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ABSTRACT — An attempt has been made to describe the correlation structure 

of the electron gas in terms of the collective modes only. 

A very simple formalism is obtained which leads to very good agreement with 

the results of Noziéres-Pines and Hubbard for low momentum transfer (k/kp <1), if 

one neglects the exchange terms. 

1— INTRODUCTION 

1.1 — Variational principles 

Let H be the hamiltonian of some quantum system. The Schré- 

dinger equation 
  HY = 3, (1.1) 

gives us the eigenfunctions V’, and the eigenvalues &, of H. The statio- 
nary states of our system are described by the eigenfunctions V’, and 

their energies are the eigenvalues 5,. The time evolution of a general 

(possibly non-stationary) state described by a wave function ¥ is 

determined by the time-dependent Schrédinger equation 

_oYr “*=HY 1.2 arr (1.2) 
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(we will use units such that 4 = 1), Now, eq. (1.1) is equivalent to the 
variational equation 

GT | A |e >—=0 (1.3) 

where the wave function V’ is varied subject to the restriction 

a0 |S == 1. (1.4) 

Similarly, eq. (1.2) is equivalent to the variational equation 

—i(<a¥(V¥S>—<¥pv>y+o<V/A/¥S—0. (15)   

It is well known that eq. (1.3) is mainly useful for providing approxi- 
mations to the ground state wave function and energy. This is so 
because the minimum value of <‘!|H|V >, assuming that V’ is nor- 
malized to unity according to eq. (1.4), is the ground state energy &,, 
which is attained if Y is replaced by the ground state wave function T 
On the other hand, eq. (1.5) may be interpreted (1) as te condition for 
the error in Y to be minimum. 

1.2 — Main concepts in the Hartree-Fock method 

In order to introduce the main concepts and mathematical methods 
involved in the Hartree-Fock Theory, considering not only the time- 
independent version but also the time-dependent extension and the 
more recent developments such as a discussion of the stability condi- 
tions and of the Random-Phase-Approximation (RPA), we start by 
considering a simple exemple (2). 

When we don’t know how to solve the Schrédinger equation for 
a problem it may happen that we expect the ground state wave 
function ’, (x) to be well approximated by a member of some family 
of normalized functions ® (x; a,), where x stands for the coordinates of 
the system under consideration and the a, are real parameters. Denot- 
ing by a, — a”) the solution set (we assume, for simplicity, that there 
is only one solution set) of the system of equations arising from the 
minimum condition 

= (0|H|®)=0 (1.6) 
uu hy 

the function which best describes the ground state is ® (x; a()), For 
later convenience we assume that the parametrization of the functions 
® (x; 4,) has been made in such a way that a(?) == 0. In our approxi- 
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mation the ground state energy is the minimum value E, of the expec- 
tation values of H with respect to the functions 9 (x; 4a, ), 

E,=(?|H|%),, =o. (1.7) 

1.3 — Main concepts in the Tamm-Dancoff method 

We assume, for simplicity, that the functions ®(x;4,) are real. 
Then, eq. (1.6) is equivalent to 

(53-1419) _ =o. (1.8) 
u % =0 

This equation means that at the minimum of (®| H|®) the hamilto- 
nian H has no matrix elements between ® and 00/0 4,. Moreover, 
from the normalization condition 

(0|%)=1 (1.9) 

it follows that (| ®)/d4, —0, or, if ® is real 

(o) 
& | 0. (1.10) 

ue ‘ 

This means that 09/04, is orthogonal to ®. It is therefore tempting 
to try and obtain approximations to the excited states of H by diago- 
nalizing the hamiltonian H in the subspace ‘of the wave functions 
0®/0d4,. This leads to the eigenvalue problem 

® ® 
Mees ice ) —8 (5 

ay, Oa, at 6 "\da, 
= 

aa |ce=o (1.11) 
Oa, i 

%, =0 

(the matrix (00/0 a, |d0/da,) a) =0 appears because the functions 

00/04, are in general not orthogonalized). This is the conceptual 
content of the so called method of Tamm-Dancoff. Since linear combi- 

nations of the functions 60/0 a, do not belong in general to the 
family of the functions ® there is no guarantee that the eigenvalues E. 
of eq. (1.11) are larger than E,. Some may be smaller and then we 

arrive at an inconsistency — excited states with an energy lower than 

the ground state. This type of inconsistency is avoided in the RPA as 
well shall see. 

