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ABSTRACT — A new method for obtaining a classical collective hamil- 

tonian is presented. The starting point is the many-body hamiltonian and 

the derivation is based on the variational principle of quantum mechanics. 

The force and mass parameters are determined without ambiguity by the 

single particle energies and by some matrix elements of the two-body inter- 

action. The theory is applied to the dipole state of #0. Our results, which 

have been obtained by a simple calculation, compare favourably with results 

obtained by the diagonalisation of the R. P. A. matrix, but the present method 

is valid even when the groundstate of the nucleus can not be represented 

by a single Slater determinant. 

RESUME — On présente une dérivation de l’hamiltonien collectif fondée 

sur le principe variationel dependent du temp de la mécanique quan- 

tique. La théorie developée est apliquée 4 1’étude de I’état dipolaire de 169, 

Les résultats, obtenus par un calcul trés simple, peuvent étre comparés favo- 

rablement avec les résultats de la diagonalisation de la matrice de la R. P. A. 

La présente méthode est valable méme quand 1’état nucléaire fondamentale 

ne peut pas étre représenté par un seul determinant de Slater. 

1. INTRODUCTION 

The collective behaviour of nuclei may be understood from two 

different starting points. The first one is based on a phenomenological 

collective hamiltonian (1) which governs the motion of a small number 

of collective variables, but contains unspecified parameters, to be 

(*) Received December 4, 1965 
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determined experimentally. This approach leads to a relatively simple 
calculational scheme, but, since it is phenomenological, it contains 

arbitrary features. The second starting point for the description of 

collective states is based on the consideration of the exact many-body 
hamiltonian. This approach gives rise to the so called microscopic 

theory (2) of the collective motion, is more powerful, more funda- 
mental, but is also harder to carry out in practice. Therefore it would 

be convenient to eliminate the arbitrariness from the collective hamil- 

tonian used in the first approach by determining its parameters, not 

phenomenologically but from first principles. As it has recently been 

remarked by BELYAEv (3), who has investigated already this question, 

one would obtain in this way a method having the advantages, but 

not the drawbacks, of the two previously mentioned methods. Actually, 
the problem of determining the parameters of the collective hamil- 

tonian on a more or less fundamental basis is not new, since it has 

been treated in the past by several authors (4). We will consider again 

the same problem, but from a different point of view, which is related 
to the time-dependent Hartree-Fock derivation of the Random Phase 
Approximation (R. P. A.). We will derive the equations of motion 

for the collective variables — and, therefore, the collective hamilto- 

nian — by a rather simple procedure, based directly on the time 

dependent variational principle of quantum mechanics. 

2. THE COLLECTIVE HAMILTONIAN 

The exact hamiltonian of a N-body system, having two-body 
interactions between the particles, is of the form 

N b; N 

me eg a (1) 
4=1 ti<j=l1 

Since in general it is practically impossible to diagonalise a hamil- 
tonian of this kind, it is convenient to describe the states of the 

system to which it corresponds by means of an independent particle 

wave functions ©. These model wave functions ® = © (¢) contain 

a number of real parameters ¢, corresponding to the size and defor- 

mation of the potential well with the help of which the single particle 

wave functions have been determined, or refering to the distance 

between the centers of the wells for protons and neutrons, etc. We 

may assume, without loss of generality, that the values ¢ = 0 of 
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the parameters minimize the expectation value of the hamiltonian, 

0 £<00|H|oO>| =O. (2) 
0g Pag 

Then, the wave function ®, = ®(0) will represent the groundstate. 

It may be remarked that, since the wave functions ® (¢) are (usually) 

real, for real ¢, the minimum of the expectation value of the hamil- 

tonian will be obtained for ¢ = 0, even if one allows the parameters 

¢ to become complex. 

