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ABSTRACT — The correction to the deuteron-nucleus effective interaction 

in deuteron elastic scattering resulting from the ‘Pauli exclusion principle was 

calculated following the method proposed by Soper [5], using the infinite nuclear 

matter approximation and the separable nuclear potential of Yamaguchi [14]. The 

resulting Pauli potential is repulsive and has a magnitude of few percent of the 

deuteron folded potential real part. Its radial dependence, determined with the 

local density approximation, shows a pronounced peak at the nuclear surface. 

RESUME —La correction resultante du principe de l’exclusion de Pauli 

qui s’applique a l'interaction effective deuteron-noyau pour la diffusion elastique 

fut calculée par la methode de Soper [5], utilisant V'approximation de matiére 

nuclaire infinie et le potentiel nucleaire separable de Yamaguchi [14]. Le poten- 

tiel de Pauli ainsi obtenu est repulsif avec une intensité de l’ordre de quelques 

pour-cent de la partie réelle du potentiel du deuteron de Watanable [6]. La 

dependence radiale de ce potentiel, determinée avec l'approximation de densité 

locale, nous montre un pic pronouncé a la surface nucléaire. 

1— INTRODUCTION 

The Pauli exclusion principle plays a dominant role in atomic 

collisions, due to the exchange forces set up in the overlapping electron 

clouds of the colliding atoms. This effect has been recognized for 

several years, and recently reported by Laubert and Brandt [1]. An 

analogous but less pronounced effect will be present in nuclear reac- 

tions involving multinucleon bound projectiles and targets. However 

even for the nucleon-nucleus optical potential the calculation of Pauli 
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exclusion principle effects presents considerable difficulties. This pro- 
blem has been considered by Bell and Squires [2] and by Van Giai, 
Sawicki and Vinh Mau [3] in terms of a linked cluster expansion 
neglecting the target recoil energy and assuming the ground-state to 
be non-degenerate. The same method has been used by Junkin and 
Villars [4] to derive an expression for the deuteron optical potential. 

The linked cluster perturbation series for the effective interaction 2 

nucleons-nucleus has two terms: the first is a one-body operator, 

where the leading term is just the Hartree-Fock (H-F) potential, and 
corresponds to the sum of two single-nucleon optical potentials cal- 
culated off the energy shell at roughly half the deuteron kinetic energy ; 
the second is a two-body operator, part of which comes from the 

exclusion principle. Soper [5] derived from the full antisymmetrized 

hamiltonian an equation which describes two nucleons outside a closed 
shell interacting with each other via the 2-nucleon interaction and 
with the core through their H-F potentials. The solution of this equa- 
tion is a 2-nucleon state containing only particle-states ortogonal to 
the bound H-F orbitals. Note however that the most general 2-nucleon 

state satisfying the asymptotic boundary condition of an incoming 

deuteron with momentum K also has hole-states in its expansion. 
The effective interaction in that equation is the sum of the -H-F po- 
tentials plus the 2-body potential which is the lowest order approxi- 

mation to the 2-body potential of Junkin and Villars [4]. Neglecting 
the coupling to the break-up channel, the correction to the folded 

potential of Watanable [6] due to the Pauli exclusion principle is just 
the mean value of a 2-body potential in the deuteron internal wave 
function. 

Using this approximation Johnson and Soper [7] have calculated 
deuteron break-up effects in deuteron stripping reactions using an 

adiabatic model and obtained improved agreement with differential 
cross section data. Recently, Gambhir and Griffin [8, 9] investigated 

explicitly the deuteron break-up due to Pauli exclusion effects in deu. 

teron elastic scattering and Austern [10] proposed a simple procedure 

for the calculation of antisymmetrization effects. Using this model 
Gambhir and Griffin [11] have discussed the qualitative features of 
Pauli break-up from the configuration space viewpoint. 

In the present paper we analyse the Pauli correction to the deu- 

teron folded potential, proposed by Soper [5], in particular the varia- 

tion of its radial shape with deuteron incident energy and target 
nucleus mass number. 
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2—PAULI CORRECTION TO THE DEUTERON 
FOLDED POTENTIAL 

2.1. General formalism 

The terms in the deuteron-nucleus effective interaction corres- 

ponding to Pauli exclusion principle effects [5] can be written as 

Vp(1,2)=[E—A(1) —A(2)] (1 —P 1) P(2)] + (1) 

[PP )o(1,2)P()P(2)—2(1,2)] 

where E is the total energy of the system and v(1,2) the 2-nucleon 
interaction. P(7) is the projection operator into the eigenstates of the 
1-body hamiltonian. 

