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ABSTRACT — A foundation for the boundary layer equations of hydro- 

dynamics is presented based on its mathematical structure. The connection 
between the physical arguments used for simplifying the Navier-Stokes-Pois- 

son equations and the resulting partial differential equations is shown, allow- 

ing a clear definition of boundary layer flows. Comparison theorems are 
summarized and used in the construction of bounds for the solutions. These 

form the basis for a qualitative theory of the boundary-layer. 

0 —INTRODUCTION 

Boundary layer theory was founded in 1904 by L. Prandtl [1] 
in an attempt to reconcile theoretical Hydrodynamics with expe- 

rimental evidence and to free it from embarassing paradoxes. 
That branch of Theoretical Fluid Mechanics, based on Euler 

equations, is devoid of viscous effects. Viscous effects are taken 
into account on the Navier-Stokes-Poisson equations. 

However, even if Navier-Stokes-Poisson equations are be- 
lieved to be no more than a first order approximation to a real 

viscous fluid they present such mathematical difficulties that no 
complete theory or even existence and uniqueness proofs are 
known for its solution on the general case. 

Boundary layer theory is the result of an approximation to the 

Navier-Stokes-Poisson equations when the flow has a dominant 

(*) Received November 5, 1972. 
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direction and the field variables change at least one order of 
magnitude faster in the cross stream direction. This is the 

typical behaviour of an almost paralell flow over a solid boundary 

of a slightly viscous fluid because: viscous fluid effects are 
associated with second order derivatives in space, and these are 

only important near the solid boundary in the direction normal 
to it; viscous effects are confined to a thin layer, the so called 
boundary-layer. 

1. THE BOUNDARY-LAYER EQUATIONS 

Formally, the Navier-Stokes-Poisson equations are, in a car- 
tesian frame of reference: 

      

    

1.1) OU; by du; a (+ =a ead oF oh 

ot 0X; 0X; 0 x; 0 OX; 

1.2) OO ge 
et Ox; 0X; 

where w;(¢,7—=1,2,3) are the velocity components; ¢ specific 

mass; P pressure and F a body force per unit mass, (the 

summation convention on equal indices is used). For the system 
to become determinate a Thermodynamic relation involving P 
and o is necessary. 

If the flow has a dominant direction along «,=*, and is 

described in two independent variables (w=.+,} y= ) and 

02 u 2 u 

ox? oy? 
  

The system of equations 1) can be simplified to 

    1.3) LA cc NE 2 OS 0 (+ oy cae oF pice 

ot 0x oy oy oy 0 oO” 

0° 0 0 
1.4 —— + —— (ou) + —— (ev) =0 ) yg re (9m) i ed) 

where 4=%,,;V=Up 
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3) and 4) are the boundary layer equations for a viscous com- 

pressible fluid. Besides, a Thermodynamic relation between P 
and ¢ is to be added. 

The same type of reasoning which originated 3) and 4) in 

cartesian coordinates can be applied to other sets of coordinates 

provided the basic assumptions regarding second order space 
derivatives are retained. 

1.1. The simplifications which originated 3) and 4) were 

introduced by Prandtl on pure physical arguments and a complete 
discussion on such lines can be found elsewhere [2]. Some 

attempts to justify mathematically the approximation using the 
theory of asymptotic solutions of differential equations with 
respect to a small parameter, have also appeared as well as 

higher order corrections [3] [4] [5] and specially [6]. As a rule, only 

the time independent case is considered when discussing the 

general theory, and only a few exceptions are concerned with 
the general compressible case. 

As it stands today, boundary-layer theory is far from 

complete in spite of thousands of papers and a dozen or so of 
textbooks dealing with the subject. 

Because the simplications were found by order of magnitude 

analysis, appealing to physical arguments, inconsistencies arise 
frequently even in simple situations. Besides, insuficient conside- 
ration of the mathematical structure of the equations often origi- 

nated wrong approaches to solutions or deficient analysis of expe- 
rimental data, not mentioning confusion in semantics which arise 
any time a separation occurs or a transition to turbulence appears. 

