ÉTUDE SEMI-CLASSIQUE DE LA DIFFUSION ÉLASTIQUE D'IONS LOURDS (*)

R. DA SILVEIRA

Institut de Physique Nucléaire, Division de Physique Théorique (**) 91406, Orsay, France

RESUMÉ — Nous analysons de façon semi-classique la diffusion élastique d'ions lourds. Nous montrons que la section efficace différentielle peut être décrite en termes de diffusion «arc en ciel». Nous donnons aussi un moyen direct d'extraire des résultats experimentaux une valeur approchée du moment angulaire de forte absorption.

ABSTRACT — We give a semi classical analysis of heavy ion elastic scattering. We show that the whole behaviour of differential cross section is well discribed in terms of rainbow scattering. A direct way to extract from experimental results an approximate value for the angular momentum of strong obsorption is also given.

(*) Reçu le 12 Avril 1973.

(**) Laboratoire associé au C. N. R. S.

Portgal. Phys. - Vol. 8, fasc. 3-4, pp. 217-244, 1973 - Lisboa

1. INTRODUCTION

L'utilisation de l'approximation semi-classique en théorie des collisions nucléaires connait actuellement un regain d'intèrêt lié au developpement de la physique expérimentale des ions lourds. L'intèrêt d'un tel type d'approche est double; d'une part il permet de s'affranchir des dificultées numériques posées par les situations où les noyaux en collision sont très lourds, d'autre part il permet une compréension physique des différents aspects du phénomène, extrèmement claire et instructive. Les apllications de la théorie semi-classique à la diffusion élastique, dans le domaine nucléaire, datent de 1959 (Ford et Wheeler) [1]. La situation très importante où la fonction de déflexion classique possède des points stationnaires y est examinée de façon analogue à celle utilisée en optique pour traiter le cas où la diffusion de la lumière par des goutelletes d'eau, donne origine au phénomène de l'arc en ciel: c'est l'approximation de Airy [2]. Mais l'approximation de Airy n'est valable qu'au voisinage de l'angle pour lequel la fonction de déflexion est stationnaire, de sorte que, son application est restée très limitée [1,3].

Enfin, le developpement des programmes de calcul numérique permettant l'évaluation des déphasages lorsqu'on se donne le potentiel, a fortement contribuée à un certain désinterêt pour l'approximation semi classique, en diffusion élastique.

Avec le développement de la physique expérimentale des ions lourds, les situations où les conditions semi classiques sont largement satisfaites, sont devennues extremement courantes.

Il faut aussi remarquer que pour des collisions entre noyaux très lourds, le calcul numérique conventionel pose actuellement des problèmes non encore résolus.

Mais, si pendant longtemps l'aproximation semi-classique de la diffusion élastique fût absente en physique nucléaire, elle a par contre connue d'importants développements dans le cadre des collisions atomiques.

Des exemples typiques de la diffusion «arc en ciel» (rainbow scattering) sont depuis quelques années bien connus en physique atomique où la mise au point de faisceaux atomiques et moléculaires à connu d'importants progrès. Les développements théo-

riques qui ont accompagné le progrès expérimental ont conduit à réexaminer certains aspects de l'approximation semi classique.

Le cas où la function de déflexion passe par un point stationaire a été reformulé en s'affranchissant des conditions conduisant à l'approximation de Airy. Cette reformulation, due à Berry [4], et qui complete le traitement de Ford et Wheeler, sera reprise ici dans le contexte des collisions nucléaires. Nous verrons qu'elle permet une analyse à la fois quantitative et qualitative, très simple, de la diffusion d'ions lourds [5].

Nous commencerons par passer en revue brièvement — partie 2 — les aspects essentiels de l'approximation classique elle même. Les effets d'interférence ainsi que la diffusion «arc en ciel» et la diffusion en spiralle, serons discutés dans la partie 3. Dans la partie 4 nous comparerons entre elles les collisions atomiques et nucléaires qui satisfont les conditions semi-classiques.

Le traitement quantitatif [5] de la diffusion élastique d'ions lourds, ainsi que la comparaison avec l'expérience, sera donné dans la partie 5. Dans la partie 6 nous exploiterons qualitativement la théorie semi classique et nous donnerons un moyen simple d'extraire des resultats experimentaux une valeur approchée du moment angulaire d'absorption [5]. Enfin, perspectives et conclusions seront resumées dans la partie 7.

2. L'APPROXIMATION SEMI-CLASSIQUE

Nous rapellerons ici brièvement quelques résultats de la théorie semi-classique qui nous seront utiles par la suite. Pour plus de détails le lecteur est renvoyé aux réferences 1, 6 et 7.

Considerons la diffusion d'une particule de masse réduite met nombre d'ondes réduit k, par un potentiel central V(r). La section éfficace différentielle de diffusion $\sigma(\theta)$ s'écrit

(2.1)
$$\sigma(\theta) = |f(\theta)|^2$$

où l'amplitude de diffusion f(0) peut s'exprimer par le developpement habituel

(2.2)
$$f(\theta) = \frac{1}{2 k i} \sum_{l=0}^{l=\infty} (2 l + 1) (c^{2i \pi_l} - 1) P_l(\cos \theta)$$

où n_l est le déphasage de l'onde partielle d'indice l.

Portgal. Phys. - Vol. 8, fasc. 3-4, pp. 217-244, 1973 - Lisboa

Maintenant, ce qui est convenu d'apeller approximation semiclassique, est l'expression $f_{sc}(\theta)$ que l'on obtient lorsqu'on introduit dans le calcul de $f(\theta)$ donné par (2.1), un certain nombre d'approximations. Ces approximations, au nombre de quatre, sont:

1. Les déphasages n_i sont remplacés par leurs expressions en approximation B. K. W.:

$$n_l \rightarrow n_l^{\rm BKW}$$
.

