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ABSTRACT -— The interactions of hadrons are described from the point 

of view of quarks. 

Weak, electromagnetic and strong coupling constants are evaluated with 

a relativistic quark model using the BETHE-SALPETER formalism. Uniquely 

defined S U (3) mass breaking factors are derived from the quark dynamics 

inside the mesons. 

A dualized approach to the classic quark model connecting the low and 

high energy predictions is proposed and a simple model for the four body 

amplitude satisfying duality and the additive quark model is applied in the 

determination of meson-baryon low energy parameters. Analogous calcula- 

tions are also shown for the hypothetical quark-meson process. 

Quark duality diagrams are used to constrain dual resonance amplitudes. 

One of these constraints takes the form of a superconvergent relation to be 

saturated in local mass regions. These relations are studied for various pro- 

cesses both in the forward and backward direction. 
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CHAPITRE 1 

Quarks and quark models 

Quarks were introduced in particle physics in 1964 by Gell- 

Mann (!) and Zweig (2) on the grounds of purely group theoretical 

arguments. With a basic SU(8) triplet one can generate the 

other SU(3) representations by direct products of the 3 (quark) 

and 8 (antiquark) representations. Baryons are generated from 

combinations 

3x< | 
wo
 

ee hE BT Be (I. 1) 

and mesons from the product 

8><3=1+48 (I. 2) 

More representations for baryons and mesons can be obtained 

by including extra 3><3 products. However the most striking 

quark model result is perhaps the spectacular dominance of the 

representations indicated in (I.1) and (I. 2) over all the other 

possible ones. 
The invention of quarks immediately raised the question of 

their existence. Much effort was invested in the search for quarks 

and contradictory claims— pro and against their existence — 

were recently made(3). The question of existence of quarks is 

still open and the answer has to be left to the experimentalists. 

Theoretically one can distinguish two lines of thought with 

which the quark model is approached: a «mathematical quarks» 

school, restraining quarks to the role of carriers of SU (3) quantum 
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numbers, and a «realistic quarks» school trying to give quarks 
the usual properties of physical particles. The difference between 
the two schools is easily seen making use of Lipkin’s image 
of the two planes in strong interaction physics, the (/, Y,B) 
plane of internal symmetries and Mandelstam’s (s,/,«) plane 
of space-time physics. The «mathematical quarks» school wants 
to leave quarks in the (4,8, Y) plane where they were born, 
while the «realistic quarks» school aims to bring them to the 
(s,¢,«) plane. In this thesis we take the realistic quarks point 
of view. 

An interesting and not unrelated question is the problem of 

hierarchy: what is the place of quarks in the hierarchy of ele- 
mentary particles? Are quarks «aristocratic» particles or do we 

still have a «democratic» world in strong interactions? In the 
«mathematical quarks» school quarks are definitely aristocrats: 
they do not even materialize in the (s,/,u) plane as all the other 
particles. In the «realistic quarks» school if one simply regards 
quarks as the ultimate constitutive blocks of hadronic matter 

they certainly remain «aristocratic». However one is not neces- 
sarily led to that attitude: a quark can be, for instance, seen as 
«made up» of a meson and another quark, and, in general, one 
could think of an enlarged bootstrap scheme where quarks and 

hadrons would appear as a result of the presence of quark and 

hadronic forces. As far as strong interactions are concerned 
quarks can be treated in the same footing as the other particles 
and thus we favour a «democratic» solution a la Chew (4). 

The realistic quark model was introduced by Morpurgo (5) 
and extensively developed by Dalitz (6). The first problems the 
model had to discuss were related to the quark mass and the 

forces binding quarks inside hadrons. The suggested model of 

quarks with large mass and a flat bottomed potential, extracted 
from an intuitive picture of hadrons as compound particles, is 

still a basic starting point for realistic versions of quark model. 
It should be noticed that in the mathematical quarks approach 

it makes sense to talk about the mass of the quark to the extent 
that this quantity has an SU(3) meaning. An isospin doublet- 
-singlet quark mass difference, for instance, can be introduced to 

generate SU(3) mass formulae. A definition of an absolute quark 
mass is of course outside the scope of SU(3). In the realistic 

approach is frequently defined with an effective quark mass M/* 

(bound quark mass) and a free quark mass M. It is the latter 
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which corresponds to the usual definition of mass for physical 

particles and thus is the one we shall use. The relation between 

the two concepts of mass was discussed by Lipkin and Tavkhe- 

lidze (7) who showed that they might be made compatible for 
certain types of potentials if one thinks of the effective mass /* 
as a quantity including M and the effect of the potential well, i.e. 

M*=M—V (I. 3) 

The effective mass concept is related to the interpretation 

of quarks as quasi particles in analogy with phonons, i. e., they 

only exist while constituents of hadrons (8). Such models being 

still realistic avoid the difficulty of quarks not having been 

unmistakably found. For most of the purposes, because of (I. 3), 

the effective mass and the free mass approaches, are equivalent. 
There are however interesting differences in the two treatments. 

One occurs with electromagnetic interactions. In the quasiparticle 

treatment the quarks are considered as Dirac particles (zero 
anomalous magnetic moment). In the free quark treatment the 
magnetic moment must be dominantly anomalous. If quarks 

happen to exist this is in fact a prediction of this class of models. 

Another problem where the two treatments differ is in the com- 

parison of high energy additivity predictions. Accepting that 

reactions should be compared at the same quark center of mass 

energy, when comparing cross-sections for the reactions dB>AB 

and AB’—AB' one should take values of laboratory momenta 
Pg and Pe such that, 

Pp /Pp=Zp/Zp (I. 4) 

in the effective mass (and momentum) approach where Z;(Zz’) 

is the number of quarks in B(B’)(°), and 

Pp f/Pp=mp/mpB (1,5) 

in the free quark mass treatment where mg(mg-) is the mass of 

particle AB(B’)(!°), Prescription (I. 4) holds in meson-baryon scat- 

tering (fn—-px compared to pX-+/XK) but seems to be violated 

when comparing meson baryon to baryon baryon scattering 
(pu —-pr compared to pf > ff). The validity of either (I. 4) 
or (I. 5) or the failure of both will possibly in future be tested 
more easily in inclusive processes. If in the reaction 4+5-C+X 
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(X being «anything») the collision of A with B is effectively a 
collision of the quarks of A with the quarks of B the production 

cross-section of C must show forward-backward symmetry when 
plotted against the longitudinal momentum of C in the quark 

center of mass frame. The existing data is at relatively low 

energy and one should wait for much higher energy data. Howe- 

ver some experiments favour already the existence of such frame 

and prescription (I. 4)(!1). If these results are confirmed and either 

(I. 4) or (I. 5) is proven to be correct that would become a remar- 
kable success of the realistic quark model. 

The nature of the potential {responsible for the binding of 
quarks is a problem for which no answer was found. In the 

bootstrap perspective, the binding forces should have an origin 

in the usual particles rather than in some special mechanism. 

Phenomenological potentials have been used in nonrelativistic (!2) 

(Schrédinger) and relativistic (!5) (Bethe-Salpeter) dynamical 

equations, the most successful ones being of harmonic oscillator 

type. The various resonances of a given trajectory are described 

in terms of orbital quark excitations. This simple and intuitively 

appealing models are rather powerful particulariy in the classi- 

fication of baryonic resonances (!4). 
It should be remarked that a priori the dynamics of three 

quarks in baryons could well be completely different from the 
dynamics of the two quarks inside mesons. In principle there is 

no reason to expect similar orbital excitations and trajectories 

with approximate universal slope, as seems to be the case. Thus 

it is of great interest to consider models for the structure of 
hadrons, in which the constraint of universality of the Regge 

trajectories is imposed from the beginning. Such models were 

inspired by duality and the Veneziano model (!5). Jn one of them, 

Susskind’s model (!%), the hadronic matter is described as a con- 

tinuum (a string, a rubber band) and instead of quark orbital 

excitations we have now vibrations of this continuum. As the 

continuum is the same for all hadrons the spectrum of resonances 

is also universal (same slope of trajectories and same daughter 

structure). The quarks are not the fundamental dynamical objects 
but are simply relevant singularities embedded in the continuum, 
playing the role of boundary conditions, A quark could be in 

this model represented in the same was as any other particle, a 

continuum with just one singularity, having the same type of 

excitations (quark trajectory). These crude ideas applied to meson- 
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-meson and meson-barion scattering led in an elegant way to the 

Veneziano formula. Conceptually these models are rather atrac- 
tive but attempts (!7) to describe details of the resonance spectrum, 

namely baryon resonances, failed to recover the good results of 
the more conventional SU(6) quark model with orbital exci- 

tations. 
Applied to hadron interactions the usual quark model (!8) 

gives two kinds of predictions. At low energy it predicts coupling 

constants and widths of resonances. At high energy it predicts 

relations between cross-sections. Normally these predictions 
appear as if they were independent. However, having in mind 
the ideas of duality, it is natural to think of models giving simul- 

taneously results in both low and high energy regions and being 
able to relate them. No satisfactory models of this type exist 
yet. In this thesis we use a relativistic (Bethe-Salpeter) approach 
to quark model to describe two body decays and coupling cons- 

tants (Chapter II and Refs. [19] and [20]). This approach is our 

main tool in the low energy region. At high energy we rely on 

the usual additivity results. We then write simple models for 

the amplitudes containing these two pieces of information supplied 

by the quark model and show that such models satisfy duality 

(Chapter III and Ref. [21]). Dual resonance models (?) are the 

natural generalization of these attempts, but the existing dual 

relativistic models (*.24) are not unfortunately of much practical 

use. In this thesis we limit ourselves on deriving from the quark 

underlying structure constraints to the scattering amplitude to 

be satisfied in dual resonance models (Chapter IV and Ref. [25]). 
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CHAPTER II 

The Bethe-Salpeter approach to relativistic 

quark models 

1. Introduction. 

The non-relativistic quark model has been a very successful 
model in predicting decay widths and coupling constants in hadron 

interactions (26 27, 28), However, when decays involving quark- 

-antiquark annihilation are considered the model runs into trouble 

requiring the inclusion of SU(3) non-invariant space wave func- 

tions. 
Discussing the problem of the structure of the meson wave 

functions from a relativistic point of view Llewellyn Smith (29) 

found that the wave functions that give good predictions in 

annihilation processes and preserve SU (3) are not the ones that 

correspond to the weak binding limit of the non-relativistic 
quark model. Thus the necessity of a relativistic treatment of 
quark model and of the use of wave functions with a relativistic 

structure. 

The fact that one uses wave functions with a relativistic 

structure does not mean that the quarks have relativistic internal 
motion, In all calculations we always have the freedom of fixing 
the average values of the internal momenta. Regarding the rea- 

listic quark model the conclusion from our work is that its basic 

idea that quarks move with small space momenta within hadrons 

must be kept. This requires a deep flat bottomed potential with 

a long range force and massive quarks (5:6) (M25GeV). 

In this chapter we discuss a Bethe-Salpeter (5°) type of 
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approach to quark model. We make use of the Bethe-Salpeter 
formalism in two ways: 

(<) Mesons and baryons (orbital Z = 0 states) are considered 

as bound state poles in the Bethe-Salpeter QO (antiquark- 
-quark) and QQO (3 quark) amplitudes. Whenever P?, P being 

the momentum in the QQ or OOO channel, is close to an on 

mass shell value the Bethe-Salpeter propagator is saturated by 
bound state contributions (5!), This leads to Vector Meson Domi- 

nance and pole dominance of the divergence of the weak axial 
vector current at quark level (9). 

(7) Interactions of hadrons are supposed to take place via 

basic quark interactions. The non relativistic quark model picture 

of one quark interacting in the presence of the others (spectators) 

is substituted by a quark triangle graph (82) related to the Bethe- 

-Salpeter normalization equation (5). 

Consistency between (7) and (i) is demanded as a criterion 

to select convenient quark-quark-vector meson (QOV) and 

quark-quark-pseudoscalar meson (QQ/P) vertex functions. Such 
consistency leads to Llewellyn Smith’s preferred relativistic 
model (29) (Model I). 

The wave functions for mesons used here were suggested from 

the solutions of the OQ Bethe-Salpeter equation with a separable 
potential. We assume that their form is more general than the 

separable potential itself. Thus we do not work strictly in the 
separable potential model, this simple model being occasionally 

used only for orders of magnitude estimates. 
In the QOP and QOV vertex functions we include deriva- 

tive and non derivative couplings. The referred consistency 

between (z) and (2) determines effective SU(3) mass breaking 

factors in the various QOQP and QQOV coupling constants. 

Because of (#) these mass breaking factors will affect hadron 

coupling constants to pseudoscalar and vector mesons. In general 
our results for coupling constants improve the SU (3) symmetry 

limit and the non relativistic quark model. 

In Section 2 we briefly describe the Llewellyn Smith Bethe- 
-Salpeter formalism applied to quarks. In Section 3, we discuss 
possible models and use the criterion of consistency between 
(7) and (2) to select the correct one. In Section 4 three particle 
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coupling constants, including baryon couplings, are evaluated in 

our formalism. We end, Section 5, with a short discussion on the 

existing relativistic quark model approaches to the four legged 

processes as an introduction to chapter III. 

2. The Bethe-Salpeter formalism and Llewellyn Smith Models. 

To describe quark-antiquark processes we need the basic 

ingredients of the Bethe-Salpeter formalism for fermion-antifer- 
mion scattering. We are not interested in the full two-body 
propagator (given by the inhomogeneous equation) but only in 

the pole terms caused by the presence of bound state mesons 

(given by the homogeneous equation). In the notation we fellow 

Ref. [29]. 

