do quadrado da distância entre elas. Esta formu-
lação da teoria da gravitação foi feita, pela primeira vez, por Sir 
Isaac Newton (1643 -1727), famoso físico inglês, nos fi nais do 
século XVII. Com base nela podemos, com a mesma facilidade, 
explicar o movimento dos planetas e a queda de uma pedra na 
Terra. Tem, contudo, um grande defeito: é uma teoria estática, 
nela não aparece o tempo. O Sol atrai a Terra. Mas, se o Sol 
desaparecesse, quanto tendo depois é que a Terra saberia que 
isso tinha acontecido? A resposta dada pela teoria de Newton é 
instantaneamente. Mas todos sentimos que não deve estar certa. 
A luz leva cerca de oito minutos para chegar do Sol à Terra, como 
é que a interação gravítica pode ser instantânea? 

No início do século XX e na continuação dos trabalhos sobre a 
teoria da relatividade restrita, Einstein desenvolveu uma nova teo-
ria da gravitação. A ideia básica é que a presença de uma grande 
massa, como o Sol, por exemplo, deforma o espaço-tempo. O 
desaparecimento brusco do sol ou, mais realisticamente, o cho-
que de duas estrelas, provoca alterações desta deformação. A 
propagação destas rugas do espaço-tempo são as ondas gra-
vitacionais, que foram detetadas diretamente, pela primeira vez, 
em 2015.

Anteriormente, vimos que, ∆t≠∆t', porque um dos observado-
res se desloca relativamente ao outro com uma certa velocidade. 
Agora, com base na nova teoria da gravitação, dois observado-
res, ambos parados, medem intervalos de tempo diferentes se 
estiverem a distâncias diferentes da massa que cria o campo 
gravítico. A distância diferente, o espaço-tempo tem uma defor-
mação diferente. Estará tão menos deformado quanto mais lon-
ge estivermos da massa que cria o campo. Se estivermos muito 
afastados o espaço-tempo é plano. Tanta vez repeti a expressão 
espaço-tempo que devo ter aborrecido alguns dos meus leito



Para os físicos e amigos da física.
W W W. G A Z E TA D E F I S I C A . S P F. P T 11

quatro satélites sejam sempre visíveis. Ver Fig.4. Estes satélites 
estão equipados com relógios de grande precisão, da ordem 
do nanossegundo, e cada um deles transmite um sinal horário 
e dados sobre a sua localização. Os nossos telemóveis usam a 
informação recebida de vários satélites, normalmente quatro ou 
cinco, e por triangulação determinam onde estamos.  Deixo ao 
cuidado dos leitores verifi carem que, por efeito da gravidade, ao 
fi m de um dia o relógio de cada um dos satélites apresentaria um 
desvio de menos 46 microssegundos em relação aos relógios no 
solo. Além deste efeito, teremos também que considerar o efeito 
da velocidade do satélite. Como estes satélites têm velocidades 
da ordem de 4 km/s, o tempo no satélite ao fi m de um dia é 8 
microssegundos maior. No total teremos, por dia, um desvio de 
menos 38 microssegundos. Esta diferença, se não fosse tida em 
conta, inviabilizaria a utilização do GPS. 

Este é um bom ponto para pôr termo a esta digressão pelo con-
ceito de tempo. Para velocidades pequenas comparadas com a 
velocidade da luz no vazio e para altitudes pequenas comparadas 
com o raio médio da Terra, pode pensar que o tempo é absoluto. 
Este é o tempo a que chamei tempo do calendário. Bastava o 
sino do campanário da aldeia para marcar a sua passagem. Nas 
situações em que qualquer das hipóteses anteriores deixar de 
ser válida, o tempo já não é universal. Quando o campanário foi 
substituído pelo telemóvel estes efeitos tornaram-se importantes 
para todas as pessoas.

Posfácio
Escrevi este artigo para os amigos da física. Os apêndices con-
têm alguns detalhes que poderão ser úteis para estudantes do 
fi m do ensino secundário e início da universidade. Um desenvol-
vimento mais detalhado do assunto aqui tratado pode ser en-
contrado em dois artigos de Paulo Crawford do Nascimento e 
Ana Isabel Simões, Gazeta de Física, vol. 9 pág. 36 e pág. 49, 
1986. Quem pretender saber mais sobre ondas gravitacionais e 
buracos negros deve ler o artigo de José Sande Lemos, Carlos 
Herdeiro e Vítor Cardoso, publicado na mesma revista no vol. 42, 
pág. 36, 2019.

Aos colegas, Conceição Abreu e João Paulo Silva e á minha mu-
lher, Maria José Barroso, agradeço a leitura crítica do manuscrito. 

Augusto Barroso

Anexo 1 
Num referencial de inércia, a posição de um móvel é dada pelo 
vetor r cujas componentes são x(t),y(t),z(t). As componentes do 
vetor velocidade v são:

Consideremos agora um referencial de inércia fi xo S e um outro 
móvel com velocidade constante v ao longo do eixo dos x. Por 
convenção, mas sem perda de generalidade, no instante t=0, a 
origem dos dois referenciais coincide. Ver Fig. 1.

res. Desculpem. Não queria que tivessem qualquer dúvida que 
não era só o espaço que fi ca curvo. Se voltar atrás às eqs. (17) 
verifi cará que já na relatividade restrita o espaço e o tempo estão 
inexoravelmente misturados.