Les déphasages π_l^{BKW} satisfont une relation importante qui nous sera utile par la suite: on a

(2.3)
$$2 \frac{d \eta_l^{\text{BKW}}}{d l} = \Theta(l),$$

(2.4)
$$\Theta(l) = \pi - 2 \int_{r_{mi}}^{\infty} \frac{\frac{(l+1/2)\hbar}{r^2} dr}{\sqrt{2m[E-V(r)] - \left[\frac{(l+1/2)\hbar}{r}\right]^2}}$$

 $\Theta(l)$ est la fonction de déflexion classique. r_{mi} est la distance minimum d'approche pour la trajectoire de moment angulaire $L = (l + 1/2)\hbar$.

Il est important de signaler que les quatre approximations conduisant à $f_{s.c.}(\theta)$, seule la présente contient, à strictement parler, l'approximation classique elle même, qui se traduit par la condition d'une lente variation du potentiel V(r) dans un domaine grand comparé à la longueur donde du mouvement relatif. Nous pouvions donc dès maintennant introduire dans (2.2) les déphasages B. K. W. et obtennir l'amplitude de diffusion en évaluant numériquement la somme sur l.

Nous allons toutefois introduire trois approximations suplémentaires qui s'avèreront très avantageuses. D'une part elles permettront de voir de façon très claire comment le résultat semi-classique modifie le résultat purement classique, d'autre part, elles conduisent à des expressions facilement maniables, ne necessitant pas de calculs numériques très lourds.

2. Les polynômes de Legendre sont remplacés par leurs expressions assymptotiques.

Portgal. Phys. - Vol. 8, fasc. 3-4, pp. 217-244, 1973 - Lisboa

Pour l >> 1, $\sin \theta \ge 1/l$, on a

(2.5)
$$P_l(\cos\theta) \sim \left[\frac{1}{2}(l+1/2)\pi\sin\theta\right]^{-1/2} \sin\left[(l+1/2)\theta + \pi/4\right]$$

on remarquera que l>>1 est choérent avec la limite classique de la mécanique quantique.

3. Si un grand nombre d'ondes partielles intervient dans (2, 2) [l>>1] on peut remplacer la somme \sum par une intègrale:

$$\sum_{l} \to \int dl.$$

Compte tennue de 1., 2. et 3. on obtient pour $f(\theta)$, $\theta \neq 0$:

(2.6)
$$f(\theta) \sim -\frac{(2\pi\sin\theta)^{1/2}}{k} \int_0^\infty (l+1/2)^{1/2} [e^{i\Phi_+} - e^{i\Phi_-}] dl$$

où les phases Φ_+ sont données par

(2.7)
$$\Phi_{+} = 2 n_{l} \pm (l+1/2) \Phi \pm \pi/4.$$

4. L'intégrale (2.6) est evaluée de façon approchée en utilisant le méthode des phases stationnaires.

La valeur de l qui rend maximum l'une ou l'autre des phases Φ_+ étant $l = l_0$, on obtient $[l_0 >> 1, l_0 + 1/2 \sim l_0]$

(2.8)
$$f(\theta) \sim f_{s.c.}(\theta) = \sqrt{\sigma_{cl}(\theta)} e^{i\beta}$$

où

(2.9)
$$\sigma_{cl}(\theta) = \frac{1}{k^2 \sin \theta} \frac{l}{|d\Theta/dl|}$$

est la section éfficace différentielle classique et β est donné par

(2.10)
$$\beta = 2 n_I - 2 l n'_I - (2 - n''/|n''| - n'/|n'|) \frac{\pi}{4}$$

Portgal. Phys. - Vol. 8, fasc. 3-4, pp. 217-244, 1973 - Lisboa

où il est sous-entendu que la valeur de l', comme dans (2.9), est la valeur $l = l_{\theta}$. Celle-ci est reliée à l'angle de diffusion θ par la relation classique

$$(2.11) \qquad \qquad \Theta(l) = \pm \theta, \qquad l = l_0$$

dans cette expression, θ étant l'angle de diffusion, par convention positif; le signe dans (2.11) doit être choisi en conséquence.

3. EFFETS D'INTERFÉRENCE, DIFFUSION «ARC EN CIEL» ET DIFFUSION EN SPIRALE.

3.1 Effets d'interférence

L'expression (2.8) n'est valable que si la relation entre θ et l est biunivoque, auquel cas on a, compte tennu de (2.1) et (2.8),

$$\sigma_{s.c.}(\theta) = |f_{s.c.}(\theta)|^2 = \sigma_{cl}(\theta).$$

C'est en particulier le cas du potentiel de Coulomb, $V(r) = Z_1 Z_2 e^2/r$, pour lequel la fonction de déflexion s'écrit

(3.1)
$$\Theta_{\rm R}(l) = \pi - 2 \arccos \frac{\eta}{l}$$

où n est le paramètre de Sommerfeld $n = Z_1 Z_2 e^2/\hbar v$. Dans la plupart des cas d'interêt pratique il se trouve que le potentiel diffuseur est tel que deux ou plus de trajectoires de moment angulaire différent, sont deviées suivant le même angle. Du point de vue classique, si

 $(\sigma_{cl})_1, \cdots, (\sigma_{cl})_j,$

sont les sections éfficaces qui correspondant aux trajectoires de moment angulaire (en unitées \hbar), $l_1(\theta), \dots, l_j(\theta)$; on a, pour la section éfficace totale en θ :