If $, (4%) and Ye (x9) are the quark and antiquark Heisenberg 

field operators the meson wave function in coordinate space is 

defined by 

hag (Xx) = <0| Th (1) ¥3 %9))| B > (IL 1) 

where X—(x,-+4%)/2 is the four dimension center of mass 

vector and +—42,— 4%» is the relative distance between particles 

1 and 2. In momentum space we have 

  a &¢P.2 £ Pe RC d*x ap(Pigh— fe? “EPL (Kx) 
(2 =)8 

where now / is the quark-antiquark overall momentum and ¢ 
the relative momentum. The conjugate wave function is defined 
by imposing the Feynman boundary conditions. In the complex 
qo plane “(P,q¢) shows structure along the real axis, a left hand 

(II. 2) 

ee PO ala hear 
cut from —Vg2 + M24 a and a right hand one from Vg + V2 

P . = 
——.xX(P,qg) and the conjugate wave function X(P,q) are 

defined as limits ‘of an analytic function evaluated respectively 
above the right hand cut and below the left hand one. They are 
related by: 

X(P,g)= Xt (P,q)7. (II. 3) 
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For convenience we shall later use the vertex function 

I'(P,q) related to %(P,q) by: 

TeP)= (et SM) xP, 9( ~F-m). (II. 4) 

For fermion-fermion scattering % has 16 components and trans- 

forms as the outer product of a spinor and a conjugate spinor. We 

write it in a matrix form: four 4><4 matrices corresponding to 

the positive component-positive component (++) term in the 

product of spinors, the (+—), (—+) and the (——) terms. In 

the rest frame of the bound state meson one thus has: 

+-— yt+ 
Home, in=(e % ) (IL. 4) 

ke 

In the limit of free quark and antiquark the following relations 
between the components of % hold: 

be yt 2 yt + * a yaar (IL. 5) 

a cae (I. 6) 
M2 

When the relative motion is negligible, e. g., 

g=0 (II. 7) 

from (II. 5) and (II. 6) only y++ is important and in particular 

yO <<yhr (II. 8) 

Equation (II. 7) is rather natural in the framework of quark model 
and has a strong intuitive appeal. However when combined with 

(II. 6) leads to (II. 8) and this last relation is in the origin of the 

troubles in annihilation processes. If one accepts the weak binding 

limit model, Equations (II. 5) and (II. 6), the Weisskopf-Van Royen 

paradox (°8) and space wave functions with large SU (3) breaking 

cannot be avoided, unless one abandons the attractive limit 

g?~0. Thus the real paradox of the non relativistic model of 

having to give up the non relativistic approximation to the 
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internal quark motion to save its contradictions. Llewellyn 
Smith’s analysis (2°) showed clearly that the g?=0 approximation 

can be kept (it is in fact basic to derive SU(6)) because it only 

implies Equation (II. 8) and SU (8) breaking of the wave functions 

if Equation (lI. 6) is valid. Certainly the weak binding limit is 

not a sensible approximation in quark model and Equation (II. 6) 
is not reliable. 

Without making a priori approximations in X(P,q) one can 
study its properties under symmetry operations and derive the 

general structure of the wave functions. This was done by 

Llewellyn Smith (29) and we only give here, as an example, the 

structure of the wave function for a pseudoscalar meson: 

X= (A+9-PB¢+CP4+ D@¢P—P#) (II. 9) 

where 4, B, C and D are even functions of (¢-/). 

To extend the analysis of possible models for the wave 
functions we consider the homogeneous Bethe-Salpeter equation: 

(r- = —m) “(P9) (4+ 5 —m) (II. 10) 

dk 
(2x) 
  =— [PR D4P® 

where V is the potential operator. If %(P,q) is a solution of 
(II. 10) it satisfies a normalization equation: 

    

  

dg ~ a P i P 
T n)8 ae x ——M z rf @n) [e ¥X(P | (7 ; w)| (P.n(a4 ) 

7 aan a rid Ln 8X(P, 9) (7-5 —¥) xP .0| 55, (9+ >—)] (II. 11) 

oV(P,q,2) + [erty KP, gh m2 Pp. 0 Pp 

In his discussion of the wave functions Llewellyn Smith 
makes two important assumptions: 

1) The potential 7 is SU(8) invariant, e. g., it is weakly 

dependent on the meson masses. This assumption allows one 

via the Bethe-Salpeter normalization equation to relate wave 
functions for different mesons. 
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2) A smooth extrapolation in the meson masses is valid. 

This means that in taking the limit (#,/M)—-0, natural ina 

world of massive quarks, the physics described by (II. 10) is not 

drastically changed. 
With these two assumptions and using the space reflection 

symmetry properties of A, B, C and D (Equation (II. 9)) in 

(II. 11) Llewellin Smith formulates his Models, The characte- 

ristics of the Models are shown in Table II. 1. 

TABLE. II. 1 

  

Model Characteristics 

  

yrax 

(y** —7-~)/mp= const. 

  

  

ae) a 
II 

ytt+ — 4-7 = const. 

ytt ss yoo 

Ill 
yt V/mp = const.       
  

Model I is the one favoured by Llewellin Smith. It has the follo- 

wing interesting properties: 

1) The wave functions are, up to corrections of order 

(M;/M)?, SU(3) invariant. 

2) Making the approximation (g/M)?<<1 one obtains appro- 

ximate SU(6) as in the non relativistic model. 

3) As the dominant component of the wave function is 

meson mass independent it does not change drastically in the 

soft pion limit Py, +0 and thus this limit can be-safely taken. 

4) It requires in the limit (#,/M)- 0 the validity of the. 

Goldstein equation (4) as an eigenvalue equation and this, on 

the other hand implies a potential less singular at the origin 

than the one particle exchange. This is a constraint found in all 

quark model calculations, non relativistic (5°) and relativistic 

ones (58), 
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5) Applied to the evaluation of decays of mesons it provides 
the relations 

1 . cos?@ , sin? 
  2. p-2. fD 

fo ii, = : : II. 12 te ie Sa m2 3 m2 3 m ( ) 

for the electromagnetic annihilation of vector mesons and 

F= Fr (IT. 13)) 

for the weak two body decays of pseudoscalar mesons. Both 
predictions are in fair agreement with experiment. Models II and 
III, the last one corresponds to the weak binding limit, give bad 
predictions. This point will be further discussed later. 

In the next section we will study simple models embodying 

the properties of Llewellyn Smith general Models I, II and III. 

The description of the mesons as bound states in the OO 

channel is not equivalent to saying that the mesons are comple- 
tely determined in teir behaviour by their quark content, If 

however we are prepared to accept this we can largely extend 

the field of application of the Bethe-Salpeter approach. The idea 

then becomes to reduce all hadronic interactions to quark 

interactions. In general we will thus suppose that the interactions 
of hadrons take place through the quark currents and that the 

interactions of quarks are mediated by hadron fields. 
In particular it was shown(3!) that in the Bethe-Salpeter 

formalism applied to quarks vector meson dominance and the 

Goldberger-Treiman relation appear as a result of the saturation 

of the quark-antiquark propagator by meson bound state contri- 

butions. These are expected to dominate when the meson is near 

its mass shell. Thus from the point of view ot quarks the 
electromagnetic decay of vector mesons (or the weak axial vector 

two body pseudoscalar meson decay) will be described by the 
graph of Fig. 1a (2) Neglecting three-body interaction the 

three-meson vextex will be predominantly given by a triangle 
(renormalized) graph (Fig. 1b), which may be justifiably evaluated 

as a Feynman integral (52), But the four legged process of Fig. 1c 

cannot be treated as a Feynman graph because there will be 
large contributions from poles in some channels. Only some 

kind of duality interpretation is adequate. Baryon interactions 

will similarly be decomposed into their quark constituents. 
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Fig. 1 

3. Models for QOV and OOP vertex functions. 

In this Section we introduce quark-quark-pseudoscalar meson 

(OOP) and quark-quark-vector meson (OOV) vertex functions 

which are simple realizations of Llewellyn Smith’s Models I, I 

and III. They have the structure of solutions of the OO homo- 

genous Bethe-Salpeter equation with a separable potential (*9) 

and this simple model is occasionally used for orders of magni- 

tude estimates. Both the OOP and QOV vertices include deri- 

vative and non-derivative couplings, pseudovector and pseudosca- 

lar couplings for the OOP interaction and Dirac and Pauli-like 

couplings for QOV. We write the vertex functions as: 

    

OOP: 

T'p(P, p) = W(P, p) PF | ( me La ( Pn een (II. 14) 
2M 2M) 2M 

QOV: 

      Tr (P,p)=W(P, pe Fl ( ay Vt R (Ti Jere a (II. 15) 
2M 2M V m 
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. ; -P 
where mp(my) is the meson mass and P its moments; M, pt 

are the quark mass and momenta; G, AR, F and A’ are Model 

dependent constants and s, v, e and m are parameters which 

characterize the Models; ¢% is the vector meson polarization, 

P.e =0 when P?—m?, and OF eg = ag — Ia 7q/ M3 W (P,p) 

is a form factor required for the convergence of some integrals 
and satisfies the quark on mass shell condition: 

W(P,p)=1 when (6+ 5) =(@-G) =™. 

The quantities G and R (¥ and A’) can in principle be deter- 
mined by solving the Bethe-Salpeter and normalization equa- 

tions. Table II. 2 shows in the different Models the values of the 
parmeters s, v, e and m. 

  

  

  

  

  

  

TABLE II.2 

Vertex Function Parameters 

Model OOP QQV 

s v e m 

I 0 0 1 0 

II 1 —l 0 1 

ui +) --] a | 4             
  

We now compute for the various models (2), the neutral 

vector meson electromagnetic coupling constants /,,, using the 

graph of (Fig. la), and similarly the pseudoscalar meson anni- 

hilation parameter /p. The result, easily obtained with the 
vertex functions (II. 14) and (II. 15), can be written in the form: 

fz Gab 
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and 

Pein }2 Me, / al | I! (II. 17) 

where g, is the ratio of axial to. vector coupling for quarks; 

e; is the charge of quark O; (¢(=£,%,A) in units of elec- 
tron charge; 

g} is the Clebsh-Gordan coefficient giving the 0,0; con- 

tribution to the vector meson V; 

k,Z are numbers depending on the chosen Model; 

and /,/' are the loop integrals which in the approximation 

Se ae are independent of the meson masses. The quark 

axial vector coupling renormalization constant and quark and 

nucleon Cabibbo angles have been absorbed in /’. The loop inte- 
grals / and J/’ have not necessarily the same values for the 
various Models. 

In Table II.3 are shown the parameters & and 7 in the 

different cases as well as the mass dependence of /, and /,. 

The experimental ratios of /,’s or F,’s for different vector or 

pseudoscalar mesons strongly favour Model I (9). 

  

  

  

  

  

  

TABLE II.3 

Annihilations 

Model Pseudoscalar Mesons Vector Mesons 

Parameter mp dependence Parameter my dependence 

7 of Fp k of fy 

I 0 const. a My 

Il a! 1/mp 2 mi, 

III + 1 mi? 3/2 mi?               
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Let us now take the electromagnetic interaction of quarks 

in the limit 2-0 and consider first the Dirac coupling. In 

that limit this coupling gives the quark electric charge. As 

P2—0 is not far from the vector meson poles it is reasonable 

to assume that the quark electromagnetic current is dominated 

by vector mesons. Graphically and making use of Fig. la we 
have Fig. 2. The corresponding equations are, from (II. 15) and 

(II; 16) < 

SelanF Gal 7 (II. 18-a) 
V 

  

  = (> gl ei) ( aa ee (II. 18-b) 

To avoid contradictions between the left and the right hand sides 

IR 

  

Fig. 2 

of (II. 18-b) in the sense that no dependence on vector meson 

masses should occur in the right hand side we require 

e=k (II. 19) 

and this constraint is only satisfied by Model I. To satisfy 

Equation (Il. 18-b) one still needs to ensure 

Filmi (II. 20) 

but this is only a constraint on the form factor for the QOV 

vertex. For Model I the Dirac coupling is then, in the limit 

P20, consistent with a vector meson dominance description 

of the quark electromagnetic interaction. 
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We treat in a similar way and in the same limit the diver- 
gence of the weak axial vector interaction of quarks (Fig. 3) with 
the resulting equations: 

  

  

2Mg4=V280F (II. 21-a) 

mp —l = 4 

=m) (S47) V2e_1! (II. 21-b) 

where 

if mp \” mp s-v 

=—_ G ( —— R+1 Il. 22 
fo V9 ea (S37) +1) ne 

Q ut Q 3 Qe 

Q v Q a v 

a b c 

Fig. 3 

is the overall OQ coupling constant. If we assume negligible 

mass dependence of the last factor in (II. 22), which is strictly 

true in Model I and is justified in the other Models if A is not 
too large then the consistency of (II. 21-b) requires: 

v=l 

a condition that is satisfied only in Model I. The additional cons- 
traint is: 

V2 ¢,l'=1. (IL. 24) 

Equation (II. 21-a) contains nothing but a Goldberger-Treiman 

relation for quarks. 
It is remarkable that only Model I satisfies vector meson 

dominance and PCAC for quarks (37). It is also the only Model 

that predicts a KSFR type relation (58): 

f,Fn=om (Il. 25) 
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where in this model, from (II. 18-a), (If. 21-a), (II. 23) and (II. 24) 

c=V2g,l'[l=g,F lgo- 

We shall use the experimental determination of ¢ to relate ¢, 

and go(*). From now on we restrict ourselves to Model I 

(s=v=0; e=1,m=0; /=0,k=1) and the vertex functions 

  To(P,p)=W(P, pp G[R— | (II. 26) 
2M 

    TP, p) = WP, p) tF| ( = x HERP ns Pp’ = aa (II. 27) 

Applying vector meson dominance to the Pauli coupling, one 

obtains 

es ne | 
my fy 

  Segl Ki= (II. 28) 

where K; gives the anomalous contribution to the magnetic 

moment of the quark in units of the quark mass. From relations 

(II. 28) and with a mixing angle @ close to the ideal mixing angle 

we have approximately: 

te sin 6 ( Mo y 

V3 mM, 

Kaye 1+ sin@ / mp, \? 

