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ABSTRACT — The semi-classical theory is used to describe the different 
oscillatory behaviours observed in the elastic and inelastic heavy ion scattering 
cross-sections at incident energies near and above the Coulomb barrier. The 

theory predicts two different phases rules which are well observed in the analyzed 
data: elastic and inelastic scattering cross-sections of 11B on 208Pb at EL=72.2MeV 
and of 22C on 27Al at EL = 46.5 MeV. 

1 — INTRODUCTION 

In heavy ion reactions, the structure of the elastic and inelastic 
scattering cross-sections strongly depends on the scattering angle region 
and on the incident energy. At energies below or just near the 

Coulomb barrier, the nuclear potential can be treated as a small per- 
turbation to the Coulomb one and the classical deflection function is 
nearly of Coulomb form. The agreement of semi-classical theory to 
describe such process is well known [1J-[5] [17], 
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At higher energies {°]-[°] (above the Coulomb barrier), there exist 
a scattering angle 9, close to the angle of grazing collision for which 
the deflection function is stationary. On one side §> 4, the elastic 

and inelastic scattering cross-sections drop rapidly to very low values, 
on the other side §< 6, they present «out of phase» oscillations 
irrespective of the parity of the transition [14] [16], 

In the lit region 6 < 6, the observed phase rule results from the 

quantal interference effect between two classical trajectories which 
contribute to the cross-sections at each scattering angle, and to the 
fact that the one, with high impact parameter is mainly described by 
the Coulomb forces whereas the other, with low impact parameter is 
mainly described by the nuclear forces. The contribution of the nega- 
tive branch of the deflection function can be neglected (Section 2. 2). 

In the dark region 6 > 6, the scattering is essentially described 

by the rainbow process and drops exponentially to very low values. 
When the incident energy increases !"°], the elastic and inelastic cross- 
sections present in the lit region the previously mentioned cout of 
phase» oscillations structure. On the dark side of 6,, the fall-off is 

corrected by oscillations. This oscillations structure observed for §>§, 

can be interpreted as the interference between the rainbow scattering 
(decreasing fastly) and that defined by the negative branch of the 

classical deflection function whose relative contribution increases with 

the incident energy (Section 2. 3). In the inelastic cross-sections, the 
theory predicts oscillations which are «in phase», or «out of phase» 

with the elastic one according as the transition is even or odd. This 
result his exactly the inverse of the well-known Blair phase rule (). 

The forms of the ion-ion potentials and the resulting classical 
deflection functions are discussed in Section 3. The theory outlined in 

Section 2 is used to describe: 

— the elastic scattering and inelastic 3° (2.61 MeV), 5 (3.20 MeV), 

2+ (4.10 MeV) and 4* (4.31 MeV) transitions in 208Pb in the 
collision with 1!B at laboratory incident energy of 72.2 MeV 

——the elastic scattering and inelastic 2* (4.43 MeV) transition in 
22C in the collision of !2C on 27Al at laboratory energy of 
46.5 MeV. 

The experimental data !*] 5) and the theoretical results are presented 
in Section 4. 
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— INELASTIC SCATTERING 

2.1. Outline of the theory 

The semi-classical formulation of the inelastic cross-section is 

developed by use of mathematical approximations analogous to those 
defined in the description of the elastic scattering [°)-(18), 

In order to discuss correctly the approach to the classical limit, 

it is most expedient to start from the scattering amplitude in the form 

usually defined in quantum theory for a central interaction !'°). 

  
ae _ peg Ay Shar Di! 3(1 y tt [bem iP (2.1) 

dQ (Qh hk; 2, vlesl OL +1 
LM 

P.u= (45?) S si i itlp— tye my (ki) Fomy(— hy) 

Ss Li my; lpm 

exp (2 (1, + my) <1;m;lpmp| LM > <l;olyo|Lo > 
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where 

s 1 “” aS 
I, ie(L) = ky iy I dr uy,(Ky r) uy (kyr) i L (r) ‘ (2. 3) 

For the incoming waves uy,,1-(ET) , we assume the form defined 

outside the nuclear region 

uj (kr) == cos 9, F;) (kr) + sin 9; Gi(kr) (2. 4) 

where F;, G, are the regular and irregular Coulomb wave functions 
and 4, is the nuclear phase shift of the /-partial wave. 