(3.2)
$$\sigma_{cl}(\theta) = (\sigma_{cl})_1 + \cdots + (\sigma_{cl})_i.$$

Par contre le résultat semi-classique s'écrit lui

(3.3)
$$\sigma_{s.c.}(\theta) = |f_1(\theta) + \dots + f_j(\theta)|^2,$$

$$f_i(\theta) = \sqrt{(\sigma_{cl})_i} e^{i\beta_i}$$

Portgal. Phys. - Vol. 8, fasc. 3-4, pp. 217-244, 1973 - Lisboa

224

les β_i etant définies par (2.10). Si $\Theta(l)$ n'a que deux branches, figure 1, on a le résultat très simple

(3.4)
$$\sigma_{s.c.}(\theta) = \underbrace{(\sigma_{cl})_1 + (\sigma_{cl})_2}_{\sigma_{cl}(\theta)} + 2\sqrt{(\sigma_{cl})_1 (\sigma_{cl})_2} \sin \vartheta$$

avec, compte tennu de (2.3) (2.10) et (3.3),

(3.5)
$$\hat{\sigma} = \int_{I_1(\mathfrak{g})}^{I_2(\mathfrak{g})} |\Theta(l) - \theta| dl.$$

Les deux premiers termes dans (3.4) constituent le résultat classique pur. Le troisième terme est le terme d'interférence, quantique. L'examen de (3.4) montre que le résultat classique est modulé par une figure d'interférence. La «longueur d'onde» des oscillations de cette figure d'interférence (separation angulaire entre deux maxima) est donnée par

$$\Delta \theta \sim \frac{2\pi}{|\overline{l_1} - \overline{l_2}|}$$

où $\overline{l_1}$ et $\overline{l_2}$ sont les valeurs moyennes de $l_1(\theta)$ et $l_2(\theta)$ en θ et $\theta + \Delta \theta$. Pour que la figure d'interférence soit perceptible lors

225

Portgal. Phys. - Vol. 8, fasc. 3-4, pp. 217-244, 1973 - Lisboa

d'une expérience de diffusion, il faut que les deux moments angulaires conduisant au même angle de diffusion ne soient differents d'un très grand nombre d'unités; autrement, le système de comptage va donner comme résultat une moyenne sur une certaine plage d'angle et la section éfficace mesurée sera la section éfficace classique. Celle ci correspondant, par consequent, au résultat à faible resolution.

3.2. La diffusion «arc en ciel»

L'examen des expressions (3.2) et (3.4) montre que lorsque $\Theta(l)$ passe par un point stationaire, $\Theta'(l)=0$, les sections éfficaces classique et semi-classique deviennent infinies. La figure 1 montre un cas où $\Theta'(l)$ passe par un maximum à $l = l_r$. L'angle de diffusion correspondant est $\theta = \theta_r$.

Une situation analogue se rencontre en optique lorsqu'on étudie la diffusion de la lumière par des goutelettes d'eau [7]. Si l'on repère le «rayon» incident sur la goutelette par la donnée de l'angle d'incidence γ , l'intensitée de la lumière, lorsque calculée à la limite de l'optique géometrique, est infinie dans la direction $\theta = \theta_r$ pour laquelle $d\theta/d\gamma = 0$.

La situation en théorie des collisions est tout à fait analogue sauf que le potentiel V(r) varie de façon continue, tandis que l'indice de réfraction du milieu dans lequel se propage la lumière, varie brusquement sur la surfase de la goutelette. C'est cette analogie qui à suggeré à Ford et Wheeler [1] de donner le nom diffusion «arc en ciel» (rainbow scattering) à la même situation lorsqu'on la rencontre dans un problème de collisions.

L'expression (3.4) n'est valable que dans la region où les deux branches de $\Theta(l)$, emergeant de $\theta = \theta_r$, sont nettement séparées.

Berry [4] (voir cette réference pour plus de détails) a reformulé le problème de l'évaluation de l'intégrale (2.6) en vue d'obtenir un résultat valable au voisinage de $\theta = \theta_r$ et qui se comporte comme (3.4) dans la region $\theta << \theta_r$.

Dans la region $\theta < \theta_r$, la region «éclairée» (the lit region) le résultat est

(3.7)
$$\sigma_{s.c.}(\theta) = \pi \left\{ \left[(\sigma_{cl})_{1} + (\sigma_{cl})_{2} + 2\sqrt{(\sigma_{cl})_{1}(\sigma_{cl})_{2}} \right] Z_{L}^{1/2} A^{2}i (-Z_{L}) + \left[(\sigma_{cl})_{1} + (\sigma_{cl})_{2} - 2\sqrt{(\sigma_{cl})_{1}(\sigma_{cl})_{2}} \right] A^{\prime 2}i (-Z_{L}) \right\}, \quad \theta < \theta r.$$

Portgal. Phys. - Vol. 8, fasc. 3-4, pp. 217-244, 1973 - Lisboa

Dans la region $\theta > \theta_r$, la region «d'ombre» (the shadow region), $l_1(\theta)$ et $l_2(0)$ ainsi que $\Theta'(l_1)$ et $\Theta'(l_2)$ sont complexes conjugués. En posant

$$l_{1,2}(\theta) = |l(\theta)| e^{\pm i\alpha(\theta)}$$
$$\Theta'(l_{1,2}) = |\Theta'(\theta)| e^{\pm i\beta(\theta)}$$

on a,

(3.8)
$$\sigma_{s.c.}(\theta) = \frac{2\pi |l(\theta)|}{k^2 \sin \Theta |\theta'|} \{ [1 - \sin (\alpha(\theta) - \beta(\theta)] Z_{\mathrm{S}}^{1/2} \mathrm{A}^2 i(Z_{\mathrm{S}}) + [1 + \sin (\alpha(\theta) - \beta(\theta))] Z_{\mathrm{S}}^{-1/2} \mathrm{A}^{\prime 2} i(Z_{\mathrm{S}}) \}, \quad \theta > \theta_r.$$

Dans (3.7) et (3.8) on a

$$\theta < heta_r, \qquad Z_{
m L} = \left(\frac{3}{4}\,\delta\right)^{2/5}$$

(3.9)

$$\theta > \theta_r$$
, $Z_s = \left| \frac{3}{4} \operatorname{Im} \delta \right|^{2/5}$

d étant defini par (3.5).