V3 ( m., ) 

3 Mo y 
— ~\ cos 8 

K 4 Ve (me K (I. 30) . = —_— +o 

a: ; 9 P° 
fa: sin § aa 

V3 ho 

For ideal mixing of octet and singlet SU(8) states (9 =44) and 

with m?=m, (IL 29) and (II. 80) give 

  

  Ko (IL. 29) 
    

and 

  

  

    

  
2 

Be wo Kp: Ki-(e ) Ey (IL. 31) 
me 
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The first relation is the usual non-relativistic quark model assum- 

ption, the second differs by the factor (/mz)?. 

As we mentioned before G and R (F and AR’) can be 

determined by solving the Bethe-Salpeter and normalization 
equations but to obtain such. a solution a knowledge of the 

interacting QO potential and form factor W(P,p) is required. 

As we do not know these we use general arguments to relate 

G to F and RF to FR’. 
Llewellyn Smith showed that in the case of a spin indepen- 

dent potential the pseudoscalar and vector meson relativistic wave 

functions for vanishing Gr ) and Gra are related by SU (6).   

This implies, in our model, 

RG=RAF (II. 32) 

a result which we take as more fundamental than the form of 

the potential. On the other hand the normalization equation 

(Il. 11) written in the rest frame of the meson becomes 

  

ak = 1 4 
—— | [(P,2) 7 : 

Tr (2 x4 | 712 Men? 
2 2 

z z 

  

-T'(P,2) —TI(P,&) r(P,&- 
eit poem 

2 2 

eee = IL 3 #+>—M #+>—M aa 

  

where I stands for lp or I';. The potential contributions have 

been neglected as in Ref, [29]. Working out the trace calculations 

for P and V mesons under the assumption </2> <M? and 

comparing the results 7 

(a R2+6R)G2=(aR®°+5R)F (II. 34) 

where, in the approximation m?.,m?%,<<M?, a and & are inte- 

grals independent of the meson masses. Equations (II. 32) and 
(II. 34) then give 

Gal (II. 35) 
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and 

R=R' (II. 36) 

We note that the separable potential model in general predicts 

R to be of the order of RA’ but a precise relation, like (II. 36) is 

model dependent. It also gives, for a dominantly scalar interaction 

R <1 and positive. 
To find an estimate for R and A’ we use the non-relati- 

vistic quark model result of the equality of the magnetic moments 

of the quark and the proton, which we shall rederive later, 

K 9=2.19/2 mproton. Equation (II. 18-a) for the meson becomes: 

  poe - (II. 37) 

and combined with (II. 28) gives 

R= ( BT? me) a (IL. 88) 
2 Mproton 2M 2M 

  

where the last expression is an approximate numerical result. It 
is worth recalling that A’ does not depend on my but (II. 38) 
shows that A’ (and A) is small of order (m,/M). With (II. 38) 

the QOV coupling satisfies broken SU (6)w universality (*). 
Neglecting A, compared to 1, we derive from (II. 21-a), 

(II. 22), (II. 25), (IL. 35), (II. 36), and (II. 37) expressions for the 

basic quark level weak axial vector coupling constant g4 and 

pseudovector QQvzx coupling constant (go/M/) in terms of 
known quantities: 

c 
— II. 39) 24 V ( 

(=) - (4) (II. 40) 

Equation (II. 40) is an additivity quark model result. In (II. 39) 

with the experimental value of c, c=1, g, agrees with the 

and 

additivity result for axial weak decays for baryons, g,~0.70('8). 
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We have shown that Llewellyn Smith’s Model I contains 
PCAC and vector meson dominance consistently built in. The 
model is then dynamically consistent with a description of the 
meson interactions through the splitting of the mesons into the 
quarks and the rebuilding of the mesons from the quarks. 

4. Three body coupling constants. 

In Ref. [19] we developed the techniques for evaluating cou- 
pling constants involving three mesons in the Bethe-Salpeter 
formalism (triangle graph of Fig. 1-b). Llewellyn Smith Model I 
mass factors in the QOV vertex function act effectively as SU (3) 
mass breaking factors and we obtain the results (!9): 

trp Gy (IL. 41) 

Si vp 1/m?, (II. 42) 

The PPV and VVP coupling constants are related by: 

Fie i ») 

co] m2 

e : ~4 p 

z i 
— cos @+ ——sin 

We V8 | 

wich reproduces the SU(6)w result of Sakita and Wali (4) in 
the ideal mixing limit. In [19] and [20] the effect of these mass 
factors in the widths of resonances was shown in various exam- 
ples. Numerical results depend in many cases on the value taken 
for the »—g mixing angle and this makes the comparison of 
(Il. 41) and (II. 42) with the. SU(3) symmetric limit (no mass 
breaking factors) and experiment sometimes ambiguous. There 
are however at least two cases where prescriptions (II. 41) and 
(Il. 42) seem to be tetter than the SU(3) limit. One is in the 
K* Kx coupling constant (no »—g mixing involved). The other 
is in the sy,ny decays of the meson 9. If we take the ideal 
mixing angle (§~35°) the decay is forbidden in the planar graph 
approximation, if however we take @< 35° (experimentally 
§=33°(")) without the 1/m, mass factor of (II. 42) the calculated 
width may become too large, In table II. 4 we show for these two 
cases our predictions compared to the SU (3) limit and experiment. 

  (II. 43) 
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TABLE II.4 

Width (MeV) 
Decay 

Prediction SU (8) limit Experiment 

K*+Kn 49.6 36.2 50.6+0.7 

O- TY 0.0052 0.0070 < 0.012           
  

For further discussion of meson couplings and connections 

to vector meson dominance we refer to [19] and [20]. In this sec- 

tion we would like to concentrate mainly in the problem of 

baryon couplings to mesons. 
We have shown in Section 2 how Llewellyn Smith’s Model I 

combined with vector meson dominance and the Goldberger- 

Treiman relation at quark level is able to reproduce the non- 
relativistic quark model results relating quark to hadron coupling 

constants. These relations were originally derived using the idea 

of additivity of the interactions of quarks inside the baryons in 

a kind of shell model of the baryon. We show now how additi- 

vity works for the baryons in the present model and how we 

are able to recover basic additivity results of the non-relativistic 

quark model. 
If the baryon wave functions are solutions of the three quark 

channel homogeneous Bethe-Salpeter equation, they satisfy a 

Bethe-Salpeter normalization equation. This is shown in Fig. 4, 

d — 
oa oP, — oe =e (P+ Ma) = 2Py 

Fig, 4 

  

      

and the symbols are a generalization of the notation of Ref. [29]. 

In particular ce represents the three-body wave function, 

P r P 
P;—+,,—+4,,—+h x( 5 thy thy +45) 
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with P2= Mz and kj +%,+,—=0. Again we neglect the 

potential contributions to normalization. Note that Equation of 
Fig. 4 is a very formal one. We will disregard complications due 
to disconnected potential terms since we are neglecting the con- 

tribution of the potentials altogether in the normalization. 

The SL4SV couplings in the limit 9%, 0, neglecting as in 

Ref. [19] the QOV form factor, are described by the same inte- 

grals as the normalization equation, but with differant coupling 

constants. For the electric coupling of the nucleon we obtain the 

vector meson dominance result 

ul 
&oyn (0) = a he (II. 44) 

and, in the ideal mixing limit 

1 Savy (0) = 8 (S ft) ; (IL. 45) 

This is just a reflection of the fact that vector dominance 
connects baryonic to electric charge for both nucleons and quarks. 
We also obtain, using (II. 12), the relation for the saturation of 

the electromagnetic current by the e and wm poles, 

  8 pp 0) i 8p O) meal (II. 46) 
Ie te 

As the normalization condition is defined at zero momentum 

transfer, g=0, the only model independent statements one can 

make are on the electric couplings. Some further assumptions 
are required to evaluate the magnetic coupling, the weak axial 

vector decay coupling and the couplings to pseudoscalar mesons, 
whose matrix elements are linear in @. 

In a picture of the baryons interacting through the quarks 

we will suppose that when one quark interacts the other two, 

«spectators», behave in an average sense as a single diquark 

object. Inside the baryons the quarks move with small space 

momenta so one expects only S wave interactions. Thus to have 
the octet and decuplet baryons in a 56 representation of SU (6) 

the interacting quarks must couple to appropriate combinations 
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of SU(8) triplet (7) and sextet (S) diquarks, the triplet having 

spin-zero and the sextet spin 1(”). These average spectator 

diquarks can then be described by a scalar field for the triplet 

and a pseudovector field for the sextet. 

The introduction of these diquarks has the advantage of 

reducing the three-body problem to a two-body one. The cou- 

pling BQQO may then be written as a combination of the 

couplings BOT (scalar coupling) and BOS (pseudovector cou- 

pling). If Op, is a baryon level operator and Og the corres- 

ponding quark level one, the matrix element < B| O;|B> is 

evaluated by the graphical equation of Fig. 5, where Cc? are 

= <B10,18> 

  

  

  

  P+% 

Fig. 5 

products of SU(3) and SU (6) coefficients, and, apart from form 

factors which are supposed to be the same by SU (6), Vr’ and 

1} are given by: 

P71 and Tf =—— 97, 
Vo 

the factor 1//3 in I} being a spin weighting factor. The coeffi- 

cients C’ and C°® are easily determined by writing the SU (6) 
baryon wave function in a quark-diquark model (*). For the 

proton, for instance, we have 

1 ry 1 1 
Pea) = — S$, 0 yo —— 158 I. 4 tf /Esa+ [Tele dene aus 

where S,, S, are sextet and, 7; a triplet non-interacting 
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diquark, and %,f/ the interacting quark (*). Multiplying the 
square of these coefficients by 3, since each quark can interact, 
we get 

Cn=0, Co=1 (IL. 48) 

Tilo s 1 
ames =," 

For the neutron case ” and © are interchanged in (II. 47) and 
(IT. 48). 

We evaluate the graphs of Fig 5 in the Breit frame of the 
baryon, and neglect all contributions from P’ in the numerator 
and from the time-like component of the S diquark. In the case 
of the magnetic moment calculations the quark operator will be 

OF = es[Fy (9?) * — 1 Ki Fa (9?) o* gy] (II. 49) 

where /\(9¢?=0)=F9(g2=0)=1. The terms linear in g give 
the magnetic moment and both, 7/ and c/” contribute. The 
quark anomalous magnetic moment gives a contribution K;,o/"gq, 
that multiplies the normalization integral which we write sche- 
matically in the form 

Ig= [ HP, Pg =0)( ,4+ Med? P!=1 (II. 50) 

where form factors and denominators have been absorved in 

H(P,P',q) and (Po+ MM) comes from the interacting quark 
propagator numerators. The electric coupling 3/ gives two con- 

tributions, one coming from the g term in the quark propaga- 

  tors of the form oJ’ q” which contains as a factor the integral 

h= [H(P,P'9=0) (Pi + M)2 Md! P! (II. 51) 

(*) S;=[f 8], So = [PH +P], 1=— |far—% F]. 
oa 1 
V2 v2 
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and another form the g dependence of the nucleon spinors of 

the form   oJ’ gq” with a factor 
B 

= [H(P,P',q=0) (P'2— M?) dt P' (II. 52) 

From (II. 50), (11. 51), (II. 52) we have 

Going further into a non-relativistic situation we assume now 
that the average value of Pj? in J, equals that of M2, which 
means that the interacting quark acts effectively as if on its 
mass shell. This assumption is consistent with using in (II. 49) 
only the on mass shell couplings. Neglecting integrals in P’ and 
equating integrals in /{? to integrals in M2? we reproduce the 
conditions for a non-relativistic model with quarks essentially at 
rest and static interactions. Equation (II. 52) then gives 

lp=0 and A=i,=1. 

The equation of Fig. 5 gives then the non-relativistic SU(6)- 
-quark model results for the magnetic moments, in the form, 

y {-+¥ +5 CF ote (II. 54) 
AS) fa 

Y=0,S,A 

_ il : F where the coefficients al and 1 arise from the commutation 

of the T'% and 77 or ao”, We note that contributions from the 
integral /, or from timelike diquark components would have 
spoiled the additivity rule expressed by (II. 54). In particular for 
the proton we have, 

1 
sy re (II. 55) proton ~ 

The baryon axial vector weak couplings and pseudovector 
couplings to pseudoscalar mesons are similar to the magnetic 
couplings and the additivity results are derived in the same way. 
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In the present model the magnetic moment of the % and a 

quark differ from that of the # quark. We may write (II. 29) and 
(IL 30) in the form 

Ky = Kell t+ 6] (II. 56) 

and 

K,=Ko{1—a] (II. 57] 

where 6 and «@ are, taking the experimental values for the vector 

meson masses and 033°, «a=0.40 and 8=0.07. The factors 

a and @ provide corrections to the usual non-relativistic calcu- 

lations of magnetic moments. In the limit of quarks with only a 
anomalous magnetic moment the effect of the corrections « and 

6 is shown in Table ID. 5 (vproton = 2.793). 