In (2. 2) and (2. 3), L defines the multipolarity of the transition, 

Ai and Fi are respectively the spectroscopic factor and the form 

factor of the Coulomb or nuclear excitation forces used to describe the 

interaction of the ions. Their explicit forms are defined in the frame- 

work of a collective model (vibrational or rotational) of the target 
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nucleus (J (8), In (2. 1), (2. 2), (2. 8), per, Air, vir are respectively 
the reduced masses, the wave numbers and the total (Coulomb + 
nuclear) phase shifts in the incomming (f) and outgoing (/) channels. 

In near classical conditions, many partial waves contribute to the 
sum in (2. 2) and we may introduce some approximations. We take 
the variables (L,M) fixed and let the angular momentum J/;, /; 
become infinite with the difference p==l,—l; finite. The classical 

limit of the radial integrals (2. 3) have already been discussed [7] 

Ti, 4(L) ~   
++ 00 

ame = (Gy — ay) | dwexp(1&(esinhw + w)) 

(e+ coshw +i sin hw (e2— 1)12)* 

(ecoshw + 1)*~" FL (r (»)) 
  

=I'(I,n,L). (2. 5) 

The use of the variable «» is the usual parametrization defined for 
the radial variable in serni-classical Coulomb theory 

r=a(ecoshy +1) (2. 6) 

where a=n°/k for the Coulomb trajectory. 
ve is the Sommerfeld number and 

(ne + 2 + 1/2)?” 
ne 

c=   (2. 7) 

In order to improve the semi-classical results, we use some average 
values between the initial and final ones for 7°, & and 7: 

“f= (ag Ae k= (k; key? Fx at lf (2. 8) 

To proceed further, we replace the sums pa p> by a dl and 

i f 
we require the asymptotic forms for the spherical harmonics, the 

total phase shift and the Wigner coefficients [8] 

Yim (8,9) ~ = em? cos (u + 1/2) @ + (m— 1/2) =) 
(sin 6)!?? 
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valid for 

l l 

mi, ~ (1) =— (5 (I+12)— | drrd, Fi ") 
em 

where 

r2 

2( 9)2 
F (r) —I2m (e- yp (r) _ a) 

4+1\12 
<ljolyM|LM>~(—)#tht™ Grae Di-1,,.M (0. 0). 2.9) 21,41 

  

   

The classical expression of the scattering coefficient (2. 2) is: 

  

(4 x)? it ) —4 Y 0) ayy 2 Bim LAw+r (sin 62 iS M,-p (%/2) 

e-*M(@+n) eft At Cine + Ties) (2. 10) 

where 

t= 1 FS 7M dV (L 1) LP ef enero) (2. 11) Lie Va oP, 

To obtain an accurate evaluation of the semi-classical expression (2. 10) 
we must examinate the various approximations available to evaluate 

the integrals IF tps (2.11). The classical deflection functions @(/) we 

consider to describe heavy ions collision will be explicitly defined in 
Section 3. 

2.2. Analysis in the lit region of 9, 

In the lit region @<6,, the most important contributions to the 

scattering come from Coulomb and nuclear surface trajectories defined 
by 6=+0(/). So, in (2,10), we only retain the Iz, terms. In 
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order to calculate the amplitude integral (2. 11), let us define the new 
variable (17) ; 

ot (Q=2nN—=EOxt+— +A) (2. 12) 

such that 

ieee ta era 

al a @) Eo (Ly, A(x) eh SO*F") de (2. 18) 

Only the stationary points regions at x = +78"? (6) are considered to 

contribute to the integral, and we stipulate the correspondence to be 

a a 

mh * al (2. 14) 
1 1h——> x = + 18"? (8) 

When alternatively inserted in (2. 12), these relations yield the values 

of A(@) and &(6). For 6<@,, J; and J/g are real values and & (6) 
will be real and negative: §(6)——J|&(8)|. In order to evaluate (2. 13) 

we introduce the serie: 

OD) EL ua ay= SOP + EOP» + dae) 218) 
m=0 

2 (oe a. 