A i et A'i sont respectivement la fonction de Airy et sa derivée. La fonction de Airy est définie par l'intégrale

(3.10)
$$A i(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ixu + \frac{1}{3}iu^3} du.$$

Du comportement de la fonction de Airy [8] pour des arguments négatifs $(\theta < \theta_r)$ et positifs $(\theta > \theta_r)$ on peut conclure de l'allure de $\sigma_{s.c.}(\theta)$. Celle-ci a un comportement oscillant pour $\theta < \theta_r$ et décroît (allure exponentielle) pour $\theta > \theta_r$.

Des expressions (3.7) et (3.8) on peut extraire deux résultats importants.

i. Le comportement pour $\theta \ll \theta_r$.

Dans ce cas, on a $Z_L >> 1$ et l'on peut remplacer A i(x) et A'i(x) par leurs expressions assymptotiques [8]. Il est alors facile de voir que (3.7) se réduit exactement à (3.4).

ii. Le comportement pour $\theta \rightarrow \theta_r$.

Portgal. Phys. - Vol. 8, fasc. 3-4, pp. 217-244, 1973 - Lisboa

Au voisinage de $\theta = \theta_r$ on peut développer $\theta(l)$ en puissances de $l - l_r$. En gardant le terme quadratique, on a

(3.11)
$$\theta(l) = \theta_r - q (l - l_r)^2.$$

Dans ce cas le deuxième terme dans (3.7) et (3.8) est négligeable devant le premier qui se réduit lui, à

(3.12)
$$\sigma_{s.c.}(\theta) \sim \frac{2 \pi l_r}{k^2 \sin \theta q^{2/5}} \mathbf{A}^2 i(x), \qquad \theta \sim \theta_r$$
$$x = \frac{\theta - \theta_r}{q^{1/5}}$$

C'est l'approximation de Airy de l'optique, utilisée pour la première fois par Ford et Wheeler en théorie semi-classique des collisions.

3.3. Diffusion en spirale

La diffusion en spirale (spiral scattering) se produit lorsque le potentiel effectif

(3.13)
$$V_{eff}(r,l) = \frac{\hbar^2 l(l+1)}{2 m r^2} + V(r)$$

possède, pour une valeur donnée de $l(l_1)$, un maximum relatif; c'est-à-dire lorsqu'on a (figure 2)

(3.14)
$$\left(\frac{d \operatorname{V}_{\operatorname{eff}}(l_1, r)}{d r}\right)_{r=r_1} = 0.$$

Dans ce cas l'énergie E est exactement égale à la hauteur de la «barrière» effective:

(3.15)
$$E = V_{eff}(r_1, l_1).$$

Enfin pour $l = l_1$, l'expression (2.4) montre que $\Theta(l)$ présente une singularité.

En termes de diffusion potentielle, à cette situation, correspond, pour le projectile, un mouvement en spirale autour du centre diffuseur. Ce mouvement en spirale se poursuit jusqu'à

Portgal. Phys. - Vol. 8, fasc. 3-4, pp. 217-244, 1973 - Lisboa

ce que le projectile atteigne une orbite circulaire. Des exemples de ce type de diffusion se rencontrent dans les collisions atomiques. Dans le contexte des collisions entre ions lourds, le moment angulaire l_1 correspondant au franchissement de la

Fig. 2 – Le potentiel V_{eff} (l, r) pour differentes valeurs de l. Pour $l = l_1$ on a V_{eff} $(l_1, r_1) = E$.

barrière effective doit, par conséquent, être rapproché du moment angulaire dit de forte absorption. Nous reviendrons au paragraphe 5.2 sur cette question.

4. ANALOGIES DANS LES COLLISIONS ATOMIQUES ET NUCLÉAIRES

Il est instructif de comparer les résultats des sections éfficaces differentielles que l'on obtient pour les collisions atomiques et nucléaires lorsqu'on satisfait les conditions semi-classiques.

Portgal. Phys. - Vol. 8, fasc. 3-4, pp. 217-244, 1973 - Lisboa

Dans les figures 3 et 4 on peut voir des résultats expérimentaux obtenus respectivement pour les collisions des atomes de K et Hg et pour la collision des noyaux de A et Se. Dans les deux cas on peut constater un comportement analogue de la section éfficace différentielle aux grands angles; une allure oscillante, suivie d'une décroissance très rapide, telle qu'elle est prevue par les expressions (3.7) et (3.8).

Fig. 3 — Résultats expérimentaux de diffusion élastique des atomes de K'et Hg, pour trois énergies incidentes. La section efficace différentielle est multipliée par sin 0. Réference (9).

L'interpretation des résultats en physique atomique peut se faire à l'aide d'un potentiel du type Lenard Jones dont l'allure est dessinée dans la figure 5, où l'on a aussi fait figurer un potentiel (Wood Saxon + Coulomb) adapté lui, à la description des collisions noyau — noyau.

La différence essentielle dans le comportement de ces deux potentiels tient a ce que le deuxième présente une variation trés rapide pour $R \sim R_1 + R_2$ (c'est à dire au voisinage du contact des noyaux) où R_1 et R_2 sont les rayons de deux noyaux en collision. Ceci se traduit, dans la fonction de déflexion des collisions

Portgal. Phys. - Vol. 8, fasc. 3-4, pp. 217-244, 1973 - Lisboa

noyau — noyau, par une variation elle aussi très rapide pour des valeurs $l \gtrsim l_r$. Le moment angulaire l_r correspond par conséquent dans le cas nucléaire à une trajectoire tangentielle (grazing collision). Les figures 6 et 7 montrent des exemples de fonctions

Fig. 4 – Résultats experimentaux de diffusion élastique des noyaux de Ar et Se, pour deux énergies incidentes. La section efficace differentielle est divisée par $\sigma_{\rm R}$. Réference (10).

de déflexion que l'on obtient avec, respectivement, un potentiel de Lenard Jones et un Wood Saxon + Coulomb.