  

  

  

  

  

  

  

TABLE II. 5 

Theoretical 

No Correction ; 
BARYON Ky = Ky = Kp Correction « and 8 EXPERIMENTAL 

+/ proton & +/Pproton | fe 

14+. 2/2 
n —93 |—186 | —2 Carery 9 —1.93] —1.913 

3 \1+1/98 

A 1/3 |—0.93 : ( coer bo ) 0.57 0.73 + 0.16 = — vu. — Bei oo oe == U,0 = Us F 
3 \1+1/98 = 

1—1/92 
ye 1 2.793 ==. 2.66 25 +105 

2 . 1+1/96 = 

1 2,793 Jara Li ? 2 —_ —-2,795 SS —1,. ? 
1+1/98                 

In all cases the corrections act in the right direction and 

strongly reduce the magnetic moments of the A and Q. 
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In this model other corrections could equally well have been 
considered, such as violations of SU (6) in the wave functions and 

contributions from J, integrals, and we have not a priori reason 

to neglect them compared to the a and @ corrections. 

5. Four body processes. 

We now briefly review some of the attempts to evaluate the 

graph of Fig. 1c (Page 20) and its generalisations to ” external 

particles. The principle of the evaluation is still the same as in 

graphs l.a and 1.b: the underlying structure is provided by 

quarks. However in addition to the vertex functions one needs 

to incorporate, in the case of meson processes, the 2” quark 

amplitudes. With no dynamics explicitly included, the graph of 

Fig. le is a duality diagram of Harari and Rosner (4). The best 

realization of the physics suggested by duality diagrams is the 

Veneziano model(!5) or, in general, a dual resonance model (*). 

Thus the most obvious way of evaluating the a particle ampli- 

tude 7;, is by writing it in the form 

T= Ty, «Des (II. 58) 

where Ip, describes the vertex structures, i. e., the spin, SU (3), 

mass breaking factors at the connections of the mesons to 

the 2x quarks, and &,, is a dual resonance model function 

that describes the 2m” quark interaction. Expressions in the form 
of Equation (II.58) were used by different authors in particular 
Bardakci and Halpern (25), Mandelstam (24) and Delbourgo and 
Rotelli(®). The amplitude 4, is the standard Veneziano 2x 

point function (**) for quarks. Projecting out the pole terms 
corresponding to the external lines the Ay, function can be 
reduced to the 4, function for mesons (”4). 

These models have the genera! properties of dual resonance 

models, namely they are crossing symmetric and duality cons- 
traints (Finite Energy Sum Rules) are exactly satisfied. They 

further have the advantage of allowing a rigorous inclusion of 
higher symmetries, in particular, SU(6). One could then hope 

to combine the successes of the Veneziano model with the 
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successes of the SU (6) quark model classification of resonances. 

Several attempts were made (*”) but there remains the problem 

of controlling the excessive degeneracy present in dual quark 

models. 

In fact one of the difficulties of this sort of models is that 
they produce parity doublets in the meson trajectories, the tra- 

jectories are doubled (pairs of particles with the same usual 

quantum numbers), and there is mass degeneracy for each orbital 

excitation (m,—=m,, for instance). The unwanted solutions can 
of course be simply neglected. The Carlitz and Kislinger (48) pres- 

cription to avoid parity doubing in fermion trajectories can be 

introduced using positive energy quark projection operators and 

fixed cuts in all channels. This*ideia was developed by Bardakci 

and Halpern (#%) and simplified later by Venturi (5). In this pro- 
cess of refining the model, apart from the introduction of boson 

cuts without a clear physical meaning, the simplicity of the one 
(leading) term approximation is lost; cancellations between lea- 

ding and non leading terms being required to achieve the elimi- 

nations of ghosts in the main trajectory. 

The other important drawback of the dual relativistic quark 

model is its difficulty in achieving good low energy behaviour. 

Theoretically this corresponds to saying that soft pion limit 
theorems are not satisfied. This point however can be imple- 

mented by using vertex terms I in (II. 58) with convenient mass 

breaking factors. The required mass factors are basically the 

ones of Llewelyn Smith Model I as they appear in the vertex 
functions (II. 26) and (Il. 27). In Refs. [23] and [24] the correct wave 
function for the pe meson is used and these models are able to 

reproduce the usual SU(6)w results for coupling constants. In 

Refs. [24] and [45] with a wave function for the « meson different 

from our Equation (II. 26), Teqqey7°-(1+P/m,) compared to 
Tz0q%72(1+P/m,), bad low energy behaviour is obtained. The 
improvement in the low energy behaviour with the relativistic 

quark model comes from the use of modified Veneziano ampli- 

tudes (free of parity doubling and with fixed cuts) and vertex 

structures as in Equation (II. 26) (5!) Extensions to this sort of 

work with applications to ~WV low energy scattering were 

recently made by Lebrun (®2) and Venturi (55). 

The main objection to these relativistic quark models lies 
probably in the fact that they are extremely complicated. Once 
one starts introducing extra terms to eliminate the weak points 
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in the original versions of the model (too much degeneracy and 

bad low energy behaviour) it is difficult to see how to make it 

of practical use. Most of the effort so far has been directed to 
redeviring results already known, and previously obtained in a 

much more straightforward manner (low energy parameters, for 

instance). 
In the next chapters we will try to combine the ideas of 

duality with more conventional versions of the quark model. 
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CHAPTER III 

Duality: Quark model at high and low energy 

1. Introduction. 

The aim of this chapter and the next is to understand better 

the quak graph for a reaction 4B-- AB. The limitations of a 

quark Feynman graph interpretation of these processes were 

explained in the previous chapter. The successes and complica- 

tions met in other attempts were also briefly discussed there. 

If we draw the graph of Fig. II 1c (page 20) without showing 

explicitly any quark interactions, i. e., with only quark lines and 

no vertex functions or bound states, it becomes obviously a planar 

quark duality diagram (8). Even without any dynamics in it, this 

diagram can be used as an important tool in studying strong 

interactions. It embodies the key idea of duality (4) that reso- 

nances in one dhannel are connected with exchange of particles 

in the crossed channel. Experimentally the existence or non-exis- 

tence of a planar duality diagram has an observable conse- 

quence (55). When we are allowed to draw a planar diagram the 

total cross section, o%,,, shows an appreciable energy dependence, 

bumps first, followed by a smooth falling curve as energy 

increases. When no quark diagram exists the cross-sections 

become roughly flat at very low energies (no bumps and no 

falling down curve). This connection between cross section be- 

haviour and duality diagrams is fully obeyed experimentally. 

At high energy, lab. energy ~30GeV in «N and KW pro- 

cesses, all cross sections tend to become constant (or slightly 

increasing with energy) regardless of the existence of a duality 
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diagram. Thus at sufficiently high energy, probably all cross 
sections become similar in their dependence on the energy. We 
can then distinguish two components in the cross sections and 
are thus in this way led to the Freund-Harari conjecture (6): the 
cross section o/,, can be described by two independent terms, one, 
given by the duality diagram AB—~ AB supplies the energy 
dependence, the other, Pomeranchuk-like term, gives the energy 
independent contribution. 

The relation between duality diagrams and energy depen- 
dence of cross sections allows a Regge pole model interpretation 
in terms of degeneracy of exchanged particle trajectories. Howe- 
ver the Regge pole model is too restrictive. A duality relation, 
valid for the imaginary part of the amplitudes, in that model 
imposes, as the phase is precisely defined, constraints in the real 
part of the amplitude. However the presence of strong cuts may 
spoil the Regge asymptotic phases and thus the relations invol- 
ving the real parts of amplitudes derived from duality for the 
imaginary parts may become invalid. Failures of exchange dege- 
neracy applied to differential cross sections in inelastic processes, 
for instance 

K-P+6e3S* and stPp+Ktst 

are well known (57), There are not such failures of the quark 
diagram tests of duality. For instance the cross section for (K* p) 
and (Ktn) are roughly similar and show no important energy 
dependence at least up to 60GeV, Im(Ktn — Kp) seems to be 
zero (°8) as expected from the non existence of a legal diagram. 
It would be interesting to check the prediction Im(K~ p+ St )=0 
because this is one of the reactions where Regge exchange dege- 
neracy fails. 

We will thus apply duality only to the imaginary part of 
the amplitude. The real part can in principle be determined as 
usual from dispersion relations. The quark model determines 
parameters required to describe the imaginary part of the ampli- 
tude, coupling constants at low energy and relations between 
cross sections at high energy. This information used in disper- 
sion relations gives us the real part of the amplitudes. 

We have seen in the last chapter how quark model in our 
relativistic version can be applied to determine coupling cons- 
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tants. We will discuss'in Section III.2 how quark model can 

be applied at high energy, basically using the idea of additi- 
vity (9,50,9), These low energy and high energy quark model 

calculations are apparently unconnected. However if duality 

works these calculations cannot be independent. This is what 

we show, first in a qualitative way, in Section III. 3, introducing 

the idea of additivity of quark-hadron duality diagrams. Quanti- 

tative predictions are given in Chapter IV. 
Using information only from quark model calculations we 

develop a crude model for the imaginary part of the scattering 

amplitude in a reaction 4+B8>+A+8. The model simply 
states that at low energy we have the # wave resonances corres- 

ponding to the LO orbital excitations of the SU(6) quark 

model and the remainder is a continuous high energy curve to 

which the additivity relations apply. Such a model, supplemen- 

ted with a factorization assumption in the high energy curve, is 

used to evaluate current algebra sum rules (Section III.3) and 

dispersion relations (Section III. 4). 

2. Additivity and duality. 

In the high energy region, i.e., region where the cross sec- 

tions become smooth functions of the energy, the additivity assum- 

ption as introduced in Refs. [59] and [60] states that for forward 

scattering the amplitude Zuz(s,¢=0) for AB scattering is 

simply given by the sum of all possible two body quark-quark 

and guark-antiquark contributions: 

Im Tan (s,t)= Im T:;(s,¢) (II. 1) 
a7 

where 7;; is the amplitude for the scattering of quark 7 from 
A by quark 7 from &. Relation (III. 1) corresponds to the 
impulse approximation and is expected to be valid only near 

#0, where multiple scattering can be neglected, 
To introduce in the high energy quark model formalism the 

Freund-Harari conjecture we write 

Tij= TP + TE845 (III. 2) 
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where 7? gives a flat contribution to the cross section and 7¥ 

gives the energy dependent part. By 7 we represent the antipar- 

ticle of quark 7. In first approximation we assume the validity 
of SU(3): T= 7", TE=T*. The energy independent part of 

the cross section for AS scattering is, from (III. 1) and (III. 2), 

proportional to the number of pairs of quark lines, 7,7 present 

in the process. This prescription gives immediately the famous 
ratios: 

lim [97 (pf)ic? (pr)io7(n7z)]=—9:6:4 (IIL. 3) 

The energy dependent part of the cross section exists only when 

there are quark-antiquark annihilations in the s channel. 

The superscripts P and £ in 7? and T7¥ are suggested 

from the language of Regge poles: P stands for Pomeranchuk 

and £ for Exchange of particles. In our discussion we leave out 

Pomeranchuk type of contributions. If, when computing the 

energy dependent term instead of counting quark-antiquark 

annihilations we rearrange the QQ pairs to form mesons and 

sum over these mesons our model with additivity becomes a 

particle exchange model. It is then not surprising that additivity 

with prescription (III. 2) can be made equivalent to an exchange 

model with Pomeran and particles being exchanged in ¢ chan- 

nel (61), If we take meson-baryon (4/8) scattering, an exchange 

model, say Regge Model, with Pomeran, vector and tensor mesons 

in ¢ channel, with SU(3) and pure F coupling applied at the 
vertices gives the same relations between cross sections as quark 
model additivity. For example, in «WV and AJ scattering the 
use of equation (Ill. 2) provides the following relations: 

Inf =Sfno (III. 4) 

wa, = Se (III. 5) 

[no =3 fe (III. 6) 

where fyr(r) represents the imaginary part of the (478) ampli- 
tude corresponding to ¢ channel exchanges with the quantum 

numbers of vector (tensor) meson V(7). Equations (Ill. 4) and 

(Ill. 5) are the usual relations for exchange degeneracy of oppo- 

site parity vector and tensor mesons. Equation (III. 6), a usual 
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quark model or SU(3) with pure / coupling relation, shows 
that exchange degeneracy does not occur for vector (or tensor) 

mesons of opposite G parity. 
So far we have not used the concept of non exotic states, 

i.e., states which from the point of view of SU (3) belong to the 

8><8 (Mesons) and 3><3><3 (Baryons) representations (Equa- 

tions (I.1) and (I. 2)). In connection with duality, in particular 

with the idea that exotics inthe s channel correspond to exchange 

degeneracy in ¢ channel, the above classification can be sucess- 
fully applied in scattering of mesons by other mesons or baryons. 

However for BB scattering the connection between s channel 

resonances and ¢ channel exchanges certainly needs to be rein- 

terpreted (62). At the same time one may wonder about the 

validity of the exchange part of Equation (IIl.2) in BB scatte- 

ring when simultaneous QO annihilations can take place (®:%), 
Because of these difficulties from now on we only consider scat- 
tering processes with at least one of the particles being a meson. 

Now we look at additivity from a slightly modified point of 
view. The mesons are seen as some elementary quanta of a field 
used to investigate the quark structure of hadrons. We thus 

apply additivity by counting basic (4/Q) amplitudes. From the 
m= N and KW additivity (exchange model) relations without 

Pomeron term we derive for the MQ amplitudes (Q=%,/,2) 

expressions like: 

3 (K- 2) = > arn + fe) += fr + fr ,) (IIL. 7) 

wig’ 4 3 
3(K = fut — Sue) + 5 (fue t was) (III. 8) 

ie 1 3 
8 (KN 8) = (Srp — fue) + > (fre — Savy) (III. 9) 

3(K~ ot) = 5 (in Foci _ (fwe+fva) (Ill. 10) 

3 (nt 9) = fy,—3 fe (Ill. 11) 

3(n %)=fvs, +3 frre (II. 12) 
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We notice that Equations (III. 7) to (III. 12) are written in a 
form that allows them to be interpreted in the sense of Finite 
Energy Sum Rules(®) (FESR), i.e. in both sides we have the 
same quantity but in the left hand side written as an s channel 
process and in the right hand side as a ¢ channel exchange. 