The stationary phase approximation in (2. 18) defined for § (@)+.»2—0, 
corresponds to the lowest order m0 approximation (2. 15). Using 
the relations (2.14), pp and gy are defined by 

1... . 1 . . 
Poo (1 + 19) P= 3; pe 2") (2. 16) 

with 

27 EI? 1/2 

pa) OP. 2.17 i tome | (Len) (2. 17) 

In these expressions (2. 17) the derivative is supposed to be negative 
for J=1/, and positive for JJ, (Fig. 1-2). By inserting (2. 15)- 
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(2.17) into (2. 13) and integrating, the inelastic scattering integral is 

approximated by: 

it, ane tT saw. 

_ pita; 1/2 ey Lul 

f . ‘alGean “+ Sa, Lat) | 
  et aeTeN _ (Et I2V | @.18 

i (Gar, — (oan io] ( ) 

It we describe the excitation of a vibrational even-even nucleus from 

: _yl . 
its fondamental OF to a state I>, the expression for the cross- 

dol : 
= vf" «(1 — 7)? > 

dQ 

sections is: 

2 Tv 

ae a ' °) | , we hd 

J&P A*E(—[E]) = [ote | @or,m (a) |? + | aor, » (2) P 

a (a4 Oa)? (aor, v (21) aor,» (Ig) + aor,» (11) aor,» (72))] 

  

  

+   1 , . - C Cc 

||? Ai (—|E]) - [eG | aor, (24)? + 90 | aor, w (Ea) 

a (a1) o2))"? (dor,»(J}) 401, (lg) + aor, 2 (1;) aor,» (lg)} 

+21 Ai(—|E|) At (—|8|) (eG 2@)"” 

- [aor,p. (21) 401,u (l2) — aor, w (21) aor,» (12)]} (2. 19) 

with 

lEI= + 3 @| (2. 20) 

of, and 4(@) are respectively the classical elastic cross-section and 

the phase difference [10]-[13] 

I;+1/2 

k2 sin 6| 0’ (J) |), 
  dy (2. 21) 
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11(4) sQ— | (©) () —8|d I =2 n(l)—1,6—2n(Ip) + lp9. (2. 22) 
15(6) 

The coefficient (1—v+)2 where +== SEs (Ag + Ap) results from 
Ar- Er, 

the use of the symmetrized form (2. 8) for the impulse parameter . 
The inelastic amplitudes aoy,y(J;) have been explicitly defined in 

references [1] [16], 
Far from §,(6<<8,),|&(9)| is large; the Airy functions and 

their derivatives may be replaced by their asymptotic expressions [9] 
and (2. 19) reduces to the form 

  

d OT E , 2 

{20 | aor, u (21) |? + 2% | aor,» (lo) |2 

“+ sind (91) %a))" [ar » (Uy) a0, ule) + a1,» (U1) aor, » (U9) 

— 108 8 (a1 (9)? (aor, (1) 401, u lg) — ag1,u (1) aor,p(7o))}. (2. 28) 

  

This expression is exactly the form deduced when evaluating the 
inelastic integral (2. 11) by the method of stationary phase !14] (161, 

At each scattering angle, the contributions of the two branchs of 
the deflection function (Figs. 1-2) are required; branch (1) is essen- 
tially defined by the Coulomb interaction, branch (2) by the nuclear 
one. The inelastic amplitudes being of opposite signs on these two 
branchs, the interference terms in the expressions of the elastic [16] 
and inelastic scattering cross-sections (2. 23) have opposite signs. 
So, these expressions reproduce quite well the out of phase rule 
observed for §@< 6, in the experimental results (Section 4) and its 

independence on the parity of the transition. 