Elles traduisent l'une et l'autre l'allure du potentiel; au voisinage de $l = l_r$ la première est quasi symétrique, l'autre, très fortement assymétrique. C'est pour cette raison que la formule

Fig. 5 – Allure des potentiels de Lennard – Jones (à gauche) et Wood Saxon + Coulomb (à droite).

Portgal. Phys. - Vol. 8, fasc. 3-4, pp. 217-244, 1973 - Lisboa

de Airy, et lorsqu'on s'éloigue de $\theta = \theta_r$, donne de moins bons résultats en physique nucléaire. En effet l'expression (3.12) est obtenue avec le seul terme quadratique dans le developpement de $\Theta(l)$ (3.11) et ce terme donne pour $\Theta(l)$ une forme symétrique de part et d'autre de $l = l_r$.

Fig. 6 — La fonction de déflexion $\Theta(l)$ pour un potentiel Lennard — Jones et pour differentes énergies. Réference (9).

Fig. 7 – La fonction de déflexion $\Theta(l)$ pour un potentiel Wood Saxon + Coulomb) dans le cas α + Pb, E = 48.2 Mev. Réference (1).

Portgal. Phys. - Vol. 8, fasc. 3-4, pp. 217-244, 1973 - Lisboa

L'examen de la fonction de déflexion à differentes énergies permet une interpretation qualitative simple des résultats experimentaux. On constate, figure 6, que la «courbure» q de $\Theta(E, l)$ à $l = l_r$, est d'autant plus petite que l'énergie est grande.

Lorsque sur deux courbes à énergie differente on s'éloigue vers un angle θ distant de θ , de la même quantité, la différence $|l_1(\theta) - l_2(\theta)|$ est d'autant plus grande que q est petit et E est grand. L'expression (3.6) montre alors que les oscillations de la figure d'interférence sont d'autant plus serrées que l'énergie augmente, ce qui est bien le comportement des résultats expérimentaux.

5. LA DIFFUSION ÉLASTIQUE D'IONS LOURDS

5.1. Usage d'une fonction de déflexion parametrisée

Lorsque l'énergie incidente est au dessus de la barrière de Coulomb, on se trouve dans la situation où la fonction de déflexion a le comportement de celle de la figure 7. C'est de ce cas que nous allons nous occuper ici. Pour tester les expressions (3.7) et (3.8) de $\sigma_{s.c.}(\theta)$ lorsqu'on traite une situation expérimentale particulière, il faut se donner la fonction de déflexion $\Theta(E, l)$. Celle-ci s'obtient lorsqu'on se donne le potentiel V(r) par l'expression (2.4). Mais, dans le but d'obtenir des expressions facilement maniables, plutôt que parametriser V(r) et en dèduire $\Theta(l)$, nous allons nous donner directement celle-ci par une expression parametrisée.

Nous utiliserons à cet effet l'expression proposée par Ford et Wheeler [1] qui s'écrit

(5.1)
$$\Theta(l) = \theta_r - \rho \ln^2\left(\frac{l-l_1}{l_r-l_1}\right)$$

(5.2)
$$\varphi = q \, (l_r - l_1)^2, \, q = \frac{1}{2} \left(\frac{d^2 \Theta}{d \, l^2} \right)_{l = l_r}.$$

Dans (5.1), θ_r est l'angle «arc en ciel», l_1 est le moment angulaire qui satisfait l'équation (3.14) et q est comme en (3.11) la

Portgal. Phys. - Vol. 8, fasc. 3-4, pp. 217-244, 1973 - Lisboa

«courbure» de $\Theta(l)$ à $l = l_r$ que l'on peut [1] arbitrairement relier à une largeur Δl de surface par

$$q = \frac{\theta_r}{(\Delta l)^2}.$$

Le moment angulaire l_r correspond à la trajectoire qui est deviée suivant l'angle θ_r et, comme celle-ci correspond approximativement à une collision tangentielle, on a, entre θ_r et l_r , la relation bien connue.

$$(5.4) label{lr} l_r = n \cot g \frac{\theta_r}{2}$$

de sorte que (5.1) a trois paramètres libres qui doivent être fixés par comparaison avec l'expérience. Pour $l > l_r$ les trajectoires deviennent des hyperboles caracteristiques du mouvement dans un champ de Coulomb pur. Toutefois l'expression (5.2) donne pour $l > l_r$ une décroissance trop rapide par rapport a la fonction de déflexion dans le champ de Coulomb, équation (3.1). Nous corrigerons partiellement ce défaut comme on le verra en 5.3.

5.2 Introduction de l'absorption dans le traitement semi--classique

La fonction de déflexion est determinée par la donnée d'un potentiel V(r) réel. Pour introduire dans la description semiclassique l'effet de l'ensemble des voies autres que l'élastique, il faut des hypothèses suplémentaires. Nous avons vu, en 3., que les trajectoires franchissant la barrière effective, $V_{eff}(l_1, r_1)$ (3.13), étaient celles de moment angulaire $l \leq l_1$ où l_1 satisfait (3.14). Si l'on suppose que l'effet d'absorption est total pour ces trajectoires (celles dont $l > l_1$ étant réflechies) on doit alors couper la contribution de la fonction de déflexion pour les valeurs $l \equiv l_1^{(5)}$. Dans ces conditions l'absorption est determinée essentiellement par le potentiel réel. Dans le langage du potentiel optique ceci revient à dire que la seule caracteristique demandée à la partie imaginaire est d'être totalment absorbante.