What we show next is that Equations (III. 7) to (Ill. 12) are 

duality consistent, resonances and particle exchanges being inter- 

related. To see that we remark first that once we treat basic 

quark interactions with mesons we are effectively considering 

the quark representation states as non exotic extending in this 

way the field of the allowed representations: OO, OOO and Q. 

From SU(3) the fictitious process MO-MO_ has the decom- 
position : 

8X8=—3+15+6 
and the only possible resonances must belong to the quark 

representation, i.e., must have one of the following sets of 
quantum members: 

[=1/2, Iz=+1/2, Y=1/)3, S=0 

I=0, Iz=0, Yeu—2/3, S=—t1. 

We can now analyse Equations (III. 7) to (III. 12) as FESR’s. 

The left hand sides of relations (III. 7) and (III. 12) allow s channel 
resonances, the right-hand sides show a non vanishing contribu- 

tion. The left hand sides of (III. 8) and (III. 9) are exotic: (KT 9) 

and (K*9) have S—-+1. The right hand sides show vanishing 

contributions from the exchange degeneracy relations (III. 4) and 

(III. 5). Note that the isospin equivalent processes at nucleon 

level, (K*p) and (K*n), are also exotic and exchange degene- 

racy also makes the right hand side of the corresponding sum 

rule vanish. The left hand sides of Equations (III. 10) and (III. 11) 

are exotic, (K~ ) has J=1 and (x*#) has /=38/2. The right 

hand sides because of exchange degeneracy and relation (III. 6) 

also vanish. At nucleon level, (K~) and (=*) processes, the 

s channel is not exotic (X resonances in one case and A reso- 
nances in the other), and the exchange contributions are also 

non-vanishinh. The extra exchange degeneracy that occurs at 

quark level because of the equality of the quark couplings to 
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isoscalar and isovector particles is reflected back in the absence 
of resonances in the /=1 and /=3/2 channel. 

These results can be visualized if one thinks in terms of 
(s,t) duality diagrams, the ones that refer to forward scattering 
and can thus be related to additivity. We are allowed to draw 

  

  4.) Pa 
pe Ng 

them only for the processes where s channel resonances and ¢ 

channel particle exchanges occur, (K~*%) and (x &), Equa- 
tions (III. 7) and (Ill. 12). These are shown in Figs. (1.a,b). 

Iffwe now come back to MA and MM scattering we imme- 

diately note that the MS (or MM) (s,?/) duality diagram can 

  

  

be obtained by summing MQ duality graphs in the presence 
of quark lines (Fig. 2). 

The important thing Fig. 2 is telling us is that additivity 

can be interpreted as additivity of OQ duality diagrams. Being 
primarily a concept valid at high energy additivity can thus be 

extended to the low energy region provided we find a convenient 

Portgal. Phys. — Vol. 1, fasc. 1-2, pp. 3-85, 1971 — Lisboa 45



  

Deus, J. Dias — On dynamics of elementary particles derived... 

F.E.S.R. that allows the comparison of high energy to low 
energy parameters. The problem of extracting quantitative pre- 
dictions from the suggestive Fig. 2 is discussed in chapter IV. 
We need first to develop a model to evaluate the imaginary part 
of MM and MB scattering amplitudes. At te same time a 
deeper understanding of dual resonance models is required before 
turning back to that problem. 

3. Current Algebra Sum Rules. 

We introduce now a model to evaluate the imaginary part 
of the amplitude 7%, in the forward direction. It simply states: 

(7) at low energy Im 7 is given by contributions from the 
SU (6) quark model Z=O states (first » wave reso- 
nances) 

(z) at high energy, i.e, above the first resonances, Im 7 
satisfies the quark model additivity relations. 

This is, of course, a very crude model but it has the advan- 
tage of incorporating the basic information given by quark model. 
The coupling constants required from (7) are evaluated using, 
for instance, the techniques developed in chapter II. The energy 
dependence of Im 7 at high energy is not determined in quark 
model (contrary to Regge model that predicts Im 7~ s*@-1l) and 
we will extrapolate, when required, high energy experimental 
fits. As the model is constructed only for the resonance-exchange 
part of the amplitude when using (zi) to evaluate, for example, 
dispersion integrals, we must subtract the Pomeron exchange term. 

We have already referred to the equivalence of using quark 
model additivity or an exchange model at high energy. When 
comparing two processes, NV to pV, say, it is then natural to 
introduce a third assumption in our model: 

(wi) at high energy the imaginary parts of the amplitudes 
for different processes are related by factorization. 

With our model for Im 7, using (4), (é2) and (7i7) we evaluate 
some Current Algebra Sum Rules, first for quark reactions and 
after for nucleon reactions. 
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To generate Current Algebra Sum Rules there exists a 
general procedure: (6°) sandwich the commutator of two operators 

(local or integrated operators) between two states, insert inter- 

mediate states and separate Born terms (i.e. one particle interme- 

diate state), from physical region contributions. In general the 

sum rules have the structure: 

(Isospin factor) = (Born) + (Continuum) 

and the (Continuum) is an integral containing the imaginary part 

of an amplitude. This term can also be considered as the disper- 
S—U 

Mu )=rsera 0. 

To start we write the Adler-Weisberger (® 8) sum rule for 

xO scattering in the standard form given above: 

  sion integral for the amplitude evaluated at » =( 

1= 92. + #2 G(0) (III. 13) 

with 

Go=+ i ee (II. 14) 
ie L vy 

"th 

where /,=0.85m, is the ~ annihilation parameter as given by 

the Goldberger-Treiman relation and [s_— 94] is the difference 

of the (x~/), (s+) total cross sections, The low energy contri- 

bution to the sum rule, contribution type (2), is explicitly shown 

in the Born term amplitude g?,. For the high energy contribu- 

tion, type (22), we use additivity, 

3(m—P)—o6(xzt Sf) = 6(n- fp) — a (nt pf) (UI. 15) 

and, to evaluate (Ill. 14), an experimental fit to =JV scattering (°°) 

(units of m,): 

[s_— 04] = 1.70107 (IIL. 16) 

For simplicity we do not consider possible Pomeranchuk theorem 

violating terms. In strongly convergent sum rules, as the Adler- 
-Weisberger relation, these terms are not important(?). From 

Equations (IIIf. 16), (II. 14) and (III. 13) we obtain 4g = 0.67 to 

be compared to the additivity value ¢,. ~0.707. We interpret 

Portgal, Phys. — Vol. 7, fase. 1-2, pp. 3-85, 1971 — Lisboa 47



DEus, J. Dias — On dynamics of elementary particles derived... 

these numbers as meaning that the model is not unreasonable 
and adjust G(Q) to reproduce the additivity result for g,,: 

1 1 - 
“= Fe (IH. 17) 

We consider next a sum rule for quark Compton scattering, 

the Cabibbo-Radicati sum rule(7!), Using again additivity —the 

photon has a QO structure in Quark-Model — we write the sum 
rule in the form: 

0=— Kj" (0) + KE (0)? + = G(0) (III. 18) 
# 

where K;’ and Kj) are the Dirac and Pauli electromagnetic 
form factors, 

RK!" (0) = “KE -o~1/m? and Ky’ (0)=1/m 

From (Il].17) and (Ill. 18) we derive the KSFR relation (58) ; 

ii¥e=™. (III. 19) 

Similarly for the neutral pion photoproduction sum rules of 
Fubini, Furlan, Rosseti (72) we have 

M 
Cie —2 i” +- aj (III. 20) 

2 i) 

o=-— 1 Key 49 (III. 21) 
2 So 

were A{” and A)” are CGLN (73) amplitudes. Writing dispersion 

relations for AS (0) and 4. (0) and considering again only the 

Regge type of contributions, the 4{*? amplitude will be domi- 

nated by » exchange and A\” by 0 exchange. Quark model 
additivity immediately gives for the ratio (III. 20) to (III. 21) 

Sf, i—=—8 (III. 22) 
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the usual SU(3) relation. Relating A{(0) to G(0) by factori- 
zation and assuming that the ratio of the residues of off mass 

shell particles is the same as when they are on the mass shell 
we derive (7), 

AY (0) = a7 m? g,,,K" G0). (III. 23) 
e 

Combining (III. 23), (II. 20), (III. 17) and (III. 19) we obtain a well 

known SU (6)w result (*): 

2 
Soon amare 

4d 

(IIL. 24) 

These SU (6) type of results, Equations (III. 24), (II. 22) and (III 19) 

come from simultaneous manipulations, through our model, of 

low energy and high energy quark model calculations. This 

overall SU (6) consistent picture can only be understood in terms 

of duality as will be shown in chapter IV. 

With our model, i.e., as specified in conditions (¢), (2) and 
(a7), we evaluate the same set of sum rules — Adler-Weisberger, 
Cabibbo-Radicati, Fubini et al. sum rules—for nucleon targets. 

The results are summarized in Table Ul. 1. 

TABLE III.1 

Current Algebra Sum Rules for nucleon target 

Evaluation using prescription (7), (#) and (#72) 

  

  

  

  

  

                
  

: R. H.S. oo 
wn (es | 

Sum Rule feo} i 4 : 
3 Born term A (1236) High Energy Total a ws 

e225 

Aster Wele- | 4 | - 4.50 —1.06 +05 0.94 (67, 68] 
berger 

Cabibbi- 2 2 7 fay 70 yy 2 Radicati 0 +-0.140/m5 — 0.819/m5 +0.5/m5 —0.179/m> | [71, 75] 

( ‘ Fubini Att) 0 | —1.85/(2my) | +1.55/(2m y) ~0 —0.30/(2m y) | [72, 76] 

et al. (0) 
Ay O | +0.06/(2m y) 0 —0.7/(Qmy) | —0.54/(2m y) 
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Except for the last sum rule the terms in the right hand side 

tend to compensate among themselves and reproduce the left 

hand side value. The agreement is particularly good for the 

Adler-Weisberger relation. In the photoproduction sum rule for 

isoscalar photons the high energy term is too large. This is not 

a surprise because in photoproduction we also have exchanges 

of unnatural parity particles (6 meson) and our model only 

takes into account natural parity exchanges. A break of the 

factorization assumption in photoproduction may also explain 

the bad agreement in this case. 

4. Low energy parameters. 

In this section we use our ansatz for the imaginary part of 

the amplitude to compare current algebra predictions and dis- 

persion relation calculations of low energy parameters. We first 

establish a bridge between dispersion relations and current 

algebra showing that combining the usual dispersion relations 

with an expansion of the amplitude in the variable » we simulate, 

working on mass shell, current algebra results: the Adler- 

Weisberger relation (* 8) and the Adler self-consistent condi- 

tion (7). 
Let us consider the helicity non flip amplitude at ¢=0 for 

«WV scattering (in general «7 scattering, 7 with spin 3) 

A'(v,t=0) = A(v,0) +B, 0) (IIL. 25) 

where A and B are the usual invariant amplitudes(7’), We 

assume that A’(v,0) can be expanded around »=0O in a power 

series in v. The scale is set up by the target mass my, i.e, 
the expansion is valid for v/my<<1. As we are interested in 
the amplitude at threshold, ()=m,) >(|¥p| = m2/2 my) the 

expansion cannot be valid for Born terms. Thus before expanding 
we separate out the Born term, &,, and apply the expansion 

in » only for the non pole part of the amplitude, 4’ 

A'(v,t)= A’ (v,t) +» Bev, 2) (III. 26) 

50 Poritgal. Phys. — Vol. 7, fase. 1-2, pp. 3-85, 1971 — Lisboa



  

  

Deus, J. Dias — On dynamics of elementary particles derived... 

with 

Av, )=Alv,)+vB,2). (II. 27) 

We expand now (III. 27): 

0A’ () 
v 

2 Jl (, ro Sa Al = Al 0 
A'(v,0) (O)+ ™ 2 02     Y4..., (II. 28) 

v=0 

  

  

It is convenient to treat separately the s,w crossing even, 4’, 

and crossing odd 4) amplitudes. For the 4’ amplitude 
we have: 

oy 2 
  AY yy = AM (0) + | 2+4O(4) (IIE 29) 

v=0 

and, in particular for »=m, 

4e (1 2 4 a) — AP (0) + m, BSP (ma) + 

>(+) 9 A+) 

sa bees -. 2 m, — (IIL. 30) 
oy 2 Q v2 
  

where a) is the s wave scattering length. 