      

  

v 
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1.4 — Main concepts in the RPA 

We look for a description of non stationary states of our system, 

Assume that the states in which the system finds itself in successive 

instants of time, for appropriate initial conditions, may be well repre- 

sented by functions of the family {® (x; 4, )}. The function which 
best represents the state of the system at time ft should be some 

function (x; 4, (¢)). The parameters , become now time-dependent 

and eq. (1.5) should provide us with the law for their time evolution. 
However we must allow the parameters a, to become complex. 

We replace them by 
w= % +8, (1.12) 

where a, and 8, are real. The initial family {®(x;,)} is therefore 

replaced by the family {® (x; te }, where the Kanerions © (x: Tp) are 

defined by expanding ® (x; a, ) in a Taylor series in a, and gevlacing 

afterwards 4, by j,.- (Notice that the functions 9 (x; 4) are no longer 

necessarily normalized). For small Ty We can write (), up to second 

order in j,,, 

(O|H|®) 1 yr Pi 
[Gate F Yet) Bae 276 Apel) G13) (® | ®) ts wy u ! ! ! 

where 

  

a7 ® a ® 
B.. =| (425 1#1*)—8,(- °) | 

! da, 04, "\da,00, ben a 

a —/(22 3 a | ao 
ve (5,14 sa) Be da, a 

t t ty = 0 

The stability of our wave function for the ground state requires 

that E, is still the minimum value of (® | H| ®)/(®|), even when the 
parameters @, are replaced by the 7,. Then it follows that the qua- 

dratic form in the right hand side of eq. (1.13) is necessarily positive 

definite. This has important consequences for the coefficients B, , 

and A, y which, however, we will not discuss. We also have 

(1.14) 

    

  

—i[00|%)—@|a)=—i), OM H—TA) Nyy (1.15) 
wy 

(1) This expression depends on the assumption that ®( x; ay ) is real. The gene- 

ral result is not, however, essentially different. 
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where 
0® 

0a, 

  Nuv=( 

  

real (1.16) 

Then eq. (1.5), with ¥ replaced by ®, leads to the equations 

YIN w+ Aart + Bi, 13)=0 

y . (1.17) 

YEN Tt + Avy tt + Bry ty) =0 
y 

which govern the time evolution of the parameters {,. If we assume a 

time dependence of the form 

in () = 6? exp (— io, t) + ay) exp (i, 8 (1.18) 

the following algebraic equations are obtained 

So NEP + Aye! + Bal) =O. (19) 

Y (oN, ea? + Ayan? + ByybP)=0 (1.20) 
v 

which are the analogue of the RPA equations for our model. Since the 

quantities N,,, A,, and B,,, are real (with our simplifying assumptions) 

and since E,, is the minimum of (?| H|)/(®|®) it follows that the 

eigenfrequencies w, are real and that the eigenvectors EO!) may be 

chosen real, as it has been done already. Since the matrices N,y, Au» 

and B,, are symetric, it follows that the eigenfrequencies © appearin 

pairs with opposit signs. (See section 3 below for detailed proofs of analo- 

gous statements). If (cy 7) is the eigenvector corresponding to the 

eigenvalue ,, the eigenvector & i ae ) corresponding to the eigenvalue 

w—-—=—w is given by ee 

1.5 — Physical interpretation of the RPA 

Let us consider again eqs. (1.13) and (1.15) and eq. (1.5) with T 

replaced by ®. Since eq. (1.5) is valid for arbitrary %7,, as long 
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as 7, (t) satisfies eq. (1.17), it remains true if we replace 5%, by ty (é). 
We may then write eq. (1.13) in the form 

(®|H|®) i ; . 
= F_ + — xy — WN. (0 | 0) ots 2 (1 Ta to) N, 

For a }, (¢) as given by eq. (1.18) we have 

(® | H| ®) O20 0.0 
—__——E,=», } (bn by —ap ae Ny (1-21) 

(® | ®) 2 p i ¥ 

Since the left-hand-side of this equation is positive the co-factor of w, 

has the same sign as ©. In order to interpret the right-hand-side of 

eg. (1.21) we consider the time-dependent wave function 

Y (=v, e —i6é,¢ p CY, e —ié,¢ (1.22) 

where V, &, and V, 5, are exact eigenfunctions and eigenvalues of H 
[eq. (1.1)] and C, is small. Up to second order in C, we have 

oy y eet he eyCXe (1.23) 
“ y | y > o r () r f 

Comparing with eq. (1.21) it seems natural, for a positive »,, to iden- 

tify », with excitation energy (5, — 5,) and to identify 

>, be Ev ae Ww) Ny, 
py 

with the transition probability C* C,. 