1.2. Although an approximation to the Navier-Stokes- 
-Poisson (NSP) equations, the boundary-layer equations have 
never been solved exactly in general terms. Generally speaking, 

it became common use to consider exact solution those solutions 

which can be found from the integration of an ordinary non- 
-linear differential equation. This forms the family of similar 
solutions which are easily got numerically. 

However, these are not exact in the rigorous sense. They 

are not general because a similar solution, got through the 
transformation of a partial differential equations to an ordinary 
differential one only exists for a particular combination of 
initial/boundary conditions. 
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To substantiate previous remarks without to much invol- 

vement on a critical review of the whole theory we will stress 
some particular points. The first concerns the general philosophy 
of the approximation; the other two, common inconsistencies 
systematically overlooked. 

The original argument of Prandtl was that viscous effects 

would be confined to a thin layer near the solid boundary over 
which the flow passes. Prandtl neglected curvature effects and 

considered the normals to the boundary as normals to the 
streamlines. This is the usual approach. However, an optimal 
coordinate system can be found where displacements of the flow 
can be taken into account and the approximation to the full set of 

the N.S. P. equations improved [7]. Following this approach, 

each flow situation would give rise to a unique form of the 

boundary layer eyuations. This would be the first step in the 
construction of a consistent theory. Such a treatment has not 
been followed and different equations (all aiming at the des- 

cription of the same physical phenomena and all starting from 

the full N.S. P. equations) are obtained depending of the coordi- 

nate system used. 
As a second remark on the order of magnitude arguments in 

common use we can consider the flow over a flat plate when the 
free stream velocity Ue is not constant. 

Because U > Ug when y > ~ it follows from the continuity 
equation that 

=f" —<t ay 

because ae 0, and O85 ONO: ot the edge of the boundary 
Ox ax 0x 

layer, it follows that v(x, 0c) becomes unbounded, which obviously 

can not be true. Besides, the assumption that v<<uw is a common 

argument in deriving the boundary layer equations. 

The arguments based in v<<w are unsound as is again verified 

in the case of a circular jet discharging into stagant surroundings. 

Even the classical similar solution shows that v>>w in the outer 

region of the jet. 
The quoted examples are but a few. They do not invalidate 

the practical value of the theory though both point out for a 

need of clarification regarding the foundations of the theory and 
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its limitations. If too much overlooked the approximate analytical 

results are useless and with them the predictive value of the 

theory. 

1.4. Recognizing the enormous practical value of boun- 

dary layer theory, and the difficulty in obtaining analytical 
solutions, the purpose of this contribution is two-fold: 

— To clarify the basic structure of the mathematical theory. 
— To provide analytic bounds for the exact solutions. 
—To formulate the basis for the devellopment of general 

numerical methods of solution. 

2—SOME RESULTS FROM THE THEORY OF 
NON-LINEAR PARABOLIC EQUATIONS 

2.1. Consider the non-linear equation 

  ou ou dou 
2,1) a he 

*( gw ay rr) 

2.2) If as a, 
  aie) 0% 

for a solution u(x,y), equation 1.1) is parabolic. 

If 

2. 3) Lisa (9,0) 0%) — Sf (#19) ) Ox 

with a>0. 

Equation 1.3) is a quasi-linear parabolic equation. 

Tueorem 1 — [8]. 

Let, 

a : 
2. 4) Liwd—=f (#1914, —) in D+Br 

oy 
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under the initial condition 

2.5) u(x,0)=¢(y) in B 

and the boundary condition 

2. 6) u(x, y)=2 (x,y) in 5 

and assume that f(*,y,u,w), where we is defined for 
J 

(x y)6D  —ocucw, —K<t*% <o 
oy 

Then, if L is parabolic with continuous bounded coefficients 
in D+Br, and /(*,y,#,w) is monotone nondecreasing in u, 
there exists at most one solution to 2.4), 2.5), 2.6). 

Oés: By a solution u we mean a continuous function in 

D(=D+Br+B+S) having two continuous y deri- 
vatives and one continuous x derivative in D+ Br 

such that 2.4), 2.5), 2.6), are satisfied. 

Tueorem 2 (Comparaison Theorem) [9]. 