In order to describe the excited states of our system we may 

use the time dependent variational principle (we consider 7/2 x = 1), 

—il[<so|9>— < 0/80 >]+8<0|H|O>=0, (3) 

but now we must allow the parameters ¢ to become complex, 

so that the norm of the wave functions is not preserved. Conside- 

ring ®(¢) to be real and normalized to unity for real ¢, we have, 

indeed, 

<0(%)|0(0) >= <0,|@, >— (#0! < 90/0/00 /dE>+.. (5) 

The wave function ® must, therefore, be multiplied by a complex 

normalising factor. Instead of eq. (3), we obtain in this way the 

following equation (5) 

    

Se d Spel : a 
<O|o> dt <0|o> 

<o|H|o> 
$ ——__—— = 0. 6 

A simple calculation leads to the following results 

    

aha tie> d <80|0>—<0|/s80> A 

2 <0|o> at <0|o> ] ae 

= 2M (3&y —8n 2) (7) 
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<0|H|®> 
= K t+ N@#+ Pott... <o|o> ot N+ P+ (8) 

with 

E,= <®,|H|®, > (9) 

M = <00/0é|0®/ 0, Sty (10) 

Le 
N=5[sa<elHle>| (11) 

t=0 

P=2<00/0&|H|0®/0&>,_,.—2E,M—N (12) 

With the help of eq. (6) we arrive finally at the equations of 

motion for one collective variable, in the limit of small oscillations, 

Mn+NE=0, (13) 

Mé&—Pn=0. (14) 

The case of several collective variables may also be obtained as 

a straight forward generalisation of these equations but, for sim- 
plicity, we do not consider that situation now. By eliminating » 

we finally have 

M?., 
pitNi=o, (15) 

so that the frequency of the collective oscillations, which can be 

interpreted as the excitation energy of the collective state, is given by 

VPN 
Q-= re a 06) 

We are now able to write down the classical collective hamil- 

tonian H,, corresponding to eq. (15), 

174 Portgal. Phys. — Vol. 4, fasc. 2, pp. 171-182, 1965 — Lisboa



  

Provipéncia, J. da — Variational approach to the nuclear collective motion 

1 Porubetbar 
c= > yn PET GNE: (17) 

where #, denotes the momentum conjugated with the variable & 

and is given by 

M2. 
t= ten: (18) 

We obtain in this way a simple interpretation of the imaginary 

part of ¢. 

If ®, is a SLATER determinant of orthonormalized single particle 
wave functions and if ®(&) may be written in the form 

© (£) = exp [ex “| ®,, (19) 

where x represents an hermitian operator, then we may rewrite 

eqs. (9) — (12) as follows 

2 

Bo B<i | gp liete<iilelti> (20) 
4 4 7 

M= 3 <i|x|m><m|x|i> (21) 

ee 4 ohn et t We 5[B <i le & Are 

+ DO <t7| [1 + %), [Ga +), ml] i>], (22) 
i<j 

P=2{3) <il> sim >[ <5 [n>+ 3 <i ltya| nk > | <n |x| i> 
imn 

ifm 
—¥ <mixli>| <i dy > +B <iA| on 8> | <illm> 

+X <t|x[m><mjloplin ><n|x|j >}—N. (23) 
imjn 
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We use the letters 7, 7, k, etc., to denote occupied single particle states 

and the lecters m, n, etc., to denote unoccuppied states, and by the 

kets |a b > we mean normalized antissymmetric two-body wave 

functions. 
We end this section by noting that eqs. (13) and (14), governing 

the time evolution of the collective variable, might also have been 

derived, together with eqs. (20) — (23), from the THOULESS varia- 

tional principle (2) for the R. P. A.. Nevertheless, in some sense, the 

present method is more general than the R. P. A., because it might 

be applied even if the groundstate could not be represented by 

a single Slater determinant (for instance, if the groundstate is the 

result of a superposition of two Slater determinants). 

3. TRANSITION PROBABILITIES 

We will study now the effect of an external time dependent 

field W (é). In order to investigate the evolution of our system in 

the presence of this perturbation, we add to the previously calculated 

expectation value of the hamiltonian H (eq. (8)), the linear terms 

in ¢ of the expectation value of W (d), 

<2 |W Oi a>   <ue= = W(t) + 22W" () (24) 

with 

WM) =<o,|WH|%>, (25) 

Ww (t) = <<d0/08|WH)|® >. (26) 

Now we have, with the help of the variational principle expressed 

by eq. (6), 

Mu+NE+ WW) =0, (27) 

M—Py=0. (28) 

Although it is very easy to integrate this system as it stands, 

it is convenient to make the transformation 

C= E+in, (29) 
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in order to establish the connection with the usual R. P. A. result (2). 