The interpretation given is confirmed if we consider the following 

expectation values of some arbitrary operator M, up to first order in 

the small quantities ;, and C_,, 

(O|M\%) _ orig * (5 Mio 

(o/o) apm ot) Orn + ty) ae Lat 
(1.24) 

o® 
=. 2 1 4) (gio, —iw,t)(——|M ») (0) M|%)q, <0 + Yee + a) (ee He (5s, i"). 

p 
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and ne date 

<P MES Sei. 
<7 | ee 

(1.25) 
af t= e)tCh <¥ |M|¥ > {oe the, Apt Gyn ae PS 

Indeed, », plays in eq. (1.24) the same role as 5 — &, in eq. (1.25). 
Moreover Ci << V|M|‘. > corresponds to 

tg U oo, yee +t) (221 mo) 
0a a, =0 

v - p 

if », is positive. Therefore, the matrix element < PF | M|> should 
be identified with 

r r r, r) are r r o® [DEEP ae nd Na] ey Ee taf) (SP Me) 
a & py 20 = 0 

The present method provides us, therefore, with a consistent procedure 

for calculating excitation energies and transition amplitudes and is free of 

the inconsistency of the method previously described, since it is the posi- 

tive », which play the role of excitation energies. We remark, 

however, that by neglecting the terms in B,,y in eqs. (1.19) and (1.20) 

we recover eq. (1.11) and, therefore, the previous method. 

1.6 — Orthonormality relations of the RPA eigenvectors 

If we add the equations obtained by summing over 1 te product 

of eq. (1.19) by ae and the product of eq. (1.20) by ae, it may be 

shown that 

(o,—o,) Y (EP EP —ap a?) N=. 
vv 

The orthogonality relations follow 

DERE — APA) Ny =0, (if) (1,26) t 

wy 

From eq. (1.21) it follows that it is possible to normalize the 
eigenvectors (& ey according to 

2) ed zen) (e) peel r 
} (Su, ay 1a Ny )Ny y= a (1.27) 

py 
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This normalization is useful and is frequently adopted. (Notice that 

the quantities at n@ we have used up to now were infinitesimals, 

therefore they were not normalized to unity). In general one may 
impose the orthonormality conditions 

@ 
(s) ¢ (s) 1 (r) pot ee? ; 

> Eon SS Solis ae RTT 3 (1.28) 

uv F 

which are obvious, from what has been said, if no two , are equal. 

2— THE HARTREE-FOCK METHOD 

2.1 — Parametrization of a general Slater determinant 

We consider a system of N fermions. The hamiltonian may be 

written 
H=T+V (2.1) 

where T is a one-body operator and V is a two-body operator. The 

operator T is, therefore, the kinetic energy plus the potential energy 

due to some external field LU (x) 

N 
1 

Lo ——p?+ U(x, 2.2 dlgeett (x) (2.2) 

while V is the potential energy of the two-body interactions 

N 

Ve= ae A (2:3) 
By, : 

The coordinate x, stands for the space, spin and iso-spin coordinates 

of particle i 
x,—=(£,,%5,)- (2.4) 

We denote by ¢, the sum of the kinetic energy and of the external 

potential energy of particle i 

gat + U(x). (2.5) 
"2 ip 

The potential energy of the pair i,/ is 

v,; =v (x,,%,). (2.6) 
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If we consider N linearly independent single-particle wave functions 
b, (x), the Slater determinant 

