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SUMMARY — The convergence and the concentration dependence of the iso- 
topic thermal diffusion factor is theoretically studied, on the basis of Lennard-Jones 
and exponential-six models. 

The concentration dependence is not negligible a priori for binary mixtures 
of light isotopes, and significant differences may be expected for ay if one or other 
of the isotopes is present in tracer concentrations. 

In the majority of practical cases, the Kihara-Mason scheme of approximation 
provides better convergence and is therefore preferred. 

1 — INTRODUCTION 

According to the theory of CHAPMAN and ENskoG for non-uniform 
gases (1, 2), the expressions for transport coefficients are obtained from 
solutions to infinite set of simultaneous equations. 

Two alternative schemes of series solutions have been proposed, 
one by Cuapman & Cow1inc (1) and the other by Kimara (3) which 
has been extended by Mason (4). 

The convergence of the series, in both schemes, is dependent on 
the particular form of the intermolecular potential assumed, but it is 
known to be fast for viscosity, thermal conductivity and concentration 
diffusion. 

For thermal diffusion the convergence is comparatively slower 
and the differences between the values corresponding to the same order 
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of approximation in both schemes may be quite significant. The poten- 

tial form, the temperature, the mass and the concentration of the 

molecules are of much more influence on the convergence than in the 

other transport phenomena. 

Furthermore, the complexity of the mathematical expressions for 

thermal diffusion increases tremendously for higher order of approxima- 

tions, which makes theoretical studies very involvent and only possible 

by numerical means. 

For those reasons, the convergence is mostly studied by consider- 

ing mixtures having extreme cases of mass and/or concentration 

ratios, like Lorentzian, Masonian and isotopic mixtures (5), which may 

bracket most real mixtures. 

For real binary mixtures with «normal» behaviour in the sense 

that the thermal diffusion factor, 4,, does not change sign with con- 

centration, one may take the advantage of the discovery of one of us 

(6, 7, 8) that the inverse of «, is approximately linear with concentra- 

tions (9, 10). The importance of this result is that it can reduce the 

magnitude of the convergence problem to the limiting cases correspond- 

ing to the mole fractions of the components equal to unity (5). 

In this paper we consider the convergence of the theoretical 

approximations to the isotopic thermal diffusion factor as given by 

Chapman-Cowling and Kihara~Mason schemes, on the basis of 

Lennard-Jones and exponential-six models which are of common use 

to fit experimental data. 
Concentration dependence which is certainly significant for mix- 

tures of light isotopes is also discussed. 

2— THEORETICAL FORMULAS 

For a binary mixture of isotopes, the thermal diffusion factor can 

be written in the following form: 

qe Ml ie) My + xo] 

[1] 
m,—m, 

M,,= —— ee 
2 

m, +m, 

where m,, m, and x,, x, are, respectivelly, the molecular masses and 

the mole fractions of isotopes of kind 1 and 2. 

a,— the so called reduced isotopic thermal diffusion factor — 

and 7 are dimensionless quantities depending only on the temperature 
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and the particular model considered. For the Chapman-Cowling 
scheme of solution (1, 2, 5), 7 is given by 

e-20—A) . 323Gb 4847s - 
O26 +2A%) (6 +2A*%)+3(5—4B%/8 
  

and the first approximation to the reduced isotopic thermal diffusion 

factor, which we denote by Peds is given by 

[ajo — 156 C* —5) 5424" 
ain 1W6A* 54+2A*+(5—4B*)/8 
  [3] 

where A*, B* and C* have their usual meaning. 

The Kihara~Mason expressions for ; and for the first approxima 

tion of the reduced isotopic thermal diffusion factor, ‘cake can be 

obtained from equations [2] and [3], by dropping the factors (5 — 4 B*): 

kK 5—3A* |, x 156C*—5) 
ty] 25+2A* ’ loli = 16 A* 

  [4] 

Expressions for the reduced isotopic thermal diffusion factor in 

both schemes have been calculated as far as the second approximation 

only (4) which are expected to be accurate within 1 °/y (11). 

Since they are very complex, we do not give them here. 

Equation [1] to the isotopic thermal diffusion factor, 4,, is a series 

development of a general expression, and is valid when molecular 

masses m, and m, are close enough, and the potential parameters are 
assumed to be equal for both isotopes. 

With such hypotheses, convergence studies of 4, have to consider, 

at least in principle, the convergence of successive approximations 

for a, according to Chapman-Cowling and Kihara~Mason schemes 
and, on the other hand, the influence of the series development in 

equation [1] which involves 7 and the concentration dependence. 

