
  

A SIMPLIFIED VERSION OF THE RANDOM-PHASE APPROXIMA- 

TION AND THE PROBLEM OF THE CORRELATION ENERGY OF 

A MANY-FERMION SYSTEM (*) 

J. DA PROVIDENCIA 

Laboratorio de Fisica, Universidade, Coimbra, Portugal 

ABSTRACT —QA discrepancy between the formula for the correlation 

energy of a many-fermion system derived by the conventional random phase 

approximation (RPA) method and the corresponding expression derived by 

summation of perturbation theory bubble diagrams is investigated. 

It is shown that this discrepancy is absent from a simplified version 

of the RPA dealing only with collective excitations. As an example, the new 

version of the RPA is applied, with good results, to the electron gas. 

(*) Based on a lecture given at the Seminar on Physical Theories and Nuclear 

Physics, Instituto de Alta Cultura, Lisbon. 
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1 — INTRODUCTION 

In this article we will develop some ideas which we have already 

presented, in a condensed form, in a previous publications (1). A more 

detailed account of the results of ref. 1 will also be given here. We discuss 

a type of discrepancy which may appear in calculations of correlation 

effects based on the random phase approximation (RPA). It is well 

known that an expression for the correlation energy of a many-fermion 

system arises naturally in the diagonalization of an effective boson 

hamiltonian obtained by the procedure which we now describe. Let 

1 
H = ih, cf ty tain wa CF Cp Cy, (1.1) 

gy 2 ijkl 

be the hamiltonian of some system. The c;*, c; are fermion operators. 

We denote by the letters a, b, c, ... occupied single particle states in 

the Hartree-Fock ground state |O > of our system and we denote by 

m,n, p, ... non-occupied single particle states. A standard procedure (2) 

for arriving at the RPA is to replace pairs of fermion operators cy c,, 

by true boson operators B,,, , 

ct Cy > B 
ma? 

[Bua Byy | = O, [Bra By | — Sun 806 : (1.2) 

One then replaces the Hartree-Fock state |O> by the boson 
vacuum |O> and finally one replaces the hamiltonian H by a new 

hamiltonian H,, quadratic in the boson operators, which one requires 

to be equivalent to H in the sense that 

<O0|He 6,)0> = <0|H, BY,|0O>, 

“Olof, Het ¢,|O0> = <0|B, 7, B.|0>, a 

<0|He} gcfc¢,|O> = <0|.H, Bi By|0>. (1.8) 
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We then have (2) 

Hy = Eur + SM (Em —&a) Be B,, a 

+ bs Pes mb Van, tin) By Bau 

1 
+ 9 py (Yas, mn Va», asl By Big (1.4) 

i aie sa 
+ 9 x (Onn, ab~ Umn, kal Bis By 

where the ¢; are Hartree-Fock single particle energies, 

or Ya Via ja Via, aj) aoe 1S 85 ? (1.5) 

and Ey, is the Hartree-Fock ground state energy. The new hamil- 

tonian can be diagonalized by a cannonical transformation 

ot = Li(xY BE + YO B,,) 
(1.6) 

[By 0] =0, [9,, OF] = 3,,. 

Indeed, H, attains the form 

Hy = Enp + E,+ io, 0+ 8, , (1.7) 

provided the amplitudes X”), Y satisfy the eigenvalue equations 
ma? 

(Em — £4) xe a » [(o (Unb, an — Ump, wad, vA 

— (nn as — Pn so) ¥9] = 0, XY, as) 
(mm — €a) YQ, + 2X [(o Van, mb — Yan, bm) YY 

— (Pci, mn — Yad, nm) Xo] = —o, YO 

The quantities o, are excitation energies and EF, is the correlation 

energy. As a by product of the diagonalization of H, one obtains the 

following expression for E, 

1 
! =e, ay 2m — Vam, wa Som, ann) . (1.9) 
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Now this equation overestimates, by an ammount equal to the second 

order energy, the correlation energy obtained by summing the so called 

bubble diagrams. Indeed, the perturbation theory result is (3) 

1 
z. PT = =e, -> he (e se ham, aon Vaan) 

(1.10) 
oe L § Van, mn (mn, ab — mn, ba) 

2 abmn é, + &— €,— = 

  

We wish to investigate the discrepancy between eqs. (1.9) and (1.10). 