2.3. Analysis of the dark region of 4, 

In the dark side of 4,, the structure of the elastic and inelastic 

scattering cross-sections strongly depends on the incident energy. 
In experiments performed at energies about 1.5 times the Coulomb 
barrier (J-(*], the elastic and inelastic scattering drop rapidly to. very 
low values [1-03], The scattering cross-section is derived from the 
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same formulation (2. 19) with complex conjugate values of /,, J, and 

of @'(1;), O'(/g). Near 6,, J, and J, are both nearly real and equal 
to the rainbow J value /,. So, using this value and the cubic 
approximation of n(/) near /=/,°), (2.11) reduces to the Airy 
approximation : 

. —iM™ ¢= senyy-e1) _ > ine FE, " 
g' Aig (6—@,))I (0-2 L) 2.2%) 

The rainbow scattering being the main process, the rapid fall-off of 
the elastic and inelastic cross-sections in the dark region is described 

by the behaviour of the Airy function for 6 > 6,. The inelastic cross- 

section for § > 4, can be defined by the expression : 

dof — a®(1—r)2 Q1p+1 

dQ sin 0 21;+1 

> 
id 

  Awipg AL (q7'8 (@ — @,)) 

  

2 5(11s I Vig (F)| | a1.p (2) ret (2. 25) 

At higher incident energies (>) — about 2.7 times the Coulomb 
barrier —, one observes well defined oscillations in the elastic and 
inelastic cross-sections. In this case, the contribution of the negative 

branch of the deflection function (Fig. 2) is no more negligibly small 
in front of the rainbow amplitude. So, in (2. 10) we have: 

ie +h Tine +1, (4) (2. 26) 

where ii is the rainbow amplitude defined in (2. 24) and I, (Js), 

defined with the stationary phase approximation, is 

_ iit = : 12 #(2%(/5)-+ 6lp + —— 
I (h)=e 7e | | e ( i) 
“is 1O'(Z) |i 

Fly 2 1)- (2. 27) 

With the scattering integrals (2.26) and the approximations (2. 24) and 
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(2. 27), the explicit expression of the scattering amplitude (2. 10) is: 

AL   

e Vin 7 tt —iu (e+ 2) 
Fae (? > Or) =a p2 eOL + 1 (sin @)!/2 e ° 

+, 7 
pe. 

Diu (=,0)ake (=e? (ape —(— age) (2. 28) 
m 2 mo 2 “ 

where we define: 

ap =2 nl? gai” '8(6—6,)) a (d,) 

Qa); 2, 
as=-| ——* |" Ii a (i faa zoyrel aac 

7 

3,=2n(1,) —61,—-= 
4 

ds 2 n(ls) + 0 ——. (2. 29) 
“ 

In this case, the inelastic cross-section for § > 6, will be given by the 

approximated form : 

Ilr 2(J— 72 QYJ,- 2 da _— a (L t) Iy-+1 SILbly) AL 

dX sin 9 21,+1 “" 2L+4+1 L w) 

  

» Yen(>°) | {2x lg Aig! 6—6,))| Ie @)P 

  

» 

a eT 
18’ (2) |r, 

— 2(—)" cos (8. —4: on |" 3 A (gg — 6, (—) cos ( ) 10" in q vq ( )) 

“Inu (ls) Ine (2,)} (2. 30) 

For @>8,, the oscillations observed in the elastic and _ inelastic 

scattering cross-sections can be described by the quantal interference 
effects of the rainbow scattering at each angle @ with the semi- 
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classical scattering defined for @(/)==-—6. From the (—)* phase 
factor of the interference term in the expression (2. 30) it results that 
the inelastic scattering cross-sections of even and odd parity transitions 
present oscillations that are out of phase. If we now compare the 
inelastic expression (2. 20) to the elastic one: 

78 427 (g'5(@—6,)) (2. 81)              =, 

45 agg ' 
Teh dear 

2n1sls 

| e! (2) | ! gi At (is (6—4,))} 

we conclude that they predict oscillations which are in phase or out 
of phase according as the inelastic transition is even or odd. This 
phase rule between the elastic and inelastic cross-sections is just the 
inverse of the well known Blair phase rule 6) which applies in high 
energy diffractional like scattering. A typical example of the Blair 
phase rule in heavy ion is given by the scattering of 1C on '8O at 
168 MeV [21], 