Both cases will be considered separately in this paper. 

3— REMARKS ON CONCENTRATION DEPENDENCE 

The concentration-dependent term involving ; in equation [1] has 

always been neglected in experiments, even in the case of light isotopic 
mixtures like "He —*He (12, 13, 14, 15); 
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However, the increasing accuracy of the experimental determina- 

tions of a, justifies some considerations on the magnitude of that term. 

In the extreme case of the rigid elastic sphere model, the Chapman 

and Kihara values of 7 are obtained from equations [2] and [4], res- 

pectively, by making into them A*— B*= 1. We have then 

(]° (c. e. s.) = 538/ 2065 = 0.2605 

[1]f (cr. e. s.) = 1/7 =0.1429 

For more realistic models the values of [y]< and [1° are somewhat 

smaller and not so markedly different, having a small temperature 

dependence. They can be correlated by the equation 

3/5-+15/8(5+2A*) 
54+2A*+ 3(5—4B*)/8 
  [1° =f" + (6 —4B%). 

where the coefficient of (5 — 4 B*) is of the order of 1/8 to 1/9. 

For lower reduced temperatures, let us say for T* <1 in the 

cases of the Lennard-Jones and the exponential-six models, B* may 

be somewhat bigger than 5/4. Therefore [1]© is somewhat smaller 

than [;]*: 

In the majority of the practical cases, 5—4B* is in between 

zero and unity. Therefore, [7]© > [1], and the Chapman-Cowling 

scheme of approximation will predict a somewhat larger concentration 

dependence for «,. 

Bearing in mind the above considerations, it follows that the 

concentration-dependent term may not be negligible, a priori, in 

the equation [1] for the isotopic thermal diffusion factor, and the 

ratio [¢,],,_,/[%7],,—- 1 may be significant in the case of accurate 

experimental determinations, if the mass coefficient M,, is not suffi- 

ciently small. 
Equation [1] predicts a linear dependence of the isotopic thermal 

diffusion factor with concentrations. This should be regarded as an 
approximation which is not in practical contradiction with the more 

general linear dependence of 1/a,, once assumed that the quan- 

tity 7 M,, is small in comparison with unity. 
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4— CONVERGENCE OF THE REDUCED ISOTOPIC 
THERMAL DIFFUSION FACTOR 

Due to increasing computation facilities, a number of numerical 

tables have been prepared in recent years for several intermolecular 

potential models. 

The present situation for the Lennard-Jones and the exponen- 

tial-six models, which are in common use for interpretation of thermal 

diffusion, is presented in table 1, with the references of the tabulated 

TABLE I 

References for tabulations of 7) approximations 

  

  

  

  

Approx. Kihara - Mason Chapman - Cowling 

K K ¢ Cc 
Models ~ [49]; [a9]¢ [@q]i [49 Je 

Lennard-Jones: 

9-6 This work 16 This work . 

12-6 This work 19, 20 21 : 

28-7 This work 16 This work 

Exp. - six 

a= 12 17, 18 21 17, 18 19 

a= 13 This work 21 This work 19 

a= 14 This work 21 This work 19 

a= 15 17, 18 21 17, 18 19 

2= 16 19 

a=17 19 |       
  

values for the different approximations of «,. The general potential 

equations for those models are, respectively, 

  

90) = —— (myn)! — [6 / 2)" —(0/0)"] 
at —vTf 

6 (=I exp [a(t t/q) leq! 0 

where the letters have their usual meaning. 
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  For the Lennard-Jones model we consider the cases where the 

pair of parameters (m, n) is equal to (12,6), which is the most frequently 

used, and also the pairs (9,6) and (28,7) recently studied (16). 

For the exponential-six model we consider the usual range of the 

parameter «, from 12 to 17. 

To study the convergence of 4, we have computed several first 

approximations which are presented in tables I! and lI. 