For then A’~ amplitude we have: 

(=) AO) = po. 2 | y+ O(3) (IIL. 81) 
oy =i 

and 

  4 “(1 -L we 
N 

i" (-) 
Ja = BO (ms) Mr Gale ea ma (III. 32) 

v 
=0 

Now we use the dispersion relations for the A and B 
amplitudes to evaluate the right hand sides of (III. 30) and 
(III. 32). Following Hamilton and Woolcock (7) we make a sub- 

traction only for the 4A amplitude. One then has: 
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Hy — 4H 2 ray, Im AY) Re AP 0) = AM 0) + = i. a (III. 33) 

= oo (++) (yy 

Re BO pe (gy) ne (III. 84) Tw _ jf 2. y2 

oo (py 

ReAM Mas { ©) (II. 35) 
fd ain p/2 — 2 

(—) py 

ReBOW = 2 (? avy B22 (IIL. 36) -_ y2— 42 

and 

BS) () = (45) atin p— (III. 37) 
m2. w4—v 

BPW) 42 a8, (III. 38) 
m?> 4 

From Equations (III. 33) to (II. 36) one immediately obtains: 

  

  

  

    

1 eA 2 AD (yl oe ee ke (v') (III. 39) 

7+) 

Ed =! on I") (III. 40) 
OV |g | * me = 

(—) 

oa Bene: Im AO) (III. 41) 
ov ® in, 

a(-) 2 7° ay ay Re BO (0) = — [ Sim BO 0, (III. 42) 
m, v 

Neglecting at »2— m2, v2, in the denominators of the Born terms, 

and using Equations (III. 37) to (II. 42) in (III. 29) and (III. 31) we 

obtain: 
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2 mM;     4n (1 + ) a‘) = (47n) e+ (II. 43) 
MN Mr 

2 ae dy (—) 

+ Mn J. a AN (VV) dv 

An (1 4 =) a?) = AH (0) — (4) 2p (IIL. 44) 
mN m,, 

/ 

+m (im a yay. 
T y/5 

Equation (III. 43) is formally identical to the Adler-Weisberger 
relation (7.68) with Weinberg’s expression for the scattering 

lengths (8°), Equation (III. 44), we will see, leads to a on shell Adler 

condition (77), Equations (III. 43) and (III. 44) are first order appro- 

ximations to the dispersion relations for A’/~ and 4’ and 

the connection between these relations and current algebra 
results was already noticed in Ref. [&1]. 

We thus take the point of view that the current algebra 

approximation is equivalent to a on shell treatment with an 

expansion of the amplitudes around the point »~0, ¢~0. To see 

how good the approximation is we have plotted in Graph 3 

A! > against (v/mz) using the recent Nielsen’s tables (82) for 

amplitudes in the unphysical region. With our expansions in » 

we require a linear dependence on » for A’ [Equation (III. 31)], 

and a parabolic one for 4’ [Equation (III. 29)]. The straight line 

Al (vy) = — 0.66 v (III. 45) 

and the parabola 

AY 0) = 26.14142 (III. 46) 

fit reasonably well the tabulated points. 

To determine low energy parameters, s and f waves scat- 
tering lengths, we need to evaluate the amplitudes at threshold. 

For the s wave scattering lengths we have Equations (III. 43) and 
(III. 44) and for # waves the relation 

s Re [mn B! (mz, 0)] = (al_ —= i.) + 
2mn 4n 

  a! (IIL. 47)   Mr 

2 4m, 
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where / stands for isospin, a+ are the p wave scattering 
lengths, /=1, 7=/+1/2. For the calculations we use Equa- 

tions (III. 37) to (Ill. 42). The left hand sides (L.H.S.) and sub- 

traction constants were evaluated from the fits to Nielsen’s tables 
[Fig. 8 and similar curves to the B amplitudes]. The first / 

wave resonances, /V(938) — Born term — and A(1236) were expli- 

(+) 
A 

270 4 

  

      

  uy 7 + 1 r . 
(a) oz 64 as a8 ae ° 22 C4 OS og 10 

v > yp— 

AIA) (*) and A—)() in the unphysical region 

#=0, OC v<l (me=1) 

Fig, 3 

citly evaluated. For the high energy part of the (—) amplitude 

we used our ansatz with Equation (III. 17) and factorization, i.e., 

Im A’(v): Im B()):Im A(v) = 1:(1 + 2"): (— R”) (IIL. 48) 

In Table III. 2 we show the results of our calculations and, for 

comparison, the high energy contribution required to satisfy 

exactly the equations, i.e., to have L. H.S.=R.H.S. 

We note that for all the (+) amplitudes almost complete 

saturation occurs with the inclusion of the MV and A(1226). 
A philosophy of resonance saturation for the 4, B™ and 4’ 
amplitudes is then adequate and there is no need of knowing 

the high energy behaviour to estimate low energy parameters. 
In particular from the A’ amplitude we have approximately 

AD (0) Bes g? 

MN 

an on shell version of the Adler condition. 
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For the (—) amplitudes in all cases the high energy curve 
gives an important contribution. The quantities predicted by our 
ansatz agree well with the quantities required to satisfy exactly 

the equations. The agreement for the 4’ amplitude is not 
surprising because the corresponding equation is the Adler-Weis- 
berger relation which we have checked before. More interesting 
is the check of factorization for the imaginary part of the ampli- 
tudes (Equation (III. 48). Our model gives for the ratios of the 
high energy contributions, 

Ay BO; AP a 3 4,72 (— 8.7) 

in excellent agreement with the ratios obtained from the high 

energy contributions required to exactly satisfy Equations (III. 35), 
(III. 36) and (III. 43): 

= 1:4.69:(—3.7). 

It is now obvious that our simple ansatz can give correct 

predictions of s and # wave scattering lengths in «JV scattering 

[using Equations (III. 43), (Ill. 44) and (III. 47) and taking the 

various contributions from Table III. 2]. A more detailed discus- 

sion of the «JV case is contained in Ref. [21]. Using » wave 

resonance saturation for the (+) amplitudes and applying quark 

model additivity and factorization for the high energy part of 

the (—) amplitudes we can evaluate low energy parameters in 
other meson-baryon scattering processes. For the s wave scatte- 

ring length, having in mind the Adler condition, the values 

obtained are close to the Weinberg’s formula, as we will see in 

chapter IV. In Table III. 3 we show the predicted values for the 

p wave scattering length combination, (of —eia), /,—==1 in 

mWV,rX and r= scattering. The /;—0O scattering lengths are 

simply given in our model by the first wave resonance 
contributions. 

For completeness we include in Table Ill. 4 the set of low 
energy parameters, s and p wave scattering lengths and s 

wave effective ranges, for the hypothetical «Q scattering. They 
were obtained in Ref. [21] using dispersion relations. The high 

energy contributions were evaluated using additivity and expe- 
rimental fits to «WV scattering. 
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TABLE III. 3 

(a) _ at) p-wave scattering Jengths 

  

  

  

  

        
  

Process Prediction Experiment 

aN + 0.061 + 0.057 

n> + 0.000 4 

we — 0.024 ? 

TABLE III. 4 

Low Energy Parameters in ~Q scattering (*) 

(m,=1, £2 = 0.029) 

  

  

  

  

  

    
  

        
  

Isospin Combination 

(+) (=) 

Scatt. Lengths ~0 +4 f2 
& 

< 

wave 

Effective Range + 2.24 £2 +3 

2 
| 7+1/2 +746 —0.79 FZ 
| p Scatt. : 

| wave Lengths 4 
| i~1/2 ovgile — 0.38 £2 

(*) fo is the QQ pseudovector coupling constant: fé == su es 
4x \2Me 
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Before ending this chapter let us comment on the current 
algebra techniques to predict low energy parameters (®0: §5, 84), In 

the PCAC treatment one expresses the off mass shell amplitude 
as a sum of two terms, one, direct term, corresponds to the 

scattering of axial vector currents by an on mass shell target, 

the other is the current algebra commutator term. Discussing 

the various ways in which this scheme can be applied, in parti- 

cular the difficulties related to mass extrapolations, Huang and 

Urani (85) arrived to the conclusion that the scheme is in fact 

equivalent to a full on the mass shell treatment with s channel 

resonances and a 9 exchange term. 
Comparing the current algebra predictions on low energy 

parameters in «J scattering to the rigorous calculations based 
on dispersion relations (78%) one observes that they roughly 
agree when either one or other of the above terms is dominant 

but discrepancies occur when both give important contributions. 

For instance the commutator alone (or a pe exchange term 

alone) (87) gives a good prediction in the determination of the 

«universal» a? scattering length, 

as ~ pee eae (III. 49) 
4x \ Mo 

Note that Equation (III. 43) with our ansatz also gives this value. 

Working for simplicity in the ~Q case, the Born term alone 
gives 

td 1 -:1/f\* 
aes INE t= —— 

an 9 oe 7 ae 

and the high energy part, Equation (III. 17), gives the same quan- 

tity. Putting the two contributions together we recover (III. 49). 

Another good current algebra prediction is in the a p wave 

scattering lengths where direct term saturation alone gives a 

good result. This is related to the fact that dispersion relations 

for (+) amplitudes are, as we have seen, well satisfied with a 

few s channel resonances (V and A(1236)). 
However current algebra predictions are in strong disagree- 

ment with dispersion relations in the case of the aj’p wave 

scattering length where both direct and » exchange term contri- 

bute appreciably. The reason for this disagreement is that effec- 
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tively double counting occurs adding s and ¢ channel terms. 

To determine the a{? wave scattering lengts we need Equa- 

tion (III. 36) for the real part of the B amplitude. In the current 

algebra treatment of the p exchange term factorization is applied 
to the real part of the amplitude, i. e., 

Re [mz B (mz 0) = (1-+ RY) [Re AO (me, Op (IIL 50) 

and, from (III. 49), 

—(1+4 8") (Fe) (III. 51) 

In our model the current algebra direct term corresponds to the 

low energy contributions in the dispersion integrals (V,A), the 

0 exchange term has the counterpart in the high energy curve. 

As we apply factorization only to the imaginary part of the 

amplitude, 

Im vy BO (v, 0)] = (1 + 2”) Im A (v, 0) (IIL. 52) 

we obtain a contribution to Re BS” (mz,0) given by, 

  
if Imp BO gy—(1 +2 GO) (IIL. 53) 

y2 

and from (Ill. 17) and the KSFR relation, 

=i0+8 (lea (III. 54) 
Mo 

which is half of the quantity given by the exchange model for 
the real part of the amplitude. As we have shown, with our 

factorization prescription, we reproduce fairly well the high 

energy contribution to the dispersion integrals. Current algebra 

calculations over estimate the exchange term: a full exchange 

term cannot be taken at the same time with direct channel terms. 

The exchange type term represents ¢ channel contributions and 
it should be used to describe only the region above the s channel 

resonances. It is interesting to remark that in the current algebra 

treatment as the number of resonances included in the direct 

term increases —thus apparently improving the accuracy of the 
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calculation — the prediction for the a{~ scattering length become 
worse (88), 

Our conclusion is that in the way current algebra is applied 
to the determination of low energy parameters it violates the 
basic idea of duality that at a given energy only either an s 
channel or a ¢ channel picture of the process should be included. 
This principle is followed in our crude model and we avoid the 
troubles of current algebra calculations obtaining good results 

for the aj p wave scattering lengths. 

Recently Héhler, Jakob and Strauss (8°) systematically dis- 
cussed various theoretical approaches to low energy parameters 
in comparison with dispersion relations. Their basic results agree 
with our conclusions. 
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CHAPTER IV 

Quark diagrams and dual resonance models 

In this chapter we extend the already introduced duality 
ideas in connection with the underlying quark rearrangements 

that take place in hadronic processes. The naive Feynman gra- 

phology, useful in evaluating decays of mesons and coupling 

constants, cannot be applied to more complex situations. On the 

other hand the dual relativistic quark models, using basically 

the Veneziano formula applied to quarks, while being very inte- 

resting as ideas are of limited practical applications. 

So far the most successful formula in the field of Veneziano 

type models is the Lovelace formula (®) for «7 scattering. This 

formula having duality and crossing naturally built in, accounts, 

roughly, for the known physics of the sx system in the whole 

range of energies. For detailed fits one requires unitarized ver- 

sions of the model(%!) but we shall not attempt to include such 

features in our discussion. 

The attempts to apply Veneziano formula to other 4 particle 

amplitudes has not always met with complete success and certa- 
inly never achieved the general agreement with experiment and 

theory of the «= formula. Trouble not only occurs, as we 
mentioned, with relativistic dual quark models but also with 

straight generalizations of the Veneziano formula. In «JV scatte- 
ring, for instance, those models lead to bad low energy parame- 
ters () 92), 

Instead of imposing from the beginning a particular form for 
the amplitude we try, in this chapter, to extract from the Vene- 
ziano-Lovelace formula some basic properties. These properties, 

which are derived from the dual structure and not from the 
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specific form of the Veneziano amplitude, are then classified and 

their consequences explored. We shall concentrate our attention 

only on scattering of pions on an arbitrary target ZT because 

pion mass extrapolations are small and allow direct comparison 

with soft limit results, but what we have to say could equally 
be extended to other pseudoscalar meson-target reactions. 

We work in the framework of dual resonance models (*) and 

assume that planar duality holds, i.e., the scattering amplitude 

A(s,¢t,u) has the quark underlying structure given by duality 
diagrams (‘5), It can then be written as a sum of (s,/), (w,¢) and 

(s,#) terms each one exhibiting poles in two channels, s and f¢, 

etc. According to the physical situation these quark model non 

exotic poles, are interpreted either as resonances or Regge poles. 

The terms V(s,¢) and V(u,?) have the same quark structure 

and show no particular symmetry under s-/, w«/¢ interchanges 

respectively. The (s,) diagram does not change when seem 

from s or w# channels and the corresponding U(s,u) term is 

then taken as even under sw interchange: 

U(s,a)= Ue,s). (IV. 1) 

Keeping in mind that a pure U(s,u) term is ¢ channel 

exotic (/;=2) and the sw crossing properties of the ¢ channel 

isospin amplitudes we write the simplest and most general 7 

channel isospin amplitudes for = 7 scattering in the form: 

Ay =B[V(s,)+ V(u,d)+3U(s,u) (IV. 2a) 

Aj =2[V(s,f)—V(u,d] (IV. 2b) 

Ay=7U(s,u). (IV. 2c) 

In principle V(s,¢) and U(s,z) are not the same function and 

of the four Veneziano coefficients «, 6, d and y two can be 
absorbed in the normalization of V(s,#) and U(s,u). Note that 

throughout this chapter we shall never assume a specific form 
for V(s,¢) and U(s,u). 