Let 

2.7) Lid=/(*9,0, 3") in D+Br. 
x 

Suppose that zw is a solution of 

LIuj=f in D+Br 

u(y,0)=1(y) in B 

2,8) u(x,y)=g(,9) in S 
and assume that z and Z satisfy the inequalities 

2.9) L[Z] <f(«,) < L[z] 

2(¥,0) <gi(y)<Z(y,9) in B 

2. 10) e<go<Z inS. 
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If L is parabolic with respect to the functions 

6u+(1—9%)-s and 6u¥+(1—4)-Z for O< OA, 

Then 

Zk) a(x,y)< u(x, 9) << Z(x,4). 

Tueorem 3: [8], [9]. 

Theorem 2 remains valid for boundary conditions of the type 

Ou 
  

  

  

2.12) + 8(x,9, 0) = 
on 

if 

Z ZL 
2. 13) Chee 1 pecs g 

on on on 

and exists. 
on 

§8— THE MATHEMATICAL STRUCTURE OF THE 

BOUNDARY LAYER EQUATIONS 

Qa 3.1. If we consider the general time dependent N. S. P. 
equations they are «parabolic in time»; in steady state they are 

elliptic [10]. The assumptions formulated by Prandtl for the 

physical situation considered, changed the equations to «para- 

bolic in x». This means, physically, that downstream do not affect 

what happens upstream. 
The implications of dropping second order derivatives in the 

flow direction on the argument that they are negligible compared 

with the ones in the cross stream direction is a physical argument 

which in turn makes dowstream points unable to influence their 

upstream ones. This is reflected also on the boundary conditions: 
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retaining second order derivatives in x would originate an elliptic 

set of equations whose solution would imply specification of 
velocity values at the most downstream section. 

This interconnection of the physical assumptions with the 
mathematical type of the resulting equations is too often over- 

looked with consequences on the interpretation of results or the 
choice of the most suitable solution method. 

Because a mathematical classification gives a natural and 

unique way for dealing with the resultant equations we will 

consider boundary-layers only those physical situations where 
the parabolic character of the equations is preserved. 

Adopting this definition, which is consistent with the always 

refered Prandtl example, the simplification of the N.S. P. equa- 

tions will always be clear whatever the coordinate system used. 

This will be imposed by the geometry and conditions of the 
particular problem. 

3.2. Having in mind the remarks above we will restrict 

the analysis to wall flows over a flat plate. The main conclusions 
will remain valid for other situations. 

The equations are 

  

  

Ou Ou 1. -9:P 0 Ou $1) p(w potty od OP yd / 
ar oy e dx ay Ho) 

0 3.2) ~*_ ou) +—“-@2)=0. 
Ox oy 

From equation 2.2) we can consider 

v= flu) 

and 3.2) is parabolic on the sense of the definition if u>0, 

because »>0 on account of the second principle of Thermody- 
namics. 

Equations 3.1) 3.2) must be solved under the conditions 

8. 38) u(y,o)=U, initial condition 

3. 4) u(x ,0)=0 
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3.0) u(x,0)=0 boundary conditions 

3. 6) u(x,v) > Ue 

DiS Sis 

The boundary condition 3.5) can be changed to v(x,0)= 
= f(x), which corresponds to suction or blowing. We can also 

deal very easily with this case, as will become apparent. 

3.3. The set 3.1-3.6, on which general agreement exists, 

deserves some further comments. : 
As a consequence of the order of magnitude analysis due to 

Prandtl the second momentum equation on the steady N.S. P. 
equations was reduced (in absence of body forces) to 

3. 7) an 
oy 

the unknowns were, however, w,v,P. As a result of the simpli- 

fication one equation is lost. The needed information is recovered 

if oe is known, This knowledge is got from the solution of the 
x 

inviscid fluid equations (Euler equations). This is consistent with 

Prandtl views of confining viscous effects to a thin layer and 
matching the flow field in this layer with the «inviscid» one 
outside it. This matching, however, is not obvious in what 

regards the surface at which it must be achieved. The specifica- 

| tion in 8.6 is the usual in boundary layer theory, and is correct 

as long as u- Ug though arbitrary in puting it at yoo. This 

is at the origin of the difficulty refered to in § 1. 4. 
| Formally it can only be removed increasing the order of 