TABLE II 

Reduced isotopic thermal diffusion factor for Lennard-Jones models 

  

  

  

          

9-6 12-6 28-7 
Reduced 
Temp. T Liaig]* [alt [yly [agli [agl€ 

0.10 0.261 0.259 sine 0.384 0.377 

0,15 0.209 0.209 oes 0.386 0.379 

0.20 0.131 0.132 ate 0.385 0.378 

0.30 — 0.024 — 0.024 0.075 0,366 0.360 

0.40 — 0.123 — 0.125 0.002 0.336 0.832 

0.50 — 0.169 — 0.171 — 0.042 0.310 0.307 

0.60 — 0.179 — 0.180 — 0.056 0.296 0.293 

0.70 — 0,178 — 0.179 — 0.051 0.291 0.287 

0.80 — 0.158 — 0,157 — 0.035 0.295 0.290 

0.90 — 9.125 — 0.124 — 0.009 0.304 0.299 

1.00 — 0.090 — 0.089 0.017 0.318 0.312 

1.50 0.058 0.057 0,154 0.402 0.390 

2.0 0.185 0.181 0.262 0.480 0.464 

3.0 0.326 0.317 0.398 0.577 0.555 

4.0 0.395 0.384 0.466 0.633 0.608 

5.0 0.437 0.424 0.503 0.665 0.638 

6.0 0.462 0.449 0.531 0.685 0.658 

7.0 0.477 0.464 0.543 0.698 0.670 

| 8.0 0.487 0.473 0.555 0.708 0.680 

9.0 0.494 0.480 0.558 0.716 0.687 

10.0 0.498 0.484 0.566 0.722 0.692 

15.0 0.508 0.493 ‘nas 0.737 0.707 

20.0 0.509 0.495 0.574 0.743 0.712 

30.0 0.507 0.493 0.575 0.748 0.717 

40.0 0.503 0.489 0.574 0.749 0.718 

50.0 0.500 0.487 0.572 0.750 0.720 

60.0 0.497 0.434 0.571 0.751 0.720 

70.0 0,495 0.482 0.570 0.751 0,720 

80.0 0.493 0.480 0.570 0.752 0.721 

90.0 0.491 0.478 0.569 0.751 0.721 

100.0 0.490 0.477 0.568 0.752 0.721 
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TABLE III 

Reduced isotopic thermal diffusion factor for exp. -6 models 

  

  

  

        
  

a= 18 a= 14 
Reduced 
Temp. T* [aly Pak foul [8,19 

Oil 0.283 0.280 0.285 0,282 

0.2 0.218 0.218 0.233 0.232 

0.3 0.104 0.105 0.130 0.131 

0.4 0.014 0.014 0.045 0.046 

0.5 — 0.089 — 0.039 — 0.004 — 0.004 

0.6 — 0.061 — 0,062 — 0.025 — 0.026 

0.7 — 0,063 — 0.063 — 0.027 — 0.027 

0.8 — 0.052 — 0,051 — 0.016 — 0.016 

0.9 — 0.033 — 0.032 0.002 0.002 

1.0 — 0.009 — 0.010 0.025 0.025 

1.2 0.043 0.043 0.076 0.074 

1.4 0.095 0.094 0.127 0.124 

126 0.143 0.140 0.174 0.170 

1.8 0.186 0.182 0.215 0.210 

2.0 0.223 0.218 0.251 0.244 

2.5 0.295 0.287 0.321 0.313 

3.0 0.346 0.336 0.371 0,361 

3.5 0.382 0.372 0.407 0.395 

4.0 0.408 0.397 0.433 0.420 

5.0 0.442 0.430 0.465 0.452 

6.0 0.461 0.448 0.487 0.473 

7.0 0.472 0.459 0.498 0.484 

830 0.478 0.466 0,506 0.491 

9.0 0.481 0.468 0.509 0.495 

10.0 0.482 0.470 0.511 0.497 

12.0 0.482 0.470 0.513 0.499 

14.0 0.481 0.469 0.512 0.498 

16.0 0.478 0.466 0.510 0.496 

18.0 0.476 0.464 0.508 0.494 

20.0 0.472 0.460 0.507 0.494 

25.0 0.465 0.454 0.503 0.489 

30.0 0.461 0.450 0.499 0.486 

35.0 0.457 0.446 0.496 0.483 

40.0 0.455 0.444 0.495 0.482 

45.0 0.454 0.442 0.494 0.480 

50.0 0,452 0.440 0.493 0.480 

60.0 0.450 0.438 0.493 0.479 

70.0 0.446 0.484 0.495 0.481 

80.0 0.448 0.437 0.497 0.483 

90.0 0.448 0.437 0.499 0.485 

100.0 0.449 0.438 0.500 0.486 

200.0 0.460 0.447 0.518 0.502 
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As table 1 shows, the second Kihara-Mason approximation to the 

reduced thermal diffusion factor, [4,]}: has been tabulated for the 

majority of the models. For that reason, it will be regarded as a refe- 

rence in our global considerations about convergence which will be 

studied by means of the ratio 

a/[a]. 

where a, denotes, in general, the first Kihara approximation, [a,]i. and 
the first and second Chapman approximations, [4]¢ and [a,]°, res- 
pectively. 