Si ce n'est que sa portée est inferieure à r_1 , figure 2, sa forme particulière ne joue pas de rôle determinant. Enfin le moment

Portgal. Phys. - Vol. 8, fasc. 3-4, pp. 217-244, 1973 -- Lisboa

angulaire de forte absorption $(75^{\circ}/_{\circ})$ obtenu dans les calculs conventionels de potentiel optique, est à comparer à la valeur l_1 .

5.3 Comparaison avec l'expérience. Diffusion élastique A + Se et N + Ag

Les expériences de diffusion élastique A+Se, E = 201 Mev, [10] et N+Ag, E = 113 Mev [11], sont deux exemples où les conditions semi-classiques sont bien satisfaites; on a respectivement n = 42.9 et n = 18.2.

Compte tennu de (2.9) et (5.1), on a, pour les sections efficaces associées aux branches 1 et 2 de $\Theta(l)$, figures 8 et 9,

(5.5)
$$(\sigma_{cl})_{1,2} = (\sigma_{cl})_{-,+} =$$
$$= \frac{l_r - l_1}{2 \, \wp \, k^2 \sin \theta} \, \sqrt{\frac{\rho}{\theta_r - \theta}} e^{\pm \sqrt{\frac{\rho}{(r-\theta)}}} \left\{ l_1 + (l_r - l_1) \, e^{\pm \sqrt{\frac{\theta_r - \theta}{\rho}}} \right\}$$

pour $l \geq lr$ le potentiel d'interaction des deux noyaux devient purement Coulombien et l'on peut écrire

(5.6)
$$(\sigma_{cl})_2 = \sigma_{\rm R} = \frac{n^2}{4 \, k^2 \sin^4 \theta/2}, \ l > l_r$$

(5.6) est la section efficace de Rutherford. Compte tenu de (5.1) (3.5) et (3.9) on a explicitement

(5.7)
$$Z_{\rm L} = \left\{ \frac{3}{4} \left[(\Delta_2 - \Delta_1) - (l_2(\theta) - l_1(\theta)) \theta \right] \right\}^{2/5}$$

où

(5.8)
$$\Delta_{1,2} = -\frac{1}{2} \rho u_{1,2} \left\{ ln^2 \frac{u_{1,2}}{u_r} - 2 ln \frac{u_{1,2}}{u_r} + 2 \right\} + \frac{1}{2} \theta_r u_{1,2}$$

avec $u_{1,2} = l_{1,2}(\theta) - l_1$ et $u_r = l_r - l_1$.

Dans la zone d'ombre, $\theta > \theta_r$ les résultats experimentaux s'étendent sur une plage d'angle relativement restreinte de sorte que l'on peut utiliser pour Z_S (3.9) l'expression approchée

(5.9)
$$Z_{\rm S} \sim \frac{\theta - \theta_r}{q^{1/5}}, \quad \theta \sim \theta_r$$

Portgal. Phys. - Vol. 8, fasc. 3-4, pp. 217-244, 1973 - Lisboa

235.

i includ c.ir

Les figures 8 et 9 montrent le résultat du calcul [5] comparé aux données experimentales.

On y voit aussi le comportement de la section efficace classique au voisinage de $\theta = \theta_r$.

Sur la partie supérieure de ces figures on peut voir la fonction $\Theta(l)$ dont les paramètres sont donnés dans la tableau I.

La courbe en traits tirés, $\Theta_{R}(l)$, est la fonction de déflexion de Coulomb, donnée par (3.1).

L'accord est, dans l'ensemble, assez satisfaisant, mais on remarque que la figure d'interférence donnée par le calcul, oscille plus lentement que le résultat experimental, dans la région

Portgal. Phys. - Vol. 8, fasc. 3-4, pp. 217-244, 1973 - Lisboa

 $\theta << \theta_r$. Ceci tient à la circonstance que l'on avait déjà signalé; la branche 2 de $\Theta(l)$ décroit plus rapidement que la fonction $\Theta_R(l)$. Or c'est l'expression (5.7) où l'on n'a pas fait de correction (celle-ci n'a été faite qu'en (5.6)) qui détermine la «longueur d'onde» des oscilations de la figure d'interférence. L'obtention

Fig. 9 — Diffusion élastique N + Ag, E = 113 Mev. Comparaison des résultats semi-classiques (trait plein) et classique (trait discontinu) avec les données experimentales (11). La partie supérieure de la figure montre la fonction $\theta(l)$ paramètrisée ainsi que $\Theta_{\rm R}(l)$ [5].

d'un meilleur accord avec l'expérience passe, bien entendu, par le calcul de $\Theta(l)$ (2.4) en se donnant V(r). Cette voie permet, par conséquent, de parametriser l'interaction moyenne (réelle) entre les deux noyaux; c'est la démarche habituelle des analises en potentiel optique. Dans celles-ci on calcule les déphasages

Portgal. Phys. - Vol. 8, fasc. 3-4, pp. 217-244, 1973 - Lisboa

 n_l , alors qui'ci on calcule la fonction de déflexion $\Theta(l)$. Les deux démarches sont équivalentes puisque l'on a entre n_l et $\Theta(l)$ la relation (2.3).

TABLEAU I

Energie E (dans le lab.) paramètre de Sommerfeld n et les trois paramètres ajustables θ_r , l_1 et q. Les valeurs de l_r et Δl sont obtennues de (5, 4) et (5, 3). La valeur de r_0 est déduite de

	E (Mev)	n	θr	<i>l</i> ₁	q	lr	$r_0(fm)$	$\Delta l/l_r$
Ar + Se	201	42.9	470	88 (89) (*)	1.510 ⁻⁵	97	1.48	0.24
N + Ag	113	18.2	310	59	2.010^{-5}	64	1.56	0.25

$$r_0 = d_{\min}/(A_1^{1/3} + A_2^{1/3}), \ d_{\min} = \frac{n}{k} \left(1 + \sin^{-1}\frac{\theta_r}{2}\right)$$

(*) Moment angulaire d'absorption extrait d'une analyse en déphasages, réference 10.