| approximation in the framework of assymptotic solutions. In 
principle, it seems that the difficulty can be avoided solving 

simultaneously the inviscid equations or proceeding by successive 

approximations in the sense that an inviscid flow field is cal- 

culated neglecting viscosity; this flow field allows U«¢ to be 

specified for boundary layer equations and a new field, near the 
wall, is found which will be introduced as a perturbation on the 

initial inviscid field and so on. It must be’stressed that such a 
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procedure will always introduce a discontinuity in — which, 
4 

however, can be made negligeble in physical terms. 
Practically, that matching can only be achieved by numerical 

methods in general situations. In that case the matching is ten- 

tatively assumed at a finite distance, 0, and the final position 
found by iteration. 

9: 4: i AES. ie eee Shien thet a Sletke ‘aivmned 
ox 

always exists where Se 0 at the wall. The same situation 
2 

can arise if a >0 only on a finite interval provided it assu- 
x 

mes strong enough values. 

ou 
    =(, if the conditions on continue 
oy ox 

to prevail, separates a region of the flow where u<0. The surface 

u==Q defines a surface of separation if it encloses a domain of 

u<0. Obviously, in this domain the boundary layer equations 
are not valid. Physically, the order of magnitude argument which 

justified the simplifications is no longer valid; mathematically the 
equations have no more meaningful solutions (the situation is 

similar to a heat equation with a negative diffusivity). So, both 

physical and mathematical arguments preclude the use of the 

boundary layer approximations in separated regions. Nevertheless 
it became frequent in aeronautics to force its use when dealing 

with aerofoils [12], and this practice is in the origin of some pitfalls, 

The. situations where such use can be justified are those where 
the separated region is so small (separation buble) that the flow 

inside it can be approximated empirically. Because such a buble 
does not disturb too much the flow outside it, the boundary layer 
equations are used on the outside and its solution matched with 

the empirical description of the flow in the buble. It must be 

stressed, however, that such techniques can only be justified in 

particular circunstances suported by experiment. 

The condition 
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4—VON MISES TRANSFORMATION 

4,0. Introducing a stream function } such that 

4. 1) p= [oeudy 

gives 

4, 2) re 
OY 

pind 2%. 
ox 

and 3.2. is automatically verified. 
Taking now (*,) as new coordinates we get the following 

relations for changing derivatives. 

a ry ary ae 
0 0 

4.4 poe ein ygge 

Gal er 

and the boundary layer equations transform into 

    

  
4.5) Ou eeUce @Ue 0 ( 23 

jp ge ee age Be 

and any other equations like energy or species would tranform 

on a similar way. 

4.1. The transformation (*, y) to («,v) is only one to 

one if 

VY) 16 
d(%, ¥) 
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which is always true if «>0; but w>0 for y>0 is always 

imposed by the boundary layer approximation, and the condition 

is verified. This is an advantage regarding other types of appro- 

oe >i, 
Oy 

The main drawback to V. Mises coordinates which is usually 
stressed and seems to have obscured its real advantages is due 
to a singularity at y=0. 

At y=0,u=0 and 4.5) gives 

ximation like the many times used of Croco which needs   

0 = co 

also, at psd, 2) 2.6 
0(%,¥) 

The dificulty of the singularity at y=0O can be removed in 
two different ways. 

One is assuming that the boundary condition 

| Oo
 “== for y 

is changed to: 

UE, for ae) 

where ¢«, is a small, positive quantity. 

For the laminar case, Oleinik has proved that the solutions 

U, = Un (en) tend to a limit when «,,+0. The existence of the 
limit allows one, practically, to solve for sucessively small « 
and extrapolate to zero. 

4,2. The singularity can be removed or avoided. To avoid 
it, we use the V. M. transformation only for y>¢«, with « 
arbitrarily small, and change accordingly the boundary condi- 
tions. 

Using the b. 1. equations in form 3.1, 3.2, and assuming that 

(it can be proved) near the wall « can be develloped in a power 
series 

4. 6) U=Ky+dy2+ 45... 
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a standard procedure will show that 

  Ly) 0G a@Ue 4, a ‘) b , Uc a 

c=0 

ee 6S we Sei. 