3—SCATERING POTENTIAL AND DEFLECTION 
FUNCTION 

To describe heavy ion scattering, we use a central potential 
defined as the Coulomb potential superposed to a Saxon-Woods 
shape nuclear one 

Z,y Z —vV rye + —s 
1+exp — 9 

(3. 1)   

  

The deflection function is obtained by numerical evaluation of 

the integral : 

(+ 1/2)h 
r2 

O()—a—2 f ESI dr (3. 2) 
9 m (EK — a 

  L 
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the parameters Vg,Rg=1rg(Ai® + Al®) and o of the nuclear poten- 
tial being defined by a best fit of the elastic scatering cross-section. 
The calculations being greatly simplified by using for @(/) an ana- 
lytic expression, we fit the deflection function obtained numerically 
with the parametrization form proposed by Ford and Wheeler [10] 

0 (J)=0,,— 9 Pn oa (3. 3) 

with »==q(/,—1,)2. where 

__ 17 a?0(2) 

=| d [2 |, 4) 

defines the curvature of OO) at l==l,. 

In Fig. 1, we give the exact (3.2) and parametrized forms of 
the deflection function @(/) used for "Bon 28Pb scattering at 
Era = 72.2 MeV. 

  

    

    

      
  

80 , | 
B"+Pbh208 = =-72.2 MeV 

70 e 

Eps Ole (Yo =~ 49 
60 i. ‘ % = 1.25 | 

_ la = 0.25 
= 50h 4 

gob a, | 

30} (° =355 

Ip =395 20 | 
a 5 

4ol q =64 10° 

oL | 

1 l | 

40 50 60 | 70 

Fig. 1 — Classical deflection function used in the description of the elastic and 
inelastic scattering of 1B on 208Pb at EL = 72.2 MeV. Full curve: numerical 

evaluation (3.2); parametrized form (3.3). 
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For 1>1,, the decrease of the parametrized form is much too 

rapid with respect to the one defined by pure Coulomb field. 
To palliate this defect, we use in the expressions of elastic 
and inelastic scattering cross-sections, the Coulomb classical result 

da ___ for 1>1, i. e. on the right branch (branch 1) of 
4 k2 sint 9/2 

the deflection function. 
The deflection function used to describe the scattering of "C 

on *7Al is defined on Fig. 2. 

    

  

  T T T 

e*. Al” 
E, = 46.5 MeV 

6,-=26.2    
20- 

-20- 

- 40.       -60   

Fig. 2— Classical deflection function used in the description of the elastic and 

inelastic scattering of 12C on 27Al at El = 46.5 MeV. 

In such a case, the contribution from the negative branch 
© (/) =— @ is no more negligeable against the contributions from the 

positive branch O(/)—+ 6, especially in the dark region, owing to 
the decrease for @ > 6, of the contributions from ©O(/)=-+ 6. 
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4—RESULTS 

The theory outlined in Section 2 is applied to describe some 
experimental results in elastic and inelastic scattering of heavy ions at 
incident energies above the Coulomb barrier [9]—[15]. 

The analyzed data are: 

— the elastic scattering and inelastic 3” (2.61 MeV), 57 (3.20 MeV), 

27 (4.10 MeV) and 4+ (4.31 MeV) excitations of 2°Pb in the 
collision with “B at laboratory incident energy of 72.2 MeV 

—the elastic scattering and inelastic 2° (4.43 MeV) transition in 

"Cin the collision of #C on Al at laboratory energy of 
46.5 MeV. 

The inelastic scattering cross-sections of 1!B on 2°8Pb at 72.2 MeV 
laboratory energy reported on Figs. 3-4 are obtained in absolute scale 
with formulation (2.19); the elastic cross-sections reported are deduced 

from the associated expression ((2.20) in ref. @°]). The «out of phase» 
oscillations defined for §< 4, in the elastic and inelastic scattering 

cross-sections are well reproduced. The observed phase rule does not 
depend on the parity of the inelastic transition. 