The equations for the variables ¢, ¢* may be cast into the matrix 

form 

im/ ¢\—/Se~+y) ge—P)\ /¢\=wr@ /1 

—w}] \iw—p fut] \o 
2 2 (31) 

We start by considering the eigenvalue problem, 

1 1 Me/ « \=/5(N+P) ;W—P) % 

—~y} \Sm—» 5+”) . 2 5 7 (32) 

The solutions of this problem are the following 

1 mel _ _ 

fee) —5 7 4 ae ae (33) 

Yar VN—VP 

1 Bl /, = 

41g OE (VN —VP). =m (34) 
Yo1 VN+VP 

These eigenvectors satisfy the following normalisation condition 

Q), 
oes eS dR  . 

Yy 

In order to solve eq. (31) we expand the vector (¢ ¢*) in the basis 

of the eigenvectors of eq. (32) 

(‘ = x Cy (t) (*) e—*@at (36) 

o* (2) Ya 

Then, eqs. (31) and (35) lead to the following equation for the quan- 

tities cy (2), 
1 

iM =2 (m+) WO HM =ra(N/P)E WOME (87) 
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This equation is easily integrated. Assuming the field W (t) is switched 
on at time — T, we get for c (T), 

i | 
a’ (/NN@ Fr ; 

q(T) =—i5 el W () ef@at dt 
=—T 

1 

E iz eh 22 W" (wo) , (38) 

where we denote by f(#) the Fourrer transform of /(d), 

I yr" sss 
er t) &® he= sf 1 eet at (39) 

In order to interpret eq. (29) we consider now the change in the 

expectation value of the unperturbed hamiltonian. A simple cal- 
culation yields 

1 1 es = N-=P <o|H|o> nati y Z(N+P) S(N—P)\/% 

<o|o> * 2 a 2 * 5 N—P) SIN+P)/ VE (40) 

=o,Mce,,¢_4 

=o,M|c,,|? . 

@ 

This result shows that the matrix element of an operator W, between 

the groundstate |0) and the excited (dipole) state |d), should be 
identified with 

1 /N\2 
@1W 19 =75(5)' we | (41) 

We note, finally, that under the hypothesis of eq. (19), W 
may be written 

WY = —iD<ilx|n> <an|Wli>. (42) 
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4. NUMERICAL EXAMPLE: THE DIPOLE STATE OF *0, 

CONCLUSIONS. 

As a numerical example we will investigate the dipole state 

of 160. We will represent the groundstate of this nucleus by a Slater 

determinant of harmonic oscillator wave functions and we will neglect 

the spin orbit splitting (this is permissible because 180 is a closed 

shell nucleus in both j-7 and L-S coupling schemes). The single par- 

ticle wave functions may, therefore, be represented by 

|¢) =|4;)|s;) ]u) (43) 

were |#,) denotes an isospin statevector, | s,;) a spin statevector and 

|u;) an orbital wave function. Actually |») =|v;,u;,4;’) the 
quantum numbers p;,y,; and p;” denoting the number of oscillator 
quanta in the three spacial directions. We only need the following 

one-dimensional oscillator wave functions 

a) = |=. Vie6 aoe (45) 

a@=\2.—eee—ner — as) 

We assume a 8-function 2-body interaction, which we write 
in standard notation, 

> => > > i 

Vg = Vy (a + boy. oy + 6%. t+ d (0, . 99) (ty . 72) 8(%1 — 79) (47) 

The parameter & is the distance between the centers of the wells 

for protons and neutrons. We describe the dipole oscilations of 160 
with the help of the wave function 