A(j)=T+ Vn, j=1,2 

belonging to the eigenvalue ¢;>er. Here Vy is the self-consistent 

H-F potential for A nucleons and ep tie Fermi energy. In order to 

obtain the Pauli correction to the deuteron-nucleus folded potential we 

must calculate the average of the interaction V,(1,2) over the internal 
motion of the deuteron. The equivalent local potential will be calculated 
considering the momentum space representative of the V, (1, 2) 

interaction 

<K 99| Vp(1,2)| BK! 99> 

where 9 is the deuteron internal wave function. We now represent 

the nucleus by infinite nuclear matter which, strictly speaking, means 

that the correction only applies to the nucleus center. In this approxi- 
mation the H-F states became plane waves and the projection ope- 

rators into particle states have the form 

P(j) = > [ d ke; | ke O;t; > < hyo; 7: | (3) 
= Vk; >hkp 

where o; and +; represent the spin and isospin variables. Further- 
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more the H-F potentials must be diagonal in momentum space. We 
- 

choose as usual [12] a quadratic dependence in 4; 

<i, | V (1) [ky > = 8 (hy — Fy) (mp + 0 43) (4) 

which is equivalent to assume an effective nucleon mass m* inside 
nuclear matter given by 

1 1 
; _ L 5 
2m* Qm | “i ) 
    

where m is the nucleon mass. The constants wg and #, are estimated 

from the energy dependence of the depth of the real part of the 
phenomenological nucleon optical potential V (Ey). Using the relation 

aki 

2m 
  Ex + V (En) 

where Ey is the kinetic energy of the nucleon outside the nucleus and 
the average nucleon optical potentials of Bechetti and Greenlees [13] 
we obtain 

6 = — (81.10 + 0.29 ZA") MeV 

o, = 9.75 MeV fim? 

where A and Z are, respectively the mass and atomic number of 
the target. 

A separable potential to represent the 2-nucleon interaction is 
particularly convenient in view of the structure of eq. (1). We use the 

potential of Yamaguchi [14] which fits the low energy 2-nucleon data. 
This potential also has the advantage that it gives a Hulthén type 
wave function for the deuteron which is particularly convenient for 

the required momentum space integration. The restricted domain of 
integration for the individual nucleon momenta #; imposes conditions 

on the deuteron internal momentum # which is therefore subjected to 

the relations ; 

=. —hypNnk™e = + kr 
2 z 

and 

Kk Ko. 
Te <i Sg ie 

a 
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whére in the latter case the angle 8 between K and k must satisfy 

K? 443 k K?_- 4 #3 i: 
ay eee, SS 6 een oe ; 

AKk K _—— AKk r K 
  

We represent by an over bar the integrations in & over the 

allowed momentum space and by N the integral of the Hulthén wave 
function over that space. Using this notation we have ; 

< K eq| Vp (1,2) | K/ 9 > =(K —B’) Vp (K) 
where 

a h2 kk c2 — 
V, (K) =| Fo = —- —2(% oe, G Leck >)) Ja _N)   

a he a Re = 
a ee ee + 2m) SBS —(<e>+7-<#>)N] 

—20,N<k2> (8) 

and KE, is the deuteron incident energy which is the difference 
between the total energy and the deuteron binding energy sg. The 
latter can be written 

he 
&—= <u> +—<F> 

m 

where 

<o>— [db dl oo(h) (tM) a0(h) 

<> = i dl 9 (hk) k2 99(h). 

The choice of I corresponding to a given deuteron incident 
energy Eg is made in a self consistent way [15] through the equation 

h2 \x2 

4in 

  

kK? . | a nll | % +0 (- <i? >)| —V,(K)=0. (10) 

Using eqs. (8), (9) and (10) we obtain 

V, (Ep) = ef — sh (11) 
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where 

N m N 

v h2 k2> ian SE (7 +2) =. (12) 

may be interpreted as an internal energy of the neutron proton system 
inside nuclear matter and 

he 
= <0> + (42m) <i> (13) 

2 

is the binding energy of a «deuteron» with an effective nucleon mass 
given by eq. (5). By substitution of eq. (11) into eq. (10) we finally get 

2 C4 

B= (+ 2o)) Sb 2a bs , (14) 
m 

Thus the total energy of the system «deuteron inside nuclear matter» 
is the sum of the deuteron center of mass energy corresponding to a 

nucleon effective mass m*, the potential energy and the internal 
energy ¢j. We emphasize that the Pauli potential V, is a function 
of the incident energy Ey through ¢}. In fact note that the allowed 
momentum space for the &# integrations is a function of K and 
therefore of Eo. 

The eq. (11) has the same structure of the Pauli potential of 
Gambhir and Griffin [8] 

Vs =QH;Q—H; (15) 

where Q projects into the allowed momentum space and H, is the 
free deuteron hamiltonian. 