Assuming for the moment that K-£0 and that y is small 
enough we have 

UszKy 

and 

4. 8) b= [oudy 
0 

ek y 4.9 = tos ) a c 

1/2 
4, 10) iin (=) 

e 

4, 11) 9% _ @yeKyt 
d¢ 

and eliminating K from 4. 10) 

4, 12) | 
a4 o 

The boundary condition on Von Mises coordinates is fixed 
at ¢,; small enough for 4.9) to be valid (which is always possible 
because y can be choosed as small as we wish) we will have for 
the V. M. equations the boundary condition. 

ou ou 

oy 2h 

the domain in ) beeing nowy > ¢,. 
The above reasoning shows that the singularity was avoided 

changing a boundary condition from a Dirichelet to a Fourier 

type. 

4, 13) for Y= 
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As will be noted, 4, is a constant which was chosen «a priori». 

After solving the equation, U=U(«,¥) is got and U,;= 

=U (x ’ 4) ° 

From U, and ¢,,K is found from 

  4,14) bn 4 
1 

and 

a Uu 
4, 15) i cn as 

from which the physical coordinates are recovered through 

4,16 int 
? K sh 

y dd 
eu 

  

For a not too small y or when K=O the reasoning can be 
extended taking now two or more terms in 4. 6. 

Formally, the limit when ¢, +0, can also be considered. 

Physically, the boundary is moving because ¢, and not 
y, is fixed. As a consequence, when K +0, y; + 0 which obliges 

to take two terms in 4.6) when K=O (at separation). 

If, at separation, 4.6) is still accepted, the V. M. equations 

can be applied to the upper part of the boundary layer where 

backflow is not present. 
Using now theorem 2, and the form just presented for the 

boundary conditions we can show that the solution is unique. 

That the solution exists can be proved from the numerical 
solution method to be presented on.a following paper. All the 

conclusions apply, however, if backflow is not present. 

In the previous results it must be stressed that: 

—It was assumed that no backflow is present w>0); This 

condition is necessary for the normal parabolicity of the 
equations. 

—No special form was assumed for the viscosity, neither 
for p, except that they must be positive, continuous and 

bounded, which is assured by its physical meaning. 
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5 — THE COORDINATES (x,7) 

51. A new set of coordinates which emerged from a nume- 

rical integration procedure will be introduced now, because it 
posseéses some interesting analytical properties. 

The purpose of the transformation is to reduce the unbounded 
coordinate y, or ¥ toa finite value. 

Define 

51) tr=1—y “4 

where C >0 is some function of «. 
+ and ¢ possess a one to one relation and the property 

s==0 for b=9 

5. 2) 
+==0 for _b=:00 

p= — = log (l—»). 

For small Cy: 

Dyd) t=Ch+e 

which means that for small enough C,z+ and ¥ are proportional. 

This range depends, of course, on the value of Cy, and is as 

large as we please in practical terms because C is free. 

As one can easily conclude, the new coordinate + has the 

property of bringing oo to 1 and, through the choice of C, the 
possibility of streching or reducing the coordinates near the wall 
where the more important phenomena take place. 

In the new coordinates, the diferential operators in V. M. 
coordinates takes the form: 

Se ) =(5 ie 1=* jog —+) oa 2 ) 
ox /% 0x) C Ax Noma: 

er! ao sia 

      

5.4) 
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and the b. 1. equations become, in the new set of coordinates 

    

    

nm U, d ou il Sige ti = dc ou comes 

ox Cc dx Qt ou aX 
5. 5) 

+C2(1—7)-peutl—9) 2% 
oT oT 

with the initial and boundary condition: 

5.6) U(r,0) =U, 

ou  C(l—1) 

OT u 

U — Ue when +—> 1 

5!) for t=7,   

the b. c., 5.6) is just the expression of the initial profile in the 
new coordinates. 

Boundary condition 5.7) results from a reasoning similar to 
that used for the V. M. equations to avoid the singularity at the wall. 