6. EXPLOITATION QUALITATIVE DE LA THÉORIE SEMI-CLASSIQUE

6.1 Extraction de la valeur du moment angulaire d'absorption à partir des résultats expérimentaux.

Un raisonement qualitatif [5] permet d'extraire directement des résultats expérimentaux une valeur approchée de l_1 , c'est à dire, du moment angulaire d'absorption (au sense défini en 5.2). Pour ce faire, on considère la region de la figure d'interférence dans la région $\theta \ll \theta_r$. Dans cette région la section éfficace semi-classique est donnée par l'expression (3.4). D'autre part on a vu dans 3.1 que la distance angulaire $\Delta \theta$ entre deux maxima successifs était donnée par

$$\Delta \theta \sim \frac{2 \pi}{|\overline{l_1} - \overline{l_2}|}$$

Portgal. Phys. - Vol. 8, fasc. 3-4, pp. 217-244, 1973 - Lisboa

Mais, pour $\theta \ll \theta_r$ la branche 1 de $\Theta(l)$ (figures 8 et 9) est quasiment perpendiculaire à l'axe l, en raison de la variation très rapide du potentiel nucléaire à la surface. Dans ces conditions, on a

(6.1)
$$\overline{l}_1 \sim l_1, \quad \theta \ll \theta_r.$$

D'autre part, pour $\theta \ll \theta_r$ le moment angulaire $\overline{l_2}$ correspond à la branche de $\Theta(l)$ qui est alors puiement Coulombienne. Dans ces conditions on a

$$\overline{l_2} = \overline{l_R}, \quad l_R = \pi \cot \theta / 2$$

de sorte que l'on a pour l_1

(6.2)
$$l_1 \sim \overline{l_{\rm R}} - \frac{2\pi}{\Delta \theta} \,.$$

Si l'on prend dans les résultats experimentaux les deux maxima qui suivent la première grande oscillation, on obtient pour A+Se, $\Delta \theta \sim 28^{\circ} - 24^{\circ} = 4^{\circ}$ et de (6.2) on déduit $l_1 \sim 96$, valeur qui est à comparer à celle obtenue par le calcul complet (voir tableau I). Un autre exemple où les deux oscillations en question sont relativement bien définies est donné par le résultat C + Ta, E = 124 Mev [12], figure 10]. Dans ce cas on obtient $l_1 \sim 62$ alors que la valeur extraite d'une analyse en déphasages, donne 63,5 [voir la reference 12].

6.2. Le modèle à «bord franc»

On peut aisément obtenir une expression très simple de la section efficace semi-classique dans la région $\theta << \theta_r$ lorsqu'on considère la limite où le puit de potentiel nucléaire est à «bord franc». Le potentiel V(r) s'écrit alors schématiquement

$$V(r) = \frac{Z_1 Z_2 e^2}{r}, \quad r \ge R = R_1 + R_2$$
$$V(r) \sim -V_0, \quad r \ge R.$$

Dans ces conditions les deux branches de $\Theta(l)$ emmergeant de θ_r sont, l'une (la branche nucléaire) approximativemente indé-

Portgal. Phys. - Vol. 8, fasc. 3-4, pp. 217-244, 1973 - Lisboa

pendante de θ et l'autre, une branche de Coulomb pure. Par la même, on a aussi $l_1 \sim l_r$ ce qui signifie que le moment angulaire d'absorption se confond avec le moment angulaire correspondant à la trajetoire tangentielle comme il est caracteristique des modèles où l'on néglige le caractère diffus du potentiel à la surface.

Fig. 10 — Diffusion élastique C+Ta, E=124 Mev. [12]. Les flèches montrent les deux maximums utilisés pour calculer la valeur de l_1 à partir de l'expression (6. 2).

Dans ces conditions on obtient [5] pour δ , [expression (3.5)] compte tenu de (3.1)

$$(6.3) \qquad \qquad \delta = 2 \eta \ln(\sin \theta/2) + l_1 \theta + \Phi.$$

Lorsqu'on remplace (6.3) dans (3.4) on obtient pour $\sigma_{s.c.}(\theta)$ une expression qui reproduit bien les oscillations de la figure

Portgal. Phys. - Vol. 8, fasc. 3-4, pp. 217-244, 1973 - Lisboa

d;interférence dans la région $\theta \ll \theta_r$. Cette expression est, essentiellement, le résultat obtenu par Greider [13] à partir d'un modèle phénomenologique.

Enfim, puisque l'on a $l_1 \sim l_r$, on peut comparer la valeur de l_1 extraite de (6.2) à la valeur de l qui correspond à une trajectoire tangentielle, l_r , obtenue par l'expression bien connue

$$l_r = l_{\theta_{1/4}} = n \cot \frac{\theta_{1/4}}{2}$$

cette comparaison est donnée, pour les deux exemples considerés au paragraphe précedant, dans le Tableau II

TABLEAU II

	<i>l</i> ₁	l _{01/4}
A+Se	96	92
C+Ta	62	66,5

6.3. Y a t'il des oscillations de grande fréquence superposées à celles courrament obtennues?

Dans tout ce qui a été fait nous nous sommes bornés à éxaminer l'interférence entre deux branches de la fonction de déflexion. En invoquant le rôle de l'absorption nous avons négligé la possibilitée de l'interférence de ces deux branches avec la branche négative (positive, par inversion du dessein dans la figure 7) de $\Theta(l)$. Une situation analogue se rencontre en physique atomique. La figure 11 montre, dans le cas atomique, une situation où trois trajectoires de moment angulaire β_1 , β_2 et β_5 contribuent au même angle de diffusion. La figure 12 est un exemple de calcul où l'on a tennu compte de ces trois branches (voir expression 3.3). On y voit clairement les oscillations de grande fréquence superposées à celles qui résultent des deux branches qui émmergent de θ_r .