We can investigate the radial dependence of the Pauli potential 

V» using the local density approximation. The Fermi momentum fy 

is then determined by the value of the nuclear density form factor at 
radius R through the relation 

ip 3 m2 

th   e(R). (16) 
~ 

For consistency we also assume that »g and «, in eq. (4) have the 
same radial dependence as the nucleon optical potential of Bechetti 
and Greenless [13]. 
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2.2. Results of calculation 

The present calculations of the Pauli potential V, given by eq. (11) 
were made using for the deuteron a Hulthén wave function with 
parameter 6—1.36fm~!, the nucleon optical potentials from Ref. [13] 
and the nuclear density form factor o(R) from Ref. [16] to determine 
its radial dependence. As shown in Fig. 1 V, is repulsive and decreases 
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Fig. 1 — Variation of the Pauli potential in 49Ca with deuteron incident energy 
for different values of k,;,. The values of R are determined from eq. (16). 

roughly exponentially with incident deuteron energy. We find that V, 
has generally a larger radius than the nuclear optical potential. The 
difference is about 0.7 fm in #°Ca for Eg==10MeV and increases for 

smaller energies. A distinctive feature of V, is a depression in the 
nuclear center. 
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The various contributions to the Pauli potential for #Ca at 
yo=5MeV are plotted in Figs. 2 and 3 for #, equal to 0,5, 9.75 

and 13.2 MeV fm?. The quantities «| and «, have different radial 
forms. e being proportional to the nucleon optical potential since it 
depends linearly on «,. The two terms in ej have a ratter complicated 
dependence on R and , but their sum always has a mean radius 

Jw, =13.20MeV fn 

  

(MeV) 
  

A 
Z
e
 V 

  

  

  

nuclear radius (fermi) 

Fig. 2 — Radial dependence of the two terms in the expression (12) 

which gives the internal energy of the neutron-proton system in- 

side nuclear matter for different vallues of ®,. The target is 49Ca 
and the deuteron incident energy Ep = 5 MeV. 

greather then ¢, as shown in Fig. 3. Further, with »,—=0O and 
13.2 MeV fm?, ¢ presents a little surface peak, which is not present 

at intermediate values of #,. These two facts, namely the difference 
in radius and the surface peak in ¢), lead to a pronounced surface 

peak in the Pauli potential. The increase of V, with , shown in 
Fig. 4 is mainly due to the pronounced dependence of the ¢ term. 

The behaviour of V, as a function of the deuteron incident energy 

is represented in Fig. 5. As expected, V, decreases with deuteron 
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incident energy, but this variation is less pronounced in the nuclear 
interior. In fact, in this region of space K varies slowly with Ep, 
because it is mainly determined by 2 9 (eq. (10)). However, at the 

nuclear surface this variation is much more pronounced, and therefore 
the domain of integration in / is drastically increased. 

w, 213.20 MeVfm* 

  

  

  

nuclear radius (fermi)   
Fig. 3 — Radial dependence of the two terms in the expression 
(11) which gives the Pauli potential Vp for different values of ®. 

The target and incident energy is as in Fig. 2. 

Fig. 6 represents the radial dependence of V, for various nuclei. 
We note that the variation with A is less pronounced in the nuclear 

interior. This is due to the fact that V, is invariant with A in the 

infinite nuclear matter approximation if we neglect the weak depen- 
dence of #) on A and Z. 
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Fig. 4 — Radial dependence of the Pauli potential in 4°Ca for a 
deuteron incident energy Ey=5 MeV and for different values 

of Gs. 
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Fig. 5 — Radial dependence of the Pauli potential in 4°Ca for dit- 
ferent deuteron incident energies and assuming 

@, = 9.75 MeV fm-?.
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3 — CONCLUSIONS   

The Pauli correction to the deuteron folded potential is found to 
be repulsive and to decrease with deuteron incident energy as it should 
be expected from simple physical grounds. The same type of behaviour 
is reported by Gambhir and Griffin [11]. The magnitude of V, is of the 
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Fig. 6 — The Pauli potential in different target nuclei for a 
deuteron incident energy Ey = 5 MeV and assuming 

6 = 9.75 MeV fm-?. 

order of 5% of the depth of the real part of the folded potential [17] 
and its radius is larger. As regards the radial dependence we find a 
marked surface peak particularly in light nuclei. This therefore does 
not give support to the assumption of Ref. [11] of uniformity of V, 
over the nuclear volume. 

The deuteron becomes unbound at a radius where the nuclear 
density is only few percent of the value in the center. This radius is 
found to be appreciably sensitive to the coefficient «, which gives the 
nucleon optical potential energy dependence. For the value of », taken 
from [13] the deuteron reaches an unbound state even for relatively 
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high energies of the order of 100 MeV. However if we take o, 0 
the deuteron is never unbound for an incident energy Ey >O MeV. 

We note that in the calculations of Ref. [9] the deuteron is 

unbound in nuclear matter unless it has a kinetic energy of the order 

of 100MeV. These predictions are significantly altered in the present 
more realistic calculations of the intrinsic energy of the n—p system 
inside nuclear matter. 
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