The last boundary condition was written only as a remainder 

because it was needed in the previous coordinates. Indeed, in the 

new coordinates, is automatically verified because 

  OE ig a laeitl — x) xd 
ot 730 

1 dic 
nd ———+ec« 

c Gude “i 

5.2. A more convenient form of 5.5) can be introduced 

writing it in terms of the kinetic energy for unit mass: 

1 
V=—2#., 

2 
a 

Introducing this variable the b.1. equations become: 

    

    

aV {—r ac. aV Pg aVe 
a log (1— — 
ie ae ae le dak 

5. 8) 

+ CFV I—)— pp t—y2* 
oT OT 
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and the boundary condition transforms into 

5. 9) OY cis Vv 
ot (1 —*+}) log (1 — 1) 
    for T=). 

As in the previous case, +, is an arbitrary but small quan- 

tity, so small that in the physical coordinates 

U=Ky, 

This means that 5.9) can be written as 

5,10) ~ wi * 
1 

    

or bringing K explicitly to the equation 

ov «K 
OT eC 
  5. 11) 

This relation is exact on the limit as 7, +0. 

Because this classifies also the way in which the singularity 
on the Von Mises coordinates has been avoided a brief proof is 
given: 

The identity 

    

  

  

Ou sii Ou sespangth Ou 

Oy oy OT 

can be written 

soar lat mecd—a d (5*) 
oy ay \2 ov \2 

or 

Ou ee) ee oV 

oy oT 
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in the limit when y +0 7>0 and 

    

  

ou aS ere oV 

oy OT 

or 

aM AR 
ot eC 

which shows that the transformation does not introduce any sin- 
gularity at the wall in what regards the first derivative. 

5.3. Noticing that C is still an unspecified function of x, 
e 

and that K= ‘er is also a function of x, we can take 
yY /y=0 

--- K (@—8) 
CO rae 

where A is a constant, and « some positive function which is 

zero at «=0. With this choice, K(#—s) is known at each x, 

because at «=O K(Q) is part of the data. And because the 

equation is parabolic K is known marching downstream. 

In the limit of e—0 we have 

  
ave... 

oT 
A 

which shows that the problem can be transformed into one of 

constant derivative as boundary condition. 
This form has some peculiar advantages in what concerns 

analytical studies, and numerical methods as will be shown. 
The disadvantage is that K and C become unknown unless 

one of them is found. For this, we must consider an assimptotic 
expression near +=0O and find, for example, the higher order 

derivatives. 
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6— ANALYTICAL BOUNDS FOR THE SOLUTIONS 

6.1. Many results can be extracted from Theorem 2 and 
some other from the general theory of partial differential equa- 

tions. 

Ue 
So far, only the cases of > 0 (favorable pressure gra-   

x 

dients) have been studied in this way. The theorems proved by 
Oleinik, Velte, Serrin, apply only for the case of laminar wall 

flows without a velocity maximum a3 >0O for y>O at the 
2 

initial station) which excludes wall jets and turbulent flows. 

Because some recent results obtained by Serrin [11] on the 

assumptions refered and “>0O on the whole flow can be ob- 

tained from Theorem 2 and 3 (allowing w=0 at y=0) and 

because they will be useful later on, we quote them without 

proof. 

6.2. Assume that 

  
dUc 

6.1 0 ) ‘Pp > 

6. 2) u(y) is the initial profile 

6. 3) u(x,y) is the solution of the b.1. eq. 

: ou, ; 
6. 4) rr is continuous for 0<x*< 0 

» 
0 <yvy<o. 

If: 

6.5) a) Ug (x) =C («+ da)” 0<'4.< co 

CSO; a>0 

and u (x,y) is the similar solution corresponding to the stream- 

ing speed: 

u(x, y) = U(x) f(a). 
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Then 

6. 6) | tae | == 0) eric) as «co uniformly in y. 
Ue “™” 

6) If w and w are two solutions corresponding to the same 

Uc(*) but different profiles, « and wu, the streaming speed 
is twice continuously differentiable and obeys: 

aUe 

ax 
  6. 7) Cr(a+dyp"tUg Cy (x +d)?" 

where C, and Cy, are positive constants and m and wm are 

exponents satisfying the condition 

  

6. 8) m<n<—m. 
3) 

Then 

6. 9) —— =0O(1) as *«+oco uniformly in y. 
Uc 

    

6.3. For the skin friction the following results apply: If 

u(y) is an arbitrary initial profile and u(x,¥y) is the similar 
solution corresponding to the same streaming speed (Ug(*)= 

=C(x+d)", then 

    6. 10) = [5—E|—=0( . ) ae 
Uc xem 

where 

a f/2@+%) g \/ eae 

That is: 

gs 
The normalized skin friction is assimptotically unique 

G 

as « tends to infinity. 