> > > lOO > 
t CA ¢ 

D (7, Fes sees tnt %e> 0 Trp) = 

¢ , 7 = O(n +¢%t+, 9 TN To 1H la Fo Ny F) > 
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> > 
where y and 7’ are the coordinates of protons and neutrons. The 

wave function ® may also be written in the form 

omnt[-it ham] “ 
Denoting now by yp, v, 4, ... the occupied space orbitals and by o, e, 

.. the unoccupied space orbitals, we have, with the help of eqs. (20)-(23), 

M= 2 lA le) (olele) (49) 

= 2a 

V 
N=— 7 (a—2 é—3 a) pa} (uy| Lier P.)s [(p:,+2,,)» Vp] | uv) 

__y (i ¢c—3a).2 _ (z) (a —20—3d). a (50) 

P+N=2{D(|,|¢) | ess Pip ) +V,(3a—3 b—3c—9d) 
ry) 

D213 a) |e) 

— (ls lu) +V,(3a—3 b—3 c—9 d) 

Bea 1a% —n)109)) [rel eal 

+V,(—a—3b+5c+3d) BY (u|4,/¢) 
upva 

(ov (%,—n) |#2) (| |} 

gleeagl an OT a ete a. a (51) 
M "\8n 8 

For the dipole operator 

1 
D = 2D pi Ts 2; (52) 

180 Portgal. Phys. — Vol. 4, fasc. 2, pp. 171-182, 1965 — Lisboa



Provipénci, J. da — Variational approach to the nuclear collective motion 

we have 

DY = <d0/08&| D| ® Sz. 

=—i Y 2!) (el bl) 
up 

= Ma. (53) 

The size of the oscillator well and parameters of the force are 

given the same numerical values which had been used by BRowN, 

CastTinLEyo and Evans (6) 

Vo = 0,675 f7, a = 0,865 , 

¥, = b = 0,135 , 
— «2 =— 85 Mev, 
4n c=a=0. 

Considering also that M1 = 41, 48 Mev and using eqs. (16) and (41), 

we finally get 

wo, = 24,5 Mev , 

(@|D|0) = 27. 

We have obtained the whole dipole strength localized in one single 

level because we are using a collective hamiltonian to describe the 

nuclear dinamics. Of course, in actual fact the dipole strength appears 

distributed over several levels, and if one solves the complete R. P. A. 

equations (7), the main features of the structure of the dipole state 

appear already. With the exception of this aspect our slide-rule 

results agree well with the results of more sophisticated calculations 

(consider, for instance, ref. (7)). 

ACKNOWLEDGEMENTS — We are deeply indebted to Prof. J. R. 

DE ALMEIDA SANTOS for his kind interest in the present work and for the 

facilities provided at the Laboratério de Fisica da Universidade de Coimbra. 

We are also very grateful to Profs. D. BRINK, F. ViLLARS and V. GILLET 

for very interesting discussions relating to this work. 

Finally we aknowledge a grant from «Comissio de Estudos de Energia 

Nuclear, Instituto de Alta Cultura». 

REFERENCES 

(1) A. Bonn — Mat. Fys. Medd. Dan. Vid. Selsk., No. 14, (1952). 

(2) M. BARANGER — Phys. Rev., 120, (1960), 957; 

D. J. THourEss — Nuclear Physics, 22, (1961), 78. 

Portgal. Phys. — Vol. 4, fasc. 2, pp. 171-182, 1965 — Lisboa 181 

 



Provipéncia, J. da — Variational approach to the nuclear collective motion 

) (3 BELYAEV — Nuclear Physics, 64, (1965), 17. 
(4) 

iD 
- M. ARaUjo—Nuclear Physics, 1, (1956), 259; 

(1959), 360. 
R. MARSHALEK and J. O. RasmussEN — Nuclear Physics, 43 

963), 438. 
VAN LEUVEN — Nuclear Physics, 45, (1963), 591. 
DA PROVIDENCIA — Nuclear Physics, 46, (1963), 401. 

. E. Brown, L. Castirejo and J. A. EvANs — Nuclear Physics, 
2, (1961), L. 

(7) V. Gi1et — Rapport C E A, No. 2177 (Saclay, 1962). 

U
D
 

3, 

5 

, 

—
 —_
 

o
n
 

(5) 
(6) 

bo