W(x, 0s os ee 3 ?, ~) 6 eh , (xy) >, (x ( 
V N! bs (x,) , 5) se , (x) (2.7) 

by (x,) Py (x,) tae by (xy) 

is obviously antisymmetric with respect to the interchange of the coor- 

dinates of any pair of particles, so, in agreement with the Pauli prin- 

ciple, it represents a possible physical state of our system. We now 

assume that the behaviour of our system may be well described by 

Slater determinants. This assumption leads to the definition of the 

class of functions where we are going to look for a description of the 

ground state and of non stationary states (in general obtained by 

slightly deforming the ground state): we consider the class of Slater 

determinants of orthonormal single particle functions. It is always 

possible (even if the $,(x) are not orthonormal) to construct ortho- 

normal linear combinations &,(x) of the functions $,(x), %, (x)= 
ao alt C, g(x). Now, the Slater determinant of the &, (x) differs 
from the Slater determinant of the $,(x) on a numetical factor, 

namely the determinant of the coefficients C, ,. The two Slater deter- 

minants are, therefore, physically equivalent, so we would gain nothing 

by dropping the restriction of orthonormality on the functions 4, (x). 
The Slater determinant V (x,,x,, ... x,) is normalized if the functions 
b, (x) are orthonormal. Now let 

e/ ey Sees. , (%,) P (%) --. 9, (%) 

WN ee a Oy ea a 

ny (x,) Py (%) ... Pn (x,,) 

be the Slater determinant [of orthonormal single-particle functions 

q(x)] which minimizes the expectation value of the hamiltonian. 

In order to introduce a convenient parametrization of the general 

Slater determinant V (x,,x,, ...,,) we expand the set of the wave 
functions 9, (x) («= 1, 2,...,N) into a complet set of orthonormal 

functions 9, (x) (i—1, 2,...,N,N+1,...,0). (This may be done 
in infinitely many ways). We also expand the set of the functions 

q(x) (a1, 2,..., N) into another orthonormal set 4, (x) (i=1, 2,..., ©). 

From now on we will denote by greek letters «, 8, 7, ..., the labels 
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of the single-particle states ¢, present in ® (hole states) and by the 

letters m,n,p,... we will denote the labels of the single-particle 

states 9, not present in ® (particle states). The letters i,j,..., may 

denote both types of labels. 

The transformation of the orthonormal set of single-particle 
functions ®, (x) into the orthonormal set of the functions +, (x) defines a 

linear operator u such that 

}, =u. (2.9) 

Since both sets are orthonormal, the operator u is unitary 

et alas, (2.10) 

Therefore we may write 

“ele (2:11) 

where s is an hermitian operator, 

Sas e (2.12) 

The transformation of the functions ¢, (x) into the functions $, (x) indu- 

ces a transformation of the N-particle product wave functions 

oy, (4) (9) <<» Py (yd 
into the functions 

(oy), (Xe) «+ + Oj) (Xy) = a, Oy. Uy 9%, (%) 4, (4) ax Pn, (Xn) 

— e! Gor +s, + eee + sy) ;, (x,) Pie (203) eS) = P(X ) . (2.13) 

The label i in the operators u,,s, means that these operators act 

on functions of the coordinate x,. The several u, and the several s, 

commute, therefore, between themselves. Let 

— iI 4, (2.14) 
it 

(2.15) 

M
z
 

a
 SS 

i=1 

From eq. (2.13) it follows that a general Slater determinant ‘ is related 

to a particular Slater determinant ® through the equation 

¥—eiSo (2.16) 
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The operator S replaces the variational parameters 4, of the previous 

section. However, since there are several S connecting a given Y’ with 

a given ®, a particular S contains in general much arbitrarines. In the 

next section we will show how to get rid of what is not essential. 

2.2 — The Hartree-Fock equations 

When S tends to zero Y approaches ®. We are going to consi- 
der only functions VY near to the function ®. Therefore we replace 

eq. (2.16) by 
ls ® (2.16’) 

where j is an infinitesimal real parameter introduced in order to enable 

one to keep easily track of orders of magnitude. We now define hermi- 

tian operators S’ and S" which are relate to the operator S, 

(2.17) 

(91 8’ | Pa) = (Fa 18" | Pm )* = (9% | S| Pa) 
(2.18) 

(9, | s'| %,) = ( Pa] s’ | ¢g) == 0 

(9,,18" | @a)—=(Pal8”|9,,)*=0, 

(% |s” |g) =(a 15/98). (2.19) 

(Gn 18" | Fn) = (Em 1S] %,)- 

Then we have 

s== sit 5", 
S=—s'48". (2.20) 

It may now be verified that 

eft Sell +i Isr, 5400} gti", (2.21) 

The operator exp (i+ S”) acting on ® just produces a phase factor. 