The three ratios defined in the above way show a similar behaviour 

with the reduced temperature, 7%, for all the special cases studied, 
what simplifies appreciably the discussion on the convergence of 4, . 

In fig. 1 we present the tipical cases for Lennard-Jones (12,6) and 

exponential-six (2 = 14) models. 
ss 
ef 
i EXP-6, o«14 

t ~~ 5 

ae | a 8 

I = 

  

T 

  

  
  

  

  

104 Lu. 12-6 

wo A 
  

  

      1 i ut a rt i = 
04 1 2 4 10 20 40 100 T* 

Fig. 1 — Ratios ay /[ a% ed against reduced temperature, for Lennard-Jones (12, 6) 

and exponential-six (« = 14) models. 

  

Curves 1 and 3 — ap equals to [a ig (CHapmaN) 

Curves 2 and 4 — ap equals to [% es (Kiara) 

Curve 5 — % equals to [79 es (CHAPMAN) 

The arrow localizes the value of T* for which [ a )K =o. 
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Unfortunately, Ime has not been tabulated for that important 
case of the Lennard-Jones model because several collision inte- 
grals, Q"'*, which are needed, have not been computed yet for 
higher values of (/, s). However, it may be expected that the general trend 
of [2,15/[a]$ may be similar to the corresponding ratios for the 
exponential-six models, i.e., a trend similar to the curve 5 in fig. 1. 

By taking fig. 1 as representative of a general behaviour, we may 
conclude the following: 

a) Kihara and Chapman second approximations agree within 
about + 1/9 (see curve 5). 

b) For higher reduced temperatures, say for T*>3, the 
Kihara~-Mason scheme provides faster convergence, and the difference 
between [a,]) and [a,]4 is of the order of 2°/) (see curves 2 and 4). 

c) The situation is reserved for lower reduced temperatures, 
where the Chapman-Cowling scheme of approximations provides 
better convergence. 

d) Except at lower temperatures, [o,]5 > [al This conclusion 
is also inferred by comparison of equations [3] and [4], since usually 
(5—4B*)>0, 

The above discussion is limited to the temperature range 
100 > T* > 0.4 which covers the most common practical cases. For 
lower temperatures «, reverses sign for some potential models. 
Therefore the ratio a,/ [a,]> is not adequated to study the convergence. 

On the other hand, the conclusions may be extrapolated for 
T* > 100 since that ratio and the thermal diffusion factor as well 
remain almost constant. 

5 — CONCLUSIONS 

As we have done in this paper, theoretical study of the isotopic 
thermal diffusion factor seems to be conveniently divided into two 
aspects: a) one concerning the convergence of the reduced factor, «, ; 
b) the other referring to the concentration-dependent term involving 
the quantity { in equation [1]. 

On the basis of the Lennard-Jones and the exponential-six inter- 
molecular potentials which are in common use to fit experimental data, 
the Kihara-Mason scheme of approximations provides faster conver- 
gence for 4,, at higher reduced temperatures, say for J'* > 3, 
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Other remarkable feature of this scheme is that theoretical formulas 

are simpler and involving a smaller number of collision integrals, 

therefore reducing appreciably a number of complex numerical com- 

putations. 

Regarding the concentration dependence, it is certainly advisable 

to take it into account in accurate determinations of the thermal 

diffusion factor for mixtures of light isotopes, specially if one of them 

is present in tracer concentrations only. 

In the majority of practical cases, say for T* > 1, the 

Chapman-Cowling scheme gives rize to somewhat higher concentra- 

tion dependence, since [1° > [118 in equation [1]. 

Of course, we may not say, on theoretical bases only, that such 

dependence will be in better accordance with experiments, but we 

might expect it since this is the usual behaviour for non-isotopic 

mixtures. However, this aspect may hardly be detected in practice, 
for isotopic mixtures. 

As an over-all conclusion, we may say that each scheme of 

approximation has its own theoretical advantages and limitations, 

but in the majority of practical cases of isotopic thermal diffusion 

the Kihara~-Mason scheme is preferred. 
Recently, PAut, Howarp & Watson (10) carried out accurate 

experiments with “He—“He mixtures which provide a_ significant 

example for comparison with the theory. This will be done in a 

following paper. 
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