Portgal. Phys. - Vol. 8, fasc. 3-4, pp. 217-244, 1973 - Lisboa

En physique atomique on décèle experimentalement ces oscillations. Dans le cas nucléaire la branche negligée contribue très peut (quasiment perpendiculaire à l'axe l) à la section efficace totale. Toutefois il n'est pas exclu que des experiences de grande résolution ne décelent des oscillations de grande fréquence (et de très faible amplitude) superposées à la figure d'interférence habituelle.

Fig. 12 — Calcul de la section efficace differentielle (multipliée par $\sin \theta$) lorsqu'on tient compte de la troisième branche de $\Theta(l)$. Collision de deux atomes, réference (9)).

Portgal. Phys. - Vol. 8, fasc. 3-4, pp. 217-244, 1973 - Lisboa.

7. PRESPECTIVES ET CONCLUSIONS

Nous avons passé en revue quelques unes de possibilitées qu'offre la théorie semi-classique pour l'étude de la diffusion élastique d'ions lourds.

Son interêt pratique est, bien entendu, d'autant plus grand que la masse des deux noyaux en collision est elevée. Or, justement dans le cas de noyaux très lourds (Kr + Th) l'étude experimentale [14] de la diffusion élastique est actuellement l'object d'une attention particulière car il semble que l'effet d'une déformation due à la polarisation dans le champ de Coulomb, laisse sa signature dans les distributions angulaires.

L'interêt de ce qui a été exposé ne se limite pas à la diffusion élastique.

L'utilisation de la fonction de déflexion devrait permettre une approche trés naturelle de l'étude de l'interférence Coulombien-nucléaire, en diffusion inélastique, au dessus de la barrière.

Les résultats experimentaux [15] semblent indiquer que les oscillations de la distribution angulaire inélastique, sont en opposition de phase avec celles de l'élastique [dans la région $\theta << \theta_r$, voir expression (3.4)] et ceci quelque soit la parité du niveau excité, contrairement à ce qui se passait avec la règle de Blair. Or, il faut avoir en vue que les oscillations qui satisfont la règle de Blair ne sont pas du même type que celles que nous avons étudiées ici.

Les premières se produissent lorsque l'énergie incidente est telle que l'effet du champ de Coulomb est négligeable (n << k R). On obtient alors des oscillations qui proviennent d'interférences dues à un effet de diffraction (de Fraunhofer) sur les bords du noyau consideré comme une sphère absorbante.

Par contre les oscillations que nous avons examinées trouvent leur origine dans un effet d'interférence du, lui, à la présence d'un terme nucléaire, et d'un terme Coulombien trés important, vis à vis de l'énergie incidente $(n \sim k R)$.

Si, dans un traitement semi-classique [16] de la diffusion inélastique on traite l'élastique en tennant compte de deux branches de la fonction de déflexion, le comportement relatif des oscillations en élastique et inélastique devrait être naturellement inclu [17].

Portgal. Phys. - Vol. 8, fasc. 3-4, pp. 217-244, 1973 - Lisboa

BIBLIOGRAPHIE

- K. W. FORD et J. A. WHEELER, Ann. of Phys. 7 (1959) 259 et Ann. of Phys. 7 (1959) 287.
- [2] G. B. AIRY, Proc. Camb. Phil. Soc. 6 (1838) 379.
- [3] M. L. HALBERT et A. ZUCKER, Nucl. Phys. 16 (1960) 158 A. ZUCKER, Ann. Rev. of Nucl. Sc. 10 (1960) 27.
- [4] M. V. BERRY, Proc. Phys. Soc. 89 (1966) 479.
- [5] R. da SILVEIRA, pre-print IPNO/TH 73-9. (Orsay).
- [6] N. F. MOTT et H. S. W. MASSEY, «The Theory of Atomic Collisions», Clarendon Press, Oxford.
- [7] R. G. NEWTON, «Scattering Theory of Waves and Particles», McGraw--Hill.
- [8] «Handbook of Mathematical Functions», 1964, Ed. M. Abramowitz et I. A. Stegun.
- [9] E. HUNDHANSEN et H. PAULY, Z. Phys. 187 (1965) 305.
- [10] J. GALIN, B. GATTY, D. GUERREAU, C. ROUSSET, U. C. SCHI.TTHANER-VOOS et X. TARRAGO, Nucl. Phy. (Sous presse).
- [11] J. GALIN, D. GUERREAU, M. LEFORT, J. PETER, X. TARRAGO et R. BASILE, Nucl. Phys. A 159 (1970) 461.
- [12] H. E. CONZETT, A. ISOYA et E. HADJIMICHAEL, Proc. of The Third Conf. on Reactions Between Complex Nuclei, Asilomar, (1963) 26.
- [13] K. R. GREIDER, Ann. Rev. of Nucl. Sc. 15 (1965) 291.
- [14] P. COLOMBANI, J. C. JACMART, N. POFFÉ, M. RION, C. STÉPHAN et J. TYS, Phys. Letters, 42 B (1972) 197.
- [15] F. D. BECCHETTI, pre-print, LBL 1652 (Berkeley).
- [16] R. A. BROGLIA, S. LAUDOWNE et A. WINTHER, Phys. Lett., 40 B (1972) 293.
- [17] R. da SILVEIRA et C. WILLAIN, Travail en cours.