This is so because the functions ¢) (x) exp (ij s") %(x) are ortho- 

Portgal. Phys. — Vol. 5, fasc. 3, pp. 71-92, 1968 — Lisboa 81 

 



  

Provipéncia, J. da — Approximate methods in nuclear structure calculations 

normal linear combinations of the functions ©, (x) (notice that 
(9,, 18” 1%.) —=(,|s"|%,,)==0). In order to obtain the Hartree-Fock 
equations we expand the expectation value 

<¥, (Alt, >a Ol en? reltS)/ 0 

up to second order in +. Then we have 

<¥,|A|¥, > =< 0|A|O>—iy</[S,H]|9> 
2.22 

| — 5) P< 9/5. 15, AI]| o> + 069). oe 

In agreement with eq. (2.21) and with tha remarks following that 

equation, we may replace, in eq. (2.22), the operator S by S’ + 

i 3 [S'S]. 

cas <‘V,|H|‘, > must be stationary for VY, =, it follows 

that the terms linear in y must be zero for arbitrary S, 

<9|(S,47)|e>=><0|[(%.H]|¢>—0 (2.23) 

showing that the component S” of S is not relevant as far as the sta- 
tionary condition is concerned. Now we have 

N 

[SH] : Is.l+ Ys) +s)).o,] (2.24) 
=1 i<j=1 

Making use of the general expressions for the expectation values of 

one-and two-body operators with respect to a Slater determinant, we 
obtain 

<|[S!,H]|® >=) (9,|[s'. |e.) 

4. 2, gal [(s; + 54), %4) | 2 2) (2.25) 

a > (% 9g | [(s; + S3)+ Py] | 98 G4) = 0, 

a<B 

If we consider the operator v such that 

(9,917 1% 2%) =(9,2,101 9, 9) — (9,9, |0| > %) (2.26) 
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we may replace eq. (2.25) by 

Fleal ss I] ea) + > Yee tells, +) Full ta #8) =O (227) 
a aB 

where the factor 1/2 comes from the equality > ome ? With the 
a<B 2 aB 

help of standard techniques of matrix quantum mechanics (such as mani- 

pulating ,the completeness relation £,|9%,)(~,|—/) and considering 

eq. (2.18) we may replace eq. (2.27) by 

Y\ (se,m (tmpa +), %m 6,28) — (tam + >, %B,m ) Sm, a] =O (2.28) 
6 B a4,m 

where we have introduced the notation 

t      MF i) yer (9% 191 % %)» ete. (2.29) 

Since the real and imaginary parts of s, ,, are arbitrary it follows that 

we may regard s, ,, and s,,_, as independent, although s,, m= Sm,« ° 

In order to see this it is enough to remark that if we replace See BY 

iS,,m» then s,,, should be replaced by —i5m,q: The co-factors 

of Ss 2,m and S,,_ in eq. (2.28) must, therefore, be both equal to zero, 

tise ), Pon BO. (2.30) 

6 

Consider now the operator A such that 

he =t it) 6.8 (2.31) 
B 

The operator h is obviously hermitian. The matrices h, g and h,, |, 

are diagonalised by a canonical transformation of the type of exp 

(is) which does not mix hole states ¢, with particle states ¢,,, , Since 

such a canonical transformation leaves both eq. (2.30) and the Slater 

determinant ® invariant, it follows that eq. (2.30) may be replaced, 

without loss of generality, by the following eigenvalue equations 

tt S968 = 8,1 (2.32) 

b 
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These are the Hartree-Fock equations, which determine the best single 

particle orbitals describing the structure of the ground state and, 
obviously, may also be written 

he,=.,9%,. (2:32') 

3—-SECOND ORDER VARIATION 

3.1— The stability condition 

If eqs. (2.32) are satisfied we may be sure only that the expectation 

value <('| H| > is stationary when V’ approaches 2, but we do 
not know yet what tipe of stationary point we are dealing with. Since 

we are looking for a minimum, we ask under what conditions is the 

expectation value <( | H|‘'> never smaller than << ®|H|®>, 
at least for a Y’ close to ®. In order to investigate this point we con- 
sider again eq. (2.22). Taking into account eq. (2.23) (the stationary 

condition) and eq. (2.21) we may write, up to second order in } 

<¥,/H|¥,>—<®|H|¢>——F <ol[s,[s,HI|¢> 

——F <ol[s ts. mlje>. on 
The right hand side of this equation must he a non-negative quantity 

(either positive or zero). If it were not we should look for a better 

solution of the Hartree-Fock equations. We may write 

N 

[S'.[S', HI]=— J [sy. Ls, ¢] 
i=1 

  