This discrepancy shows the RPA derivation of the correlation energy 

to be unsatisfactory. We must conclude therefore that some of the 

RPA assumptions are violated, i.e., some of the quantities 

YA Or en + YEE OS ,) 

must fail to behave as boson operators. It has been conjectured that 

this discrepancy could be remedied by discarding the non-collective 

RPA modes (4) since one expects only the collective modes to behave 

as bosons. Then eq. (1.7) may be replaced by 

=Hyt Le, 0 6, (1.11) 

where the summation extends only over collective modes and H,,, ts 

intrinsic in the sense that it commutes with collective operators 6,. 

The expectation values of H;,, already includes the contribution 

of the zero-point fluctuations of the collective modes to the correlation 

energy. One expects that correlation effects associated with the intrin- 

sic degrees of freedom may be taken care of by low order perturbation 

theory, if necessary. 

2. A VERSION OF THE RPA RESTRICTED TO COLLECTIVE 

EXCITATIONS 

If we apply eq. (1.9) to the electron gas we obtain a divergent 

result. The divergency is removed by using eq. (1.10) instead of eq. (1.9). 

Since the discrepancy between the two equations is infinite for the 

electron gas, this system may be used as a convenient example to 

investigate the source of that discrepancy. 
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We develop now a version of the RPA dealing only with the 
collective degrees of freedom having mainly in mind the electron gas. 
The method may be easily extended to other systems and should be 
free of the inconsistency of the conventional RPA under investigation. 
A restricted RPA calculation dealing only with the collective degrees 
of freedom has already been advocated by Holtzwarth (5) on different 
grounds. 

The electron gas hamiltonian may be written 

2 H= Dk 2m) ) Cyr, Ck s+ » >», (2 x e?/ q’) (2.1) 

+ + 
X Ce +as Ske —as' Ck’,s' Ck, s 

where c¢, , is the annihilation operator for an electron of momentum k 
and spin s. Let us consider the following operators, wich we will use to 
create excited states, 

Meuace = IV, x Ck + en Ck, st > (2.2) 
h<hp|kKta| >, 

where the normalization factor N, is determined by the condition 

<0(Avce 4g.) |O>—1. (2.3) 

These operators are obviously related to the density operators 

N 

eg= >) exp (—iq.x,) (2.4) 
t=1 

which play an important role in electron gas theory (6), but we may 

also draw the inspiration for picking them up from an inspection of the 

potential term in eq. (2.1). We note that the vacuum of the operators 

A,,,,. is the Hartree-Fock ground state |O> , 

Ayse|O>=0. (2.5) 

The creation operators Aj, , generate states of nomentum q, when 

acting on |O>. Instead oe the operators Ad, ,, we may consider 
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operators AZ «, s, Which generate states possessing definite spin 

quantum numbers §, S,, 

ao — 9-1/2 + + 
Aa 0 = 20 (A, 1/2, 1/2 + A, -1/2, -1)2) 

Boy 2S hee 
i" 5 oh /2 (2.6) 

Agi;3= A; -1/2, 1/2 
+ _ 9-1/2 + 4 

A 0; 0 ~~ a (Ag; 1/2, 12— Ag, -1/2, 12) . 

However, for the sake of clarity, we will omit from now on the spin 

quantum numbers, but we will take spin into account when perfor- 

ming actual computations. We write, therefore, instead of eqs. (2.2) 

and (2.3), 

At =N bY eta (2.2’) q q 
k<kp, [|k+q|>hp 

<0|A,At|O>=1. (2.3 

We believe that the operators A, are a good choice as boson operators 

because, if we consider quantities such us 

<0|A2(A#)?|O>=2—N?, (2.7) 

we find that the deviation from the ideal boson behaviour is very 

small, NZ being of the order of the inverse of the number of particles. 

If the A, were true boson operators the right hand side of eq. (2.7) 

would be exactly 2. 