(*) For a review and definitions see Ref. [44]. 
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We consider the reaction 

® (91) + T( pi) + % (92) + T (Lo) 

ann define the variable y= 4 -(f; + fo)/2mr,mr being the mass 

of the target. We now assume that an expansion around ¢=—0, 

v=0 is valid. At least in the «NV case, as we have seen, such 

approximation is good. If in the region »~0 the s wave part 

of the amplitude is vanishingly small the s wave scattering 

lenght is approximately given by 

i 0 A(v,t=0) 

dv v>0 

(IV. 3) 

The best justification of (IV. 3) is the sucess of the current algebra 

calculations of scattering lengths (88). Note that we are not 

strictly working in a soft pion limit. We assume that as far as 
the pion is concerned the soft limit results remain valid without 
drastic alternations when applied to physical situations because 
of the smallness of the pion mass. 

Theoretically (IV.3) is on more secure grounds for an 

isospin crossing odd amplitude because such an amplitude is 

constrained to vanish at v=0O(*). This is in fact the amplitude 

we are most interested in in this chapter. We extend Equation 

(IV. 3) to each planar dual amplitude defining in this way 

Qsty A: and as, contributions to the s wave scattering lengths. 

Using the s+ crossing properties of the ¢ channel amplitudes 

we obtain from Equations (IV. 2) the following expressions for 

the scattering lengths: 

a, = East + Gui] + 9 Asu= 0 (IV. 4a) 

At = @[ds1— yi] = 2aas; (IV. 4b) 

a= 7 Asu=0. (IV. 4c) 

Note that if Equation (IV. 3) is true the addition of a Pomeran- 
chuck like term to the amplitude would not affect the scattering 

(*) For a discussion of o terms and meson mass extrapolations see 

Ref. [93]. 
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lengths because it is even under s~+w crossing. For «7 scatte- 

ring with physical pions the zero pion mass approximation of 

Equation (IV. 3) is not correct (8°). In particular, because of the 

additional symmetry, @;,—a;:, modifying Equations (IV. 4a) 

and (IV. 4c). 

If we go now to the high energy limit in the forward 
direction 

Im A(s,¢=0,u) ~ Im V(s,¢~0) (IV. 5) 

which implies that the resonance contributions from Im U(s,z) 

at #=0 do not add up at high energy to form Reggeons but 

rather compensate among themselves. Such compensations are 

achieved in chiral schemes(*%) as in the «xz Veneziano for- 

mula (® % 97) by the inclusion of low lying particles (daughters). 

For example, in the «7 case the mass degenerate e and « have 

equal and opposite contributions to Im U(s,u). We extend now 
these ideas to other processes. 

As Im U(s,u) does not contribute at high energy in the 

forward direction one can write for U(s,w) superconvergent 

relations in the form 

[? Im U(s,u)dv=0 (t=0) (IV. 6) 

Equation (IV. 6) holds for all odd integers &. The most natural 

way of achieving this is by cancellations between high and low 
partial wave contributions in each local mass region. Then 

Equation (IV.6) would be expected to hold also for even &. In 

our applications we restrict & toa value, k—=—2, that provides 

convergence even for amplitudes which are not superconvergent 
and thus safely allows saturation with a few resonances. The 

test for superconvergence then becomes the local cancellation of 

the integral. 
It is important to remark that the superconvergence of 

U(s,u) is not derived here from exoticity in ¢ channel but 

appears as a consequence of the dual planar structure of the 
amplitude. When an exotic ¢ channel is present, /,—2, Equa- 

tion (IV. 6) coincides with the superconvergent relations of Brout 

et al (97). But, as shown below in the case of «JV scattering, it is 

also valid when there are no exotic channels. 

64 Portgal. Phys. — Vol. 7, fase, 1-2, pp. 3-85, 1971 — Lisboa



DEus, J. Dias — On dynamics of elementary particles derived... 

At this stage we compare our equations (IV. 1)-(IV. 6), which 

we think should be kept in a Veneziano formula for the «7 

scattering amplitude, with the Lovelace expression. Equations 

([V.1) and (IV.2) are satisfied. Equations (IV.3) and (IV. 4) are 
also satisfied up to terms in m2 in the limit of linear expansion 
of the denominator I’ functions (%), Equation (IV. 5) is obviously 
satisfied. Equation (I[V.6) is exact in the zero width resonance 
approximation. Note that the Veneziano formula for Kv7 scat- 
tering (%) also satisfies the equations that refer to V(s,?) and 
V(u,t) terms (there isno U(s,u) termin «X scattering). In the 
case of the mu system conditions ([V.3) and (IV.4) are not 
satisfied and the Lovelace formula is then not correct (9). 

As the next step we discuss the consequences of imposing on 
the 7 Z amplitude the constraints of the additivity quark model 
in the version proposed in previous work (Ref. [21] and chapter III 
of this thesis): quark model additivity is additivity of V(s,a 
w-quark duality diagrams generating the V(s,7) » 7 diagram. 
We express the high energy additivity rule in the following way: 

Im<rT|A|rT> ~ Sim <40;|4|70;>= (IV. 7) 
#20 

=nIm Vo(s,¢=0) 

where ImVo(s,¢~0), a universal function of s, is the amplitude 
for the basic x-non strange quark Q interaction and a the 
number of interacting quarks in 7(*). Via duality and Finite 
Energy Sum Rules (FESR) the high energy curve when extrapo- 
lated down to the low energy region must be, on average, equal 
to the low energy contributions. In this way the additivity rule 
(IV. 7) for the Imaginary part of the planar dual amplitude V’(s,/) 
can be extended to the whole range of energies. 

We shall now apply these ideas to specific reactions and see 
how far they are satisfied in practice. We need to select an 
amplitude in which s channel resonances come only from 

V(s,t), ice. the A; amplitude (Equation (IV. 2b)). As a «good» 

(*) Note that the additivity rule (IV. 7) does not work for the real part of 
the amplitude because then /(u,¢) and U(s,z) terms also contribute. 
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FESR, (e=—2) we take the Adler-Weisberger relation (*: 8) 

interpreted as a FESR for Aj/v(!%). 

at Aes) Im Aj (/, 0) 

1 y v0 — {a (IV. 8) 

2 400 

= (Born term) + Al 
“th, 

The sum rule is convergent which simplifies the comparison of 
different scattering processes because no cut-offs, which may be 

channel dependent, need be introduced. 
To saturate the right hand side of (IV.8) we generalize the 

procedure developed in Ref. [21] and in chapter III: in the reso- 
nance region we take only the first wave resonances and treat 

the contributions above as high energy contributions, i.e., satis- 

fying (IV. 7). We thus derive a set of SU (6) relations for coupling 

constants, by considering the # wave contributions to (IV. 8) of 

different «Z reactions (xQO,77,7K,xnN,neS,7=) in the zero 

width approximation: 

2 2 ie 2 (£42) = (fine) = 8 (sn) Te 
Mae Mo 3 UM Ke 

9 2 2 
_ &Nn« 16 ExNee —_ 1 (eee 

=( mn ) — 3 fs | ~ 4 \ mys ghee) 

vt [ates «tL atti T= (Ea) +t atc] my, + My 3 | Myx+my Mz DL Mz+Ms% 

To obtain relations (IV. 9b) the kinematic factors appearing in 

the relativistic widths were approximated by putting (m, + my)/ 
/my=~2 etc, as is usual in SU(6) calculations. Relations (IV. 9a) 

and (IV. 9b) are SU (6) as in the relativistic quark model (!9): the 

PPV (pseudoscalar, pseudoscalar, vector meson) coupling constant 
being proportional to my the BBP (baryon, barion, pseudoscalar 

meson) coupling being pseudovector in its nature with the s 

channel SU (3) mixing parameter f° = F/(F + D) = 2/5. We 
could write more SU(6) relations using target particles with 

higher spin (vector mesons, for instance) but then (IV. 7) should 

be interpreted in a spin average sense. Also if one substitutes a 
kaon for the pion more SU (6) relations are obtained. Note that 

we are not imposing the saturation of the Adler-Weisberger 
relation with -wave resonances, but simply comparing their 
contributions in different processes. 
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As both the high energy and low energy contributions in 

the right hand side of (IV. 8) satisfy (IV. 7) obviously the left 

hand side also has to satisfy (IV. 7), i.e.: 

ai=na (IV. 10) 

where a is a universal constant, the scattering length for 7Q 

scattering. Equation (IV. 10) with Equations (IV. 4a) and (IV. 4c) 

reproduces Weinberg’s universal scattering lengths for scattering 

of soft pions on any target (89). 
The equations within each of the sets (IV. 9a) and (IV. 9b) 

are experimentally fairly well satisfied but the agreement is not 

so good when one equates meson to baryon coupling constants. 

The additivity relations provided by (IV. 7) are also not always 
well satisfied. They impose the condition of having pure / 
coupling in the ¢ channel which is too strong. However our aim 

is not to check SU(6) but to stress that the vehicle for such an 

overall SU(6) consistent picture is the idea of duality. As 
emphasized several times by Rosner (55) duality is less restrictive 
than SU(6) or quark model additivity and it is probably more 
fundamental. 

This is the point of view we take from now on when we 
consider the U(s,wz) integrals of Equation (IV.6). We have 

another specific reason for doing so: the vanishing of these 

integrals cannot be achieved in the framework of SU(6) quark 

model £0 states as has been known for some time(). We 
are led back to the necessity of low lying particles to saturate 

(IV. 6), i.e. particles below the main trajectories initiated by the 

SU(6) £=0 states. In first approximation we shall include in 
(IV. 6) all the observed # and s wave resonances in the first 

resonance region, in analogy with the 9,¢ case(®), and, because 
of the convergence argument referred to above, use k=—2 as 

in the Adler-Weisberger relation. 
In general, from Equations (IV. 2), the s channel contribu- 

tions of the U(s,u) term can be isolated by the combination 

U (s,u) c< At — (8/2) At (IV. 11) 

Equation (IV.2) combined with the condition of no exotics in 

the s channel allows the following classification of the target 
particles according to their quark content: 
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Group 1—Only one non strange quark in 7(K,=,---), 
fp=1/2 

Ip=1/2:3=y=0; B/a=l. 

Group 2— Two non strange quarks in 7(r,>,A/,--°), 
ige=0 1 

Ip=1:3/7=—1/23 C/a=3/2 (IV. 12) 

Group 3— Three non strange quarks in 7(V,A,..--), 
Ly =1/2 , 3/2 

[7 =1/2:7=0; No constraint on 6/« 

Ip =3/2:0/py=—1; Efa=8. (IV. 13) 

Of course in Group 1 there is no U(s,u) integral to satisfy, and 

from this point of view no low lying particles were required in 

these processes. It is perhaps not an unrelated coincidence that 

no low lying particles coupled to 7K and «= have been unmis- 

takably detected (!0!). The = resonances, though not definitely 
classified, seem to fit quite well in the two main trajectories (102). 

In Group 2 apart from «7 itself which leads to the results 
of Gilman and Harari (*) we can investigate Equation (IV. 6) for 

nm scattering. The first f and s wave resonances are(*) 
/ (1115), /A (1405), 2(1189), (1385). Using Equations (IV. 11) 

and (IV. 12) we compute the left hand side of (IV. 6) for k=—2 
in the zero pion mass limit to be 

— (244 14) + (82 + 10) = — 88 + 42 = (444 8)GeV 

(*) The resonance parameters in += and «WM scattering (mass, width 
and branching ratios) were taken from Refs. [103] and [101]. Except for the 

A (1236) resonance, where a Breit-Wigner formula with a (¢/q¢,)3 dependence 

in the width was used, the resonance contributions were evaluated in the 

zero width approximation. The widths were corrected for zero mass pions in 
the kinematic factors multiplying the coupling constants. The quoted errors 

simply include errors in the widths. For f*=/F/(F + D) we used the quark 

model value, /* = 2/5. 
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which is compatible with zero on the right hand side. Our pro- 

posed mechanism of local mass cancellations seems then to work. 

In Group 3 the testable case is 7 scattering but here 6/« 
is undetermined. Looking back to Equation (IV. 2), taking ¢~0 
and the high energy limit one sees that 6/« is related to 

fi=F/(F + D) by) 

B/a=4f'—1, (IV. 15) 

The first and s wave resonances (!%,101) are now the (938), 

N (1460), N(1525), A(1236) and Equation (IV. 6) gives: 

(1 —@/a)(104 + 9.24 1.1)+(2+6/2)608=0 (IV. 16) 

and, from (IV, 15), 

fio14£01. (IV. 17) 

This value of /*, larger than the SU(6) quark model value 

jf’ =1, is in reasonable agreement with the experimental deter- 
mination and other theoretical predictions: f/=1.5 (See Ref. [105] 

and further references there). If our arguments about the 

vanishing of U(s,u) integral by cancellations in narrow mass 
strips are right, Equation (IV.17) determines an high energy 

parameter from only a few low energy resonances. Because of 
the rapid convergence of (IV. 6) additional high energy contri- 

butions to (IV. 16) or to (IV. 14) would not change the results 
appreciably. 

Returning to the s wave scattering lengths, deviations from 

the high energy quark model additivity as indicated by f*-1 

are expected to cause violations in the universal scattering 

lengths. Taking the «WV aj scattering length as the standard 

quantity a the scattering lengths for Vx, and =n would be: 

Nr: aj=a 

Xm: a=2 flaz=3a (IV. 19) 

Er: a=(2 f'—l)az=2a (IV. 19) 

For =7,=n they are larger than predicted by universality. 
Neither ([V.18) nor (IV.19) can be unambiguously tested. It 
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should be kept in mind that any result for scattering lengths 

relies on the validity of (IV. 3). 
Other possible tests of Equation (I1V.6) are more speculative. 