N 3.2 
+ Y Us +s). ls +s).o]1. at 

i<j=1 

Therefore we have 

7 <PUS SAN O> = — AY elle lead 

+ Y (Parl (si. +5,)-L(s, +55), Mal] | Pa) (3.3) 
a<B 

— ¥ (ea gpl Us, + 55), Us, +55), el] | P6 P2) | 
a<B 
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=F Delle [s', f]] | %) 

, ' ' ' - 4 bd 

+ SY Cr [Si + 55) [5+ 82) Pall | #2 8) } a 
a8 

= Fi 5a,m Sm, x (Em— Es) + > lis 5 Oppo eee 

am a8,mn 

x 1 (3.5) 

Tee SB yn Umn,aB—— Yap, mnSm,oSn,B) 
2 

where use has been made ef eq. (2.32). The right hand side of eq. (3.5) 

is a quadratic form in the quantities s,,, and Sim = Sm,a: Since it 

must be non-negative, the sigenvalues 4 of the following eigenvalue 

equation 

A 

(Sm — €) Sam ni Yil85, nPan,mB— Sn, BPa8,mn) —*S2,m 

fn 

(85: — Fe) Sica ae ¥ (Sa, 6%mB,an— SB in Omi aR (3.6) 

Bn 

must also be non negative (3)——they are either positive or zero. 

Notice that eq. (3.6) insures that the quadratic form in eq. (3.5) is 

stationary with respect to variations of s, ,, subject to the restriction 

oll * ame, 
> Sa ,mSm,a— 2 Sq ,mSa,m— 1. 

a,m a,m 

If the s,_,, satisfy this normalization, the lowest eigenvalue i is also 

the minimum value of the right hand side of eq. (3.5), which is attained 

if s,m is the eigensolution of eq. (3.6) corresponding to the lowest 

eigenvalue. There will be always zero eigenvalues if there are opera- 

tors s such that 9 is not their eigenstate and which commute with the 

hamiltonian (4). Of course, ® must not be an eigenstate of S because then 

we would have exp (is) ® = exp (is) ®, where ¢ is a real number, so the 

corresponding pe would be zero. Examples of operators S commuting 

with H which give rise to zero eigenvalues are the total momentum P 

and, for an asymmetric nucleus, the angular momentum J. It should be 

emphasized that the eigenvalues 4 have no physical meaning although, 

if we neglect the matrix elements of the type of v, 8, mn» then eqs. (3.5) 

reduce to the so called Tamm-Dancoff equations 

(8, — &x) OF a > CE a? ann, sa PE Cah, (3.7) 

Bm 
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It is seen that the eigenvalues 4 of eq. (3.6) are here replaced by the 
excitation energies E. There is however no guarantee that the eigen- 
values E are positive (since the terms in v, 8,mn are absent). This is a 
weakness of the Tamm~-Dancoff method which is avoided by the RPA 
method. 

3.2 — The RPA equations 

We use now the variational principle expressed by eq. (1.5) to 
determine the best time evolution of Slater determinants V;, near the 
Slater determinant ©, assuming we restrict ourselves to that class of 
functions. We allow, therefore, the operator S to become time-depen- 
dent. We may write, up to second order in ; 

—i{<o¥,|¥, >—<¥ a", >} 

=— if <O/ 2S, 5]|O>——iP <|/PS,S]|o> 
where use has been made again of eq. (2.21). Now we have 

. N . 

[b.S),.S'] = y [8s.25,] 
eo 1 

so that 

—i<O(PS,S][O>=——i) (eI Bs.sIlen). (3.9) 
Finally the variational principle ; 

—i(<d¥,|V>—<¥ dV >) +3<¥ | A|Y,>=0, 

which now may be replaced by 

—i<9/2S,$]|@>——9.<0/[5,[9, H]|9>=0, (3.10) 

leads, with the help of eqs. (3.4) and (3.9), to the following first 
order linear differential system 

ae + (<,, = ig Sig og + ») (SB in Pan, mB — Sn, 8 Va8, mn) =0, 

ee (3.11) 

—iSm,a+(®,—®s) Sma eR, ry (S,, 8 Ym Ban — S87 n Onn, op) ==0- 

Bn 
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This may be written in a more compact form if we introduce a quan- 

tity 9 (ij) defined by 

  6(am)—=—6(ma)—1, 6(a8)—8(mn)—0. (3.12) 

We have then 

is, HQ—) 8 TY POD S,,=0 (3.13) 

cy 

where s’,, is given by eqs. (2.18). We look now for a solution of these 

equations in the form 

$,() =O(D(¥9 eff — 99 e—fote) (3.14) 
where the quantities hy / are such that oe se — 0 (remember that 

s,,, must be hermitian). "Then we arrive e the RPA equations in the 

form adopted by Fukuda et al. (5). 