It is now convenient to define the states 

lq>= Az |O> (2.8) 
[%. % >= At AT |O>, etc. 

and to introduce the hamiltonian 

Hp=Enpt de, At A, 
‘ (2.9) 

‘yy + 4 6,(4¢ 454+ 4, 4,). 
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This hamiltonian is equivalent to H, in the sense that 

<0|H;|4>=<0O|H|q>, 

<4| Hp (2 > =<%|H|% > (2.10) 

<O |75 1%, > =<0|H|4,, 9, > 

provided 

eg =<49|H|q>—<0O|H|O> 
2.1 

&g=<49,-9|H|O>. 2.1) 

In the next section we will give explicit expressions for these 

quantities. We remark that the operator H, is a truncated Hamil- 

tonian, appropriate only for the harmonic approximation. The full 

equivalence between H and H, in the subspace spanned by the 

vectors |O>,|9>,|9,,9,>, ..., requires that anharmonic terms be 

included in eq. (2.9). We try to bring H, to the diagonal form 

Hy =Enr +E, + Lo, 0g 0, (2.12) 

by performing a cannonical transformation 

i=, A, Az, 
on De (2.13) 

[8,, o,)=O, [0,, 07] = 84,4 

so that 

n—ye= 1. 

We arrive finally at the eigenvalue equations 

X%q + 8qVq = %qX%q 
(2.14) 

8q%q tb aq = — Va 

which determine the excitation energy 

Og = (3 — ei)? . (2.15) 
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The correlation energy is given by 

£.= d= (o—4). (2.16) 

However, this correlation energy refers only to collective correlations 

and not to intrinsic correlations. In order to evaluate intrinsic correla- 

tions, an intrinsic hamiltonian may be introcuded by an equation 

analogous to eq. (1.11), or better still, by the method of Villars (7), 

but this refinement does not seem necessary because the intrinsic 

correlations appear to be small. The numerical results which we 

report in the next section show that eq. (2.16) does not suffer from 

the defficiency of eq. (1.9). 
We may observe, in passing, that eqs. (2.14) may also be obtained 

in the context of Hartree-Fock time-dependent theory. Indeed, eqs. 

(2.14) determine the time evolution of the nonstationary Slater deter- 

minant 

| (t) > =exp (22. At) lo> 

where 

2q(t) = x, exp (—7 ot) + y_,exp (7 a, 2) . 

Imaginary values of , reveal, therefore, instabilities of the Hartree- 

-Fock state. 

3. NUMERICAL RESULTS 

We present now the results of the numerical calculation. It is 
convenient to introduce the constant «= (4/97)'* and to specify 
the density of the electron gas through the mean square radius per 

electron in units of the Bobr radius, 1.e., the parameter 7, = e? m/«k,, 

where ky is the Fermi momentum. The final results may be expressed 

in terms of the following sums 

tg = N> 2 1 (3.1) 

t= (2m ] (NAR) 2 ((k+4*—K) /2m (3.2) 
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me =— (de /V) 1) (k— ky) (3.3) 

Hy, = (2m | (NAG) (Le e/V) | 2 1) (ky (3.4) 

ta= (2mm )(N AB) Awe) | 1) — ky)" (3.5) 

tag = (2m /(NM)) 2 (es gt (3.6) 

In these expressions, N is the total number of electrons, V is the 

normalization volume and D, is the set of values of k such 

that k<kh,, |k+ q|>kh,. 

In terms of these quantities we may write down expressions 

for c, and g,, but now we must take into account the spin quantum 

number S of the mode excited. Of course, S is either 0 or 1. We have 

Eq. = (ke | 2m) (4 + %,—%1,) | %q (3.7) 

+ (1—S) (16/3) a7, 82 my /4) (3.8) 

Bass = (Re / 2m) (—», + (1—S) (16/32) a7, ke 14/49") (3.9) 

Og; 5 = (&;s— 84:5)" 

We now observe that 

Vp, =, —%, ° (3.10) 

We have, indeed 

x 1/ (kk, —4? —ky, ko & Dg 

= x 1 /(k, —k, —q)? hy < hp, ky & Dg 

~ » 1/(k, —k, —q)? 
Ay <kp,|a—k,| <kp, ko € Dg 
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= dX 1 (kk, 9)? 
ky <kp, ko € Dg 

py 
|e tal <tpe i < pry © Dy 1] (ki — ke) - 

We also have 

» 1 | (k, —k,)? 
ki, ky € Dg 

a ky < & Dg 1/ (k, —k,)? 