The elastic and inelastic (L==2) scattering cross sections of #C 
on *Al at 46.5 MeV laboratory energy ((2.7) times the Coulomb 
barrier) (Fig. 5) are obtained in absolute scale with the formulation 
(2.30) and (2.31) respectively. The «in phase» oscilations observed are 

quite well reproduced. In this case, the analysis has not been done 

for 6<6,; the behaviour of the Airy approximation used in (2.30) 
and (2.31) failing, badly in the lit region even when (@—9,) is only a 
few degrees. 

Choice of parameters 

The nuclear potential parameters (Vg,79,¢) and the parameters 

(9, l-,la,q) of the parametrized deflection function @(/) are obtained 
by best fit of the elastic cross-sections. Table I gives the values used 

in the present analysis. The parameter R,-=r, A> defines the 
spherical distribution of charges chosen as equilibrium state for the 
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Fig. 38 — Cross-sections of the elastic and inelastic 2+ (4.10 MeV) and 3- (2.61 MeV) 
excitation of 208Pb in scattering of 4B on 28Pb at EL = 72.2 MeV. Potentials (1) 
and (2) give similar fits to the data; potential (3) gives a better agreement with 
the experimental results [9] for the 87 excitation. The uniform approximation (b) 
for the elastic and inelastic 2+ cross-sections are compared to the asymptotic 

expressions (a) 
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target ion. (a) is the distance of closest approach of the ions on their 
trajectories "°)]. As it is well known, a variation of the potential shape 
does not really affect the elastic scattering results but introduces 
sensitive perturbations in the inelastic one, the form factor being 
proportional to the derivative of the nuclear potential. The variation 
of the nuclear potential parameters induces variation in the relative 

  

1 208 
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Fig. 4 — Cross-sections of elastic and inelastic 5 (3.20 MeV) and 8+ (4.31 MeV) 

excitation of 208Pb in scattering of 4B on 208Pb at EL. = 72.2 MeV. Potentials (1) 

and (2) are the same of Figure 3. 
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amplitudes of the oscillations and in the absolute scale of the inelastic 
results. The interference structure is very sensitive to the diffuseness 
of the nuclear potential and to the distance parameter (a) whose value 

depends on the form of the nuclear potential. 
In the scattering of "B on °°SPb, three potentials have been used. 

For set (2) the last minimum (9 < @,) in the inelastic cross-section 

is not deep enough for the 2* as well as for the 3” state excitation. 

This choice defines too small values of the deformation parameters}, 
(Table II) for L=2 and L=3. 

In direct process formalism, the interference of Coulomb and 
nuclear excitation terms in describing the inelastic cross-section to 
higher multipolarity is a more drastic test to define accurate choice of 
the nuclear potential paramenters. 

The deformation parameters $; defined by the inelastic result 
only acts as a scale factor to adjust the absolute values of the inelastic 
cross-section. In electron and light ions inelastic scattering, the 
deformation of the interaction potential can be expected to be nearly 
the same as the charge or mass deformation of the target ion. This is 
not expected to be the case when the projectile size is large as it 
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Fig. 5 — Cross-sections of elastic and inelastic 2+ (4.43 MeV) excitation of 12C in 
scattering of 2C on 27Al at EL = 46.5 MeV. The elastic cross-section is defined 
by expression (2.31) with (full curve) and without (dotted curve) the negative 

branch contribution; the inelastic one is defined by the expression (2.80) (broken 
curve). Experimental results are from ref. [15]. 
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happens for heavy ion projectiles. The deformation obtained for the 
ion-ion potential will be smaller than the one of the target nuclear 
state involved. This effect has already been observed in a—a 

scattering @) . Taking into account the first order size correction !*! one 
may deduce the target deformation from the potential one, using the 

relation BY Ro=6, Ry where BY 6) Ro, Rr are the deformation 

parameters of (L) multipolarity and the radii of the ion-ion potential and 

TABEE I 

  