6.4. The results presented before are precise because some 
specific assumptions have been made concerning the pressure 
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gradient and because similar solutions exist. The results also 

imply »=const. and laminar flows. 
Now we only assume that » is not a function of x (for 

example, » is given by a mixing length hipotesis) and p=const. 

6.4.1. Let us consider a very crude but ilustrative estimate. 

Put Uc we =— ce to bring the pressure gradient expli- 
u x 

citly into account. 
Assume as comparison function Z=/(x). 
Because Z only depends on «x, all derivatives in U dis- 

appear and the momentum equation gives 

  

  

  

  

af _ 1 a@P 
ax f ax 

or 

dg 2 @P 
dx e ax 

so 

pe-po— (242 ax 
0 ° x 

or 

ims 7-2 f° — : ve dx 

and /f is an upper bound to the exact solution if 

f (0) > max U(0, $) 

because w must always be positive, f?>0 is an imposition for 

the solution to exist. 

So, we have the condition 

  

  

Ui—2 | — A Sige 0 
ax 

for a solution to exist. 

Consider now an adverse pressure gradient: J 0. 
E 
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Then, an x, exists such that: 

=U?   
rap. 1d P 

Je 0 ax ‘ 

so, at this x, occurs the separation of the boundary layer if it 
had not yet occured. 

This very crude application of the theorem cleary shows 
that an adverse pressure gradient applied for a sufficient distance 
always gives separation; and an upper downstream limit for it 

to occur is given above. 

This result is true regardless of the boundary layer being 
laminar or turbulent and shows the unsoundeness of empirical 

correlations and semi-empirical results quoted in textbooks fora 

limit adverse pressure gradient which gives rise to separation. 

This result also shows the nonphysical character of the so called 
separating profile in the Falkner-Skan family of similar solutions: 
only for the corresponding initial profile and absence of arbitra- 
rily small perturbations can such a solution exist. 

6.2.2. In equation 4.5) put V=—_U, and derive in ¢. 

Putting Za we get 

aZ eo 0 

ax 0 
  ; RZ) + V2 (RZ) 

which is again a parabolic equation. 

Putting Z=—/f, (x), we get as in 6.2.1. 

jf, = const. 

and we conclude, using Theorem 3, that in Von Mises coordinates 

oV ou : : Se 
=u has its maximum and minimum values on the 

av av 
initial line or at the wall 

  

  (because “ —=0 when p>), 
fr) ( 
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6.2.3. Deriving now 4.5 in order to x we have the con- 

clusion that has its maximum value on the initial line or   

x 

on )=co, the maximum rate of decrease (or increase) being 
duc 

dx 
  

6.2.4. For 5.8), 5.9) with 

oV 

oT 
=A   

we reach the conclusion regarding the (x,7) coordinates that 

oV 

OT 

  <A 

unless on the initial line   >A for some point. In this case 

  

  

oT 

that value is the maximum attainable. 

Because A>0O, if Aid =B<0 on the initial line 
T A 

a3 ON oe 
oT 

on the whole flow. 

CONCLUSION 

A consistent theory of the boundary layer can be established 
in connection with its classification as a non-linear parabolic 
equation on the proper sense. This excludes regions of backflow 

which is again consistent with the physical concept that down- 

stream events do not influence upstream ones. It is also consistent 

with the primitive Prandtl analysis. Using this basic framework 

existence and uniqueness of solution can be proved based on 
comparaison theorems. These allows, also, the construction of 
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analytical bounds for the exact solution which form the basis of 
a qualitative theory of the boundary layer. Similar solutions form 
a class of natural bounds for laminar flows. 

For turbulent flows, such bounds depend on the specific forms 

assumed for the Reynolds stresses. 

A general result applicable to both laminar and turbulent 

flows implies that an adverse pressure gradient always gives rise 

to separation at a finite distance. 
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