Está na altura de fazermos mais uma experiência. Para isso te-
mos de ir para Genebra e levar os nossos colaboradores, a Ana 
e o Bruno. Porquê Genebra? Porque é uma cidade tranquila e 
muito agradável e, além disso, prestaremos uma homenagem à 
excelente indústria suíça de relojoaria. Vamos comprar dois cro-
nómetros. Um fi cará com a Ana à beira do lago Léman e o Bruno 
levará o outro para o topo do Monte Branco.

A previsão, baseada na relatividade geral, é que o intervalo de 
tempo medido pelo Bruno, está relacionada com o intervalo de 
tempo medido pela Ana, pela relação:

(22)

Em que

(23)

Nesta equação G=6,674x10-11 m3 kg-1 s-2 é a constante gravítica, 
M=5,972x1024 kg é a massa da Terra, R=6371 km o seu raio e 
h a altitude do segundo observador. O primeiro está à altitude 
zero. No caso presente, h é a altitude do Monte Branco, 4809 m.  
Substituindo os valores obtemos:

Um século são 3×109 s. Seria preciso esperar um século para 
que os cronómetros da Ana e do Bruno apresentassem uma di-
ferença de 1 milissegundo! Mais uma vez a Ana e o Bruno não 
vão medir nada.

Talvez os meus leitores estejam a pensar que a teoria de Eins-
tein só é útil para quem estuda buracos negros e outros efeitos 
exotéricos. Se estivesse a escrever estas notas antes dos anos 
oitenta do século passado teria de concordar com quem assim 
pensasse. Mas agora não concordo.

Hoje cada um de nós leva no bolso um pequeno computador, 
usualmente chamado telemóvel, que nos permite determinar a 
nossa posição com um erro de poucos metros. Como é do co-
nhecimento geral esta determinação é feita utilizando um sistema 
de 24 satélites que, a uma altitude de cerca de vinte mil quilóme-
tros, orbitam a Terra, de modo que, em cada ponto, pelo menos 

Figura 4 – A Terra rodeada pelos satélites do GPS. Cortesia da NASA 
science.
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Imaginemos que, para o observador em S’, x’, y’ e z’ são a posi-
ção de um móvel no instante t’. Num instante posterior, t'+∆t', o 
móvel estará em x'+∆x', y'+∆y', z'+∆z'. Usando a transformação 
de Lorentz para os acréscimos obtemos:

Dividindo, ordenadamente, a segunda das eqs (A9) pela primeira 
teremos:

Passando ao limite quando o acréscimo do tempo tende para 
zero, obtemos:

que é a transformação, da componente x, do vetor velocidade. 
De igual modo se obteriam as transformações para as outras 
duas componentes.

A bola azul assinala a posição do móvel, no instante t. Basta olhar 
para a fi gura para ver que:

Anexo 2
Vamos mostrar como se pode deduzir a transformação de Lo-
rentz. 

Voltemos a olhar para a fi gura 1, mas esqueça a bola azul. Imagi-
ne que no instante t=t’=0, quando os dois referenciais coincidem, 
se acendia uma luz na origem, O=O’.

A luz propaga-se isotropicamente e, para um observador em S, 
ao fi m de t segundos, a separação da luz das trevas é uma su-
perfície esférica de raio ct. Quando, em casa, acendemos uma 
lâmpada parece que instantaneamente toda a sala fi ca cheia de 
luz. Mas, de facto, ao fi m de 3 nanosegundos, a luz só chegou a 
um metro da lâmpada. Para chegar a dois metro ainda vai tardar 
mais 3ns. A equação da superfície esférica que separa a luz das 
trevas é:

Como c=c’ o observador em S’ fará o mesmo raciocínio e dirá 
que a separação da luz das trevas é a superfície esférica:

A tarefa de encontrar as Transformações de Lorentz resume-se 
a encontrar a transformação linear que transforma a eq. (A4) na 
eq. (A5). Mais simples ainda. Como o movimento relativo se dá 
ao longo do eixo dos x, as eqs. (A2) e (A3) são válidas. Portanto 
estamos à procura de uma transformação que leve de

a

Como sabemos que, para pequenas velocidades, a eq. (A1) é 
válida, um palpite sensato seria tentar a seguinte forma:

Este palpite é sensato porque os termos lineares, isto é, os ter-
mos em xct, cancelam e obtemos

Note que não seria sensato tentar t’=t. Como o espaço é relativo 
para termos uma velocidade que é absoluta, o c, então o tempo 
também tem que ser relativo. Agora é óbvio: basta dividir os se-
gundos membros de (A6) e (A7) por 
também tem que ser relativo. Agora é óbvio: basta dividir os se-

 e temos a transfor-
mação de Lorentz:
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