7 ps 1/(k, —k,)? 

Subtracting these equations we finally prove eq. (3.10), which shows 

that we need not compute Y%, and Us, separately, but only Vo, - 

Our final expressions may be be written, introducing the new 

variable x= q/k;, 

3 
1 ¥(1———#) if x<2 

8 12 

=— tf x>2 
2 

il 
Z=—#. 

2 

(3.11) 

(3.12) 

For x less than 2 we have computed Vo, by reducing it to a double 

integral which has been evaluated by the Monte Carlo method. 

We have then titted the numerical results by a polynomial in x. 
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For *>2 the integrations were performed analytically. Our final 
result is 

Up, = (3/2 x) a7, (0.10327 x* —0,017215 x4 — 0.016558 x° 

+ 0.029059 «§ — 0.017362 x!°+0.0011048 x!?+-0.0031108 x14 

— 0.0014083 «'®+-0.00024849 x18 —0.000016165 x”°) if x<2 

aia! 1 1 
= (3/2 m) or [ abt x + (4/ (3 x)) (+ ttt) 

(3.13) 
1 

x 1n (2 s,/«) + (4/(3 x)) (+ sttst+st] 1n (2s, in| if x>2 

where 

s,=*/2+1, 

S,=%/2—1. 

The correlation energy becomes finally 

1 3,2 

E,= ¥ 2S+1)— | x? (og, s —&q, 5) ax. (3.14) 
S=0 vo 

In fig. 1 we have plotted, as a function of 7,, the total value of E, 

and the contributions to E, from each S. We have also plotted, for 

comparison, the results of Carr et al (8). The accuracy of our simpli- 

fied calculation is remarkable. We have also found that for 7,>9.6 

the Hartree-Fock ground state is unstable (imaginary values for 

©,,5 for low q and S=1). This indicates that for low densities the 

anharmonic terms become important and should be added to eq. 

(2.9). We also show in fig. 1, by the curve labeled «without exchange», 

the result of neglecting exchange terms, i. e, the result of setting 

Vy, = %, =%, = 9. The value of E, obtained in this way is an 

upperbound (9) to the ground state energy of Wentzel’s model (10) 

(meson-pair theory), which does not include exchange. The values 

of E, without exchange are lower (larger in absolute value) than the 

corresponding values of the correlation energy of Carr et al., in the 

range of 7, considered. This is so because Carr et al. take exchange 
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Fig. 1— The correlation energy as a function of the parameter 7, 
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Fig. 2 — The correlation energy per unit of x, for 7,=4 
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into account and this contributes +0.046 Ry per electron to the 

correlation energy. At low densities, the neglect of exchange in our 

results provides an excellent approximation (11) to-the ground state 
energy of Wentzel’s hamiltonian. 

In fig. 2 we plot, for r,= 4, the partial contribution to E, 

from each x, per unit of x, i. e., we plot the integrand of eq. (3.14). 

We also plot the partial contributions to the integrand of eq. (3.14) 

from each S$. Comparision of our results with the results of Hubbard 

shows good agreement for x not very large. The curve labelled «without 

exchange» has been obtained by neglecting exchange terms, i. e., 

by setting Vy, = Yo, = Us, = 0 in our expressions. Exchange terms 

tend to reduce the absolute value of the correlation energy 

at low x. At high x the absolute value of the correlation energy is 

increased by the exchange terms, but then the anharmonic terms 

of the hamiltonian are probably important. 

Finally we wish to emphasize that the present simplified calcula- 

tion suggests a simple explanation for the discrepancy between eq. 

(1.9) arising from conventional RPA, and eq. (1.10), arising from partial 
summation of perturbation theory diagrams, namely, that the dis- 

crepancy is due to the violation of the RPA assumptions by 

noncollective RPA modes. 
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