0, 99 =(§— 8) OG + ODS O51, ja Pare (3.15) 
kl 

The quantities , are the normal frequencies of our system and the 
amplitudes os describe the normal modes. A more physical interpre- 
tation of sheae equations will be given later. 

3.3 — Mathematical properties of RPA equations 

Let us consider again eq. (3.10). This equation is satisfied for 

arbitrary variations 9S’ as long as S’ is such that eq. (3.13) is verified. 

It follows that eq. (3.10) remains satisfied if we replace in it 5S’ 

by S. Therefore we may write, with the help of eq. (3.1), 

. j 2 Mal A Meee 12 oe 
ae y (Sq, m Sm, a — Sa im pas 

2 am 

(3.16) 

For as, , as given by eq. (3.14) we obtain 

MN | YS — 8 |e 

4 Ke r) * r =F (o* +) 2 (tru dea be, teal (3.17) 
2 

stay e (ij) yor pr. cilia p 
2 
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Let us now multiply eq. (3.15) by on 6 (ij) and let us sum over 
i,j. We have 

(r) * oe (r) r)* Se r oS OF ODI =Y OP" OG (5 —2) 08 
iy ij 

Oe (*) 
ag 3 Pai Pit je Pai 

ij, kl 

(3.18) 

It is a simple matter to verify that the right hand side of eq. (3.18) and 
the co-factor of , are real quantities. Therefore ©, is also real unless 
its co-factor is zero. But if the co-factor is zero, the right-hand-side of 
eq. (3.17) is also zero, so the minimum value of < Y,|H|V,> is 
attained for the s; , under consideration (eq. 3.14). The quantity Sim 
is therefore a solution of eq. (3.6) corresponding to an eigenvalue A 

equal to zero, but then it follows [taking again into account eq. (3.14)] 

that the eigenvalue , in eq. (3.15) is zero. Summarizing, the eigen- 
values " of eq. (3.15) are always real. If the quantity 

ys (r) * oy (r) 

> 8 A) 85 >; 

tj 

is zero, then », is also zero. Moreover, since the quantity 

=e. H|¥,>— <6 |H|® >= Poy lis) ope 4) (3.19) 

ij 

is non-negative, it is seen that » has the same sign as YOGA OR oy. 

ty 

We do not wish to discuss here the case of zero frequencies. For that 

the reader is referred to Thouless’s paper (3). Since such frequencies 

are related to the degeneracies of the hamiltonian H, we may suppose 

that those degeneracies have been removed by adding to the hamil- 

tonian a perturbation small enough to be otherwise negligible. Then 

the quantity yo) ooo) is different from zero and it may be con- 
‘] 

veniently normalized to +1, 

  
r) * y (rr; o SOD oy G=— (3.20) 

ij Jo, | 

Consider now two different eigenfrequencies », and w, and the 

corresponding eigenvalue equations. By the usual technique (complex 

conjugation of the equation for »,, multiplication of this equation 
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by 019 6 (ij) j), multiplication of the other equation by a 6(ij) and 

giticetion of the equations so obtained) it may be kites that 

(o,—m) Dt GN 4:9 =0 (3.21) 

It folows that, for », + ”,, the amplitudes ov and 0 are orthogonal 

in the following sence ye 6 (ij) 1 =O. 

iy 

If the gw are properly normalized we have, therefore (we do not wish 

to dsvicdia explicity the case of degenerate solutions, which involves no 

particular difficulty) 

  yee ya (3.22) 
7 |, | 

We will show now that, if oo is an en of eq. (3.15) 

corresponding to te eigenvalue »,, then wie is an eigensolu- 

tion corresponding to the eigenvalue o— = — Tt is enough to con~- 

sider the complex conjugate of eq. (3.15) 