However, we shall consider to and 7A(1236) scattering using 

spin averaged amplitudes. 

For wp, inserting the 7,» and A, poles, Equation (IV. 6) 

gives, 

(m2, — m3) Borin 
4m At 

4. te a 2¢2?+2]=0 (IV. 20) 
Q t 

where 2; and gy are respectively the transverse and longitu- 

dinal couplings in the 4; ox decay, with 

4 1 5 ¢ 

Taew = Fo Catt 89) 9 |m, 

To keep consistency with our previous arguments and the local 

saturation of (IV.6) with s and ~ waves only, the 4A; —>o7 

decay should occur in a purely orbital s state. This corresponds 

to |ey/2,;|~1. (For information on the experimental situation 

and theoretical analysis of A, data, see Ref. [106]). To make an 

estimate of I'4,., we allow ourselves some freedom in playing 

simultaneously with SU (6) and chiral symmetry. From SU (6) i 
we borrow the relation (*) 492. _/m}=g2,,(") and from chiral 

symmetry (°!%) (or experiment), m2, =2m}. Neglecting terms in 

m?, Equation (IV. 20) then gives: 

ae 
Tr og =a loan IV. 2ha Ay f v2! ( ) 

~90 MeV. (IV. 21b) 

The width predicted in (1V.21) is quite acceptable. Experimen- 

tally (101) Tyee $95 MeV. 

(*) This relation can be derived in the same way as relations (IV. 9a) 

and (IV.9b) extracting from the Adler-Weisberger relation for we the p 

wave resonance contributions. It agrees approximately with the experimental 

width Teo ry with ¢ dominance. 
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For «A scattering (IV.6), saturated with the same contribu- 

tions as in the ~V case (the (1525) is here negligible), allows 

a prediction for the AAz coupling constant. We use data from 

Sutherland’s work (107) and his definition of the AA coupling: 

Lytt stat ber 15 YE OF - The result is 

(IV. 22) 

in good agreement with the SU (6) value (41%), =32, In Ref. [107], 

from the Adler-Weisberger relation, a larger value is obtained 

but this, we think, is related to the general difficulty in satura- 

ting the Adler-Weisberger relation with a restricted number of 

resonances (108, 94, 100), 

One could try to generalize these calculations to backward 

scattering. Instead of considering ¢ channel Regge poles and s 

channel (or w« channel) resonances one could also invert the 

procedure and consider ¢ channel resonances and s channel 

(wu channel) Regge poles. Regge poles in the ¢ channel are 

expected to dominate at large s, small /, i. e., forward scatte- 

ring. Regge poles in w channel should dominate at large 7 and 

u +0, i. e., backward or near backward scattering. 

As we have seen, an important constraint which we impose 

on a dual resonance model is good behaviour both at threshold 

and in the high energy region. The threshold point, ¢=0, »=mx 

is thus of particular interest. Going into the backward direction 

region, it is then natural to work exactly in the backward direc- 

tion, i.e. cos?——1, and constrain the forward and backward 

amplitudes to be equal at threshold. 

One should notice that the expansion of the amplitudes in 

the variable » around the point v~0, ¢=0 does not necessarily 

have to be taken along the line ¢=0. For instance in the original 

Weinberg’s current algebra treatment (8°) of low energy parame- 

ters one only requires ¢=(9,—9,)?=9) + 3 —29,% being of 

order 0(m2), i.e., of second order relative to the linear term in 

y. This means that a backward expansion starting from the point 

y=0, ¢=4m2 is also valid and should reproduce at threshold, 

y= mx, t=O the same results of the forward expansion, i.e., 

Equation (IV. 3) and the current algebra scattering lengths. This 

Portgal. Phys. — Vol. 7, fase. 1-2, pp. 3-85, 1971 — Lisboa Uy 

 



  

Deus, J. Dias — On dynamics of elementary particles derived... 

is in fact another way of stating the condition of having 
Frtorward = Foackwara at threshold. 

Regarding Equation (IV. 6) the corresponding backward direc- 
tion equation is: 

fein V(s,dt=0  (coso——1), (IV. 23) 

The resonances to be included in (IV. 23) are the 0,8, fo,’ ete. 
Using in (IV. 23) local mass cancellations we come across the 
problem of the possible non existence of the 9’. The ¢, predicted 
in the mz Veneziano formula (9), is required to annihilate the to 
contribution in the superconvergent sum rules. In the backward 
direction, this difficulty is in general more important because for 
the same value of & the integrals are less convergent than in 
the forward direction (vy increases faster than ¢ as the masses 
of the resonances increase), and thus the role of higher mass 
resonances (/),¢’) is more relevant. In our calculations we limit 
ourselves again to the resonances in the first mass region, i.e., 
the ¢ and the e. 

To isolate the ¢ channel contributions of the V(s,?#) term 
we use, from Equations (IV. 2), the ¢ channel isospin combinations, 

V(s,t)«< Ay + (G/a) Aj (IV. 24) 

If we further simplify the problem by taking m,~m, our satu- 
ration scheme gives, from (IV. 23) and (IV. 24), 

ImF,+(6/a)ImF=0 (cosd=—1) (IV. 25) 

It should be noticed that now, in contrast to what we had 
before, it is possible to write the V(s,/) superconvergent relation 

(IV. 23) for «7 processes belonging to any of the above referred 

Groups 1, II and III, provided the V7(s,#) term can be isolated 
via (IV. 24), 

Equation (IV. 25) allows us to relate the coupling constants 

&.rr tO ¥,77- We work in the narrow resonance approximation 

using ¢ channel elementary particle exchanges in the Feynman 

formalism, In xz scattering there is a forward backward symmetry 
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and Equations (IV. 11) and (IV. 24) are identical. Equation (IV. 25) 
in this case gives again the Gilman-Harari (*) result (*): 

Senn! Sonn =1 (IV. 26) 

In «X scattering (IV.25) gives: 

Sexk ~&o xx (IV. 27) 

=> Ber (IV. 28) 

Phase shift analysis of K*/ scattering provides an estimate of 

the quantity 9. ¢x«&zyy~10(!%). Comparing it to the correspon- 

ding =f product of coupling constants, 2... 2.yy, (~50 from 

various determinations), we obtain 2. ,;/%,,,~ 1/5 which is 

much smaller than (IV. 28) but has the same sign. 
When the target 7 is a particle with spin the amplitudes 

in the forward and backward directions must have well defined 

2 : : peal 
spin properties. For targets with spin - we use the ¢ channel 

no-flip amplitudes. In the forward direction 

v (gt) _ 4) 
iad ." BO (IV. 29) 

is related to the total cross sections and these are in fact the 

amplitudes used in previous forward direction calculations. In 

the backward direction we write the no-flip amplitudes (19): 

FI) = AY (5,492) + <a BO (s,—492) (IV. 30) 

Fe [APG 4a + Me BO, — 499] (v.81 Fp = 
r 

(*) The exx and eXKK coupling constants are defined using the La- 

grangian : 

L.=— g Senn meme + ein mz, ct Kt K. 
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where £, and g are center of mass variables, L£=VP+m, 

o=Ve2+m, At cos 9=—1 also holds s=—4q? and y=(s—wu)/ 

/4m,=Eo/m,. At threshold, as required, F=F. In «NV 

scattering the ¢ and ¢ contributions (*) to (IV. 25) are 

2 
= Mr _ mM 2 

= Fy - 4 2f + Ky Tri | ean Saxn Pd nes =“) 

and 

Im FOO = — = M.S. ee &eNNTO(E— Mm?) (IV. 33) 

Similar contributions can be written for s= and x scattering. 

If one neglects the vector meson magnetic coupling contribution 

in (IV. 82)—in general this contribution is not negligible — and 
uses the values of @/« corresponding to pure / coupling in high 

energy 7 channel exchanges, Equation (IV. 25) would obviously 

give for the = couplings the same SU(3) structure in 7B as in 

x M scattering. In our calculations we shall keep the magnetic 

coupling contributions and use f/=1-4 (Equation (IV. 17)). To 

evaluate the FS? resonances contributions we apply vector 

meson dominance, g,,,—/2g,,,, and use for AK}, the values 

given by the quark model, F/(#+D) —+ with Ky =3.-7. From 

(IV. 25), (IV. 82) and (IV. 33) we obtain for the products of coup- 

ling constants ¢,_.2.,, the values shown in Table IV. 1. 

Having in mind the approximations involved the rough agreement 

with dispersion relations (!!!) in the «J case is quite encoura- 

ging. If in (IV. 23) the / is also included —it has to be if a ¢ 

effect does not exist—the values of the g,__ g.,,8 should be 

increased. Combining the result g. 32.) ,y~40 with Equation 

(IV. 26) we obtain for the g,,,, coupling constant, 

9 
SsNN 

=~). IV. 34 
4n ( iA 

(*) The «NN coupling constant is defined from the Lagrangien 

L.=&:nnNNe. 
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TABLE 1V.1 

coupling constants: 

  

  

  

  

  

    

Senn Sc BB 

2=BB Bla 

Prediction Dispersion Relations 

eNN ~5 ~ 40 69+4 Engels 

63  Schlaile 

50 ~=©Strauss 

c= 1 3-5 ? 

eld 3/2 10 ?         
  

Theoretical predictions on the «NN coupling constants (dis- 

persion relations, dynamical equations with exchange potentials) 

give values for 9?\.,4, ranging from (112) 2.5 to 14.7, 

In the forward direction we have seen that the U(s,) term 

corresponds either to a pure exotic 7 channel or toa ¢ channel 

with degenerate trajectories cancelling among themselves. For 

instance the fy and ¢ trajectoires are approximately degenerate 

and thus it is possible to write a forward «superconvergent» 

U(s,u) relation tor «WV scattering. In the backward direction 

we expect the same situation to occur: the vanishing of the 

V(s,#) integrals corresponds either to an exotic w channel or to 

a wu channel with cancellations of trajectories. In «= and 

x V(s,t) corresponds to /,=3/2 and 2, respectively. In «~NV 

there are no exotic channels and thus the «superconvergent» 

V(s,t) relation to be valid requires cancellations of uw channel 

trajectories. As the WV, and Ay trajectories are not degenerate 

to achieve the required cancellations one needs to introduce two 

additional trajectories degenerate with the WV, and Ay res- 

pectively. The need of at least four trajectories to satisfy duality 

in backward scattering is well known and is not surprising ("!®). 
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CHAPTER V 

A few conclusions 

We summarize now the main topics discussed in this thesis 

and draw some relevant conclusions. 

In chapter | we enumerated a few problems in connection 

with a realistic interpretation of the quark model: the mass of 

the quark (free and bound quark), the binding potential, possible 

bootstrap schemes, dual models. These are the problems directly 

related to our work. Extremely interesting question like quark 

statistics, integrally charged quark models were completely left 

out. Concerning the quark statistics, at least as far as our work 

is concerned, we do not need to take up a position on this 

question. Concerning less economic quark models, using more 

than one SU(8) triplet, we think that the successes of duality 

and quark duality diagrams make them much less attractive 

than the one fractionally charged triplet quark model. 

Cosmic rays experiments failed to confirm unambiguously 

the «evidence for quarks». However a somewhat unexpected 

evidence for the realistic quark model appears to emerge from 
inclusive experiments. We cannot see a simple explanation for 
the presence of a «quark symmetry frame» based on pure (/, Y, 2) 

and mathematical quark arguments. 

In chapter Il we developed a Bethe-Salpeter formalism 
applied to quarks. Not only mesons and baryons were described 

as bound state poles in the OO and OOO channels respectively, 
but also their interactions were seen as built up from quark 

level interactions. SU (3) mass breaking factors are systematically 

introduced in various hadron coupling constants via the mass 

factors in the vector and pseudoscalar meson Bethe-Salpeter 
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wave functions required by the constraint of vector meson domi- 

nance and the Goldberger-Treiman relation at quark level. These 
vertex functions are realizations of Llewellyn Smith Model I. 

For baryons the Bethe-Salpeter formalism is complicated. 
However when non-relativistic approximations for the motion 

of the quarks are introduced we recover the usual results of the 

additivity quark model with corrections. In the evaluation of 

magnetic moments the predicted deviations from SU(6) are in 
fair agreement with experiment. 

In chapter III we performed some quark level calculations 

(sum rules, dispersion relations) and showed that quarks, from 

a theoretical point of view, can be treated as strong interacting 

particles on the same footing as baryons and mesons. In parti- 

cular the ideas of duality work for quark interactions in a way 

similar to that for hadrons. In fact, duality, with Harari-Rosner 

duality diagrams, can be seen as a new development of the quark 

model. We showed that the calculations of the old quark model, 

at low and high energy, are duality consistent. We used quark 

model low and high energy calculations to evaluate sum rules 

and dispersion relations finding good agreement with detailed 
calculations. 

In chapter IV we explored the constraints derived from the 

quark rearrangements that occur in hadron reactions. Such cons- 

traints, we think, should be included in dual resonance models 

satisfying planar duality. One of the constraints takes the form 
of a superconvergent relation to be satisfied by local mass can- 

cellattions. These «superconvergent» relations are more general 
than the usual ones because they do not require the presence of 

exotic channels. They are valid, for instance, in = scattering. 

We made applications of these relations in forward and backward 

direction. In the backward directions we obtain a set of new 

predictions on the 6(750) coupling constants. 

We think that as a whole our work brings support to a 

realistic interpretation of the quark model and shows that 

without any major difficulty quarks can be treated as dynamical 
objects in the (s,¢,#) Mandelstam’s plane. 
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