11B 208Ph E, = 72.2 MeV 

ion-ion potential parameters Deflection function parameters 

Vo Wo 1 ae 6 (a) 6 ly la q 

(1) 40. O. 1.25 1.20 0.4 4.08 61.5 39.5 35.5 0.0064 

(2) 50. O. 1.20 1.20 0.6 4. 60.4 39.5 35.4 0.0052 

(3) 45. 0. 1.25 1.20 0.5 4.28 61.5 39.5 35.5 0.0064 

RE 27AL E, = 46.5 MeV 

ion-ion potential parameiers Deflection function parameters 

Vo Wo 1o r 6 (a) Or ly la q 

35. 0. 1.15 1.20 0.55 1.6 26.2 25 20.5 0.0045 

y= 0.30       
of the target respectively. We use the relations Rg=1p (AP 4 A) 

and Rr=rr AY’ (Table II). We test two descriptions of the excitation 

processes, they correspond to the choice of BY Ry or 6. Rr as nuclear 

deformation parameter in the excitation potential. The potential and 

target deformation parameters obtained by fit of the inelastic results are 

in good agreement with values defined by other experimental results 

and theoretical DWBA analysis. 
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TABLE II 

  

  

Deformation parameters in 8Pb 

3— 2.61 MeV 
ria) re BY et Bi?) BEX oso Reference 

(1) 1.25 1.18 0.07 = 0.102 0.49 (1B, 4B’) this work 

(2) 1.20 1.18 _ 0.06 0.061 0.18 id. 

(3) 1.25 1.18 0.09 - 0.18 0.75 id. 

other works 1.31 1.27 0.06 _— 0.085 0.35 (160 , 160/) [7] 

1.34 1.04 0.07 = 0.09 0.40 (4B , 1B’) [9] 
0.58 [24] 

2+ 4.10 MeV ; 
ai ry Bi BE a”) BEY eo: Reference 

(1) 1.25 1,18 0.0425 = 0.062 0.36 (4B, 1B!) this work 

(2) 1.20 1.18 = 0.048 0.049 0.23 id. 

(38) 1.25 1.18 0.06 — 0.087 0.69 id. 

other works 1.31 1.27 0.03 _— 0.043 0.18 (260, 160/) [7] 

1.34 0.042 = 0.06 0.35 (4B, 1B/) [9] 

0.30 [24] 

57 3.20 MeV 
(a) re BY er al? ) Reference 

1) 1.25 1.18) 0.036 = 0.05 1B, 1B’) this work 
(1) (HB, 

(8) 1.20 1.18 — 0.06 0.06 id. 

other works 1.34 1.04 — 0.05 0.06 (4B, 4B’) [9] 

= = Be 0.043 0.055 (psp) [24] 

4+ 431 MeV 
74) re BY gr a? Reference 

(1) 1.25 1.18 0.05 — 0.07 (4B, 1B’) this work 

(3) 1.20 1.18 = 0.08 0.08 id. 

other works 1.34 1.04 _ 0.07 0.09 (1B, 4B’) [9] 

_ ax 0.062 0.08 (p,p') (24) 

  

(a) r=rpo in case (1) and (8); r= r! in case (2) with ey ro (ale + aay = pr rt Alls. 

(0) fe is the value difined in [25]: 

(d) 8; deformation parameter difined by BY Ro = 8 “9 ays or by er RT = Br i; AS ; 
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5 — CONCLUSION 

The aim of this paper has been to gain insight into the physical 

understanding of the different oscillatory behaviours which are observed 

in the elastic and inelastic heavy ions scattering cross-sections. 

In the lit region, the observed phase rule results from the quantal 

interference effect between the classical trajectories deviated by one 

side of the nucleus. 
In the dark region, a different oscillatory behaviour appears; it is 

due to an additional interference effect resulting from the trajectories 

deviated by the opposite side of the nucleus. At higher energies, 

when Coulomb effects are negligeable, the scattering is dominated by 

Fraunh¢fer diffraction and then, the Blair phase rule applies. 

The authors wish to thank Drs. J. Knoll and R. Schaeffer for 

helpful discussions. 
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