0, 00% =(G— ea) OO + OG) YO jeden 15) 
kl 

It may be shown that the amplitudes hy form a complet set, 

meaning that any collection of quantities M, m+ ™m,. May be expand- 

ed as 

m, =O SY (no —m 8) (3.23) 
r(w, > 09) 

where the summation extends only over positive frequencies. A dis- 

cussion of this point may be fond elsewhere (6). Of course, from the 

orthonormality condition we have 

(r) * = Fm 
as o” m= Sm 88 

Notice that if m, .—=m* , we have n = m*. 
Jat tyJ ig r 

(3.24) 
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3.4 — Physical interpretation of the RPA solutions 

‘tet us consider again eq. (3.19), which involves an operator S as 
given by eq. (3.14) and let us assume that », is positive and that oy 
is normalized according to eq. (3.22). Then we may write 

<V¥,/H|V¥,>=<olH/O>40 7. (3.25) 

Consider now the non-stationary state VY, obtained by admiting a 
small component of the exact excited state VY to the exact ground 
state I’. Its time evolution is rigorously given by 

Y ()—WV e7 ig, t +c Le emit. (3.26) 
ce 

The expectation value of H with respect to V(t) is given by 

  

<VOIHINO> 2. 
<Ve n> ToC) 227) 

This expression is correct up to second order in c. The comparison of 
this result, which is exact, with the approximate result expressed by 
eq. (3.25) suggests the interpretation of a (positive) ®, as an excitation 
energy 5,— &. The correctness of this interpretation is confirmed if 
we consider also the expectation value of an arbitrary one-body 
Operator 

N 

M=— J'm, (3.28) 
t= 

We have, indeed, up to first order in ; and for an operator S as given 
by eq. (3.14) 

<¥,(M|¥,>=<0|M|®>—i;<|[S,M]|o> 

epee alieeme * i cP, gh oS, a) (3.29) 

—<0|M\o> 44)" tio, M87 m+ ED eH iw S80" m, 

iy Wi 

On the other hand we may write, up to first order in c 

              
  =F | MY, > (3.30)        > 
4c atl &)!<¥|M|V> +e e— 8 —& te |M|¥ > 
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Comparing the rigorous eq. (3.30) with the approximate eq. (3.39), we 

not only find that » plays the role of an excitation energy, 

© —=>6 —é, (3.31) 

but we also discover the significance of the amplitudes 09 which is 

provided by the following correspondence 

<¥|M|¥j > m=) oi m, ; (3.32) 
ij 

[Notice that an abstract quantity m, had been previously introduced 

in connection with eq. (3.24)]. This interpretation is confirmed if we 

compare the exact treatment of the polarization of a quantal system 

by an external time dependent perturbation with the approximate 

treatment based on the Hartree-Fock method. 

Let us consider again a hermitian transition operator M as given 

by eq. (3.28). There is an important sum-rule refering to the transition 

amplitudes << |M|V) >: it is the so called Thomas-Reiche-Kuhn 

sum-rule 

y6,—8) <¥,|MI¥ > <¥,|M|¥,> 

—5<Y, |[M,[H. My] ¥, > (3:59 

A remarkable property of the time-dependent Hartree-Fock method 

or RPA is that it preserves this sum-rule (6). In order to prove this 

we define a time dependent operator M(t) by 

N 

M (t)= ¥ m,(t) 

m;_;(t) = 9 (ij) 2 (m* oO eff —m, p* eit) (3.34) 
r(®, > 0) 

The last equation does not refer to the matrix elements m, (t), 

Ma,» (t) which are not required in the proof. Taking into account 

eq, (3.23), with n, = m*, it follows that M (0)— M, if m, is given by 

eq. (3.24). This is the reason why we have used the same letter to 

represent both operators M and M (t). Mereover m; ;(¢) satisfies 

eq. (3.13), (since it is a linear combination of solutions of the type 

of eq. (3.14)) so eq. (3.16) is applicable. Considering also eq. (3.1) we 
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may write (for an M’ related to M in the same way as S’ is related 
to S) 

eee ena ge ae 

=a m, ;4(ij) 

= 450 ) Dem a a (3.35) 

Dm lon gift emir aie! 4!) 

—_ * — © m! m,. 
r(W, + 0) 

Considering eqs. (3.31) and (3.32), the proof is completed. An impor- 

tant consequence of this result is that if [M, H]—0 then we either have 

m,=0 or » —0. This demonstrates again that the so called spurious 

states, generated by an operator M which commutes H, have zero 

energy. 
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