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ABSTRACT —Thermostatics may be based on the following principle of 
equilibrium [1,5]: 

Thermodynamic systems choose for equilibrium state that which minimizes 

the internal energy. 
This minimum must be thought as subject to constraints, so the problem of 

finding the equilibrium state is one of minimization with constraints. 

It is also said that this principle of minimum internal energy is cquivalent 

to a principle of maximum entropy, the equivalence being shown by physical 
arguments. In this paper we present a rigorous demonstration of the equivalence 

of these two principles as well as the conditions for its validity, based on the 
theory of Lagrange multipliers. 

1— LAGRANGE MULTIPLIERS 

Before going directly into Thermostatics we shall present the 

fundamental theorem of the theory of Lagrange multipliers [3, 4]. 

In what follows we assume all the functions to possess the required 

continuity and differentiability properties. 

Theorem 1 Let x 6 R", f:R° +R and © the set defined by the 
constraints g,: R°" +R 

T 

£o(x)=0,a=1,...,m<xn (1.1 a) 

(*) Results presented at the Conference of the Portuguese Physics Society 

(Lisbon, February 1978). 
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Suppose x, affords a local minimum to f(x) in , and that 
x, is normal, i.e., the matrix 

  i (x) (ashi e.g mee 1yas.gm@), > (1B) 
Ox 

has rank m. Then there exist unique multipliers \1,..., 4m Such 

that the function 

F(x)=f(*)+ 2 A, gq (*) (1.1 c¢) 
a1 

is minimum at X,, i.e., 

VE(X.)=VF(Xo) + FAVE, (Xo) =0 (1.1 d) 
21 

Furthermore the inequality 

F" (x,, 4)>0 (1.1) 

holds for all solutions “= 0 of the equations 

t &« (%o, 4)=<v &, (42), 4>=0, @=1,..., 9% (1,17) 

that is, for all % tangent to . 

(We are using the following notation: 

f' (4%, 2) denotes the differential of fat x in the direction of Z 

Vf(#) is the gradient of f at x 

<.,.> represents the inner product and 

| . | is the associated norm). 

The numbers i,,..., Ax are called Lagrange multipliers and the 

function F(+) is known as the Lagrangean. The theorem presents 

only the necessary conditions for the existence of the multipliers. 

It is possible to show [3] that the condition 

F" (x), hk) >0 (1.2) 

for all solutions 4 = 0 of (1.1 f) is sufficient for the existence of a 
minimum. 
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We may now return to Thermostatics proper, which assumes 

that the state of perfect fluids [2,6] is determined by the values 

of the specific entropy s, the specific volume v and mole frac- 
tions 71,..., ¥, of the 7 chemical constituents of the fluid. The 

specific internal energy wu is also a state function. When the states 

are homogeneous, the sole case treated in this paper, to minimize 

the global internal energy of a system is equivalent to minimize the 

specific internal energy at each of its points. Thus the equilibrium 

states are those which minimize 

u =U (5, V; I1y+++5 Ir) (1.3) 

subject to appropriate constraints. Theorem 1 just presented yields a 

technique to obtain this minimum and therefore the states of equi- 

librium. 

2— PRINCIPLE OF RECIPROCITY 

In this paragraph we show the following 

Theorem 2. Let f, g, F, > and 44,..., Am be as in Theorem 1. 

Suppose that the 2/s are not all zero. Therefore there exists a hg #0 

such that x. minimizes (if 4g>0) or maximizes (if hg <0) gg (x) 
subject to the following set of constraints: 

f (x)=f (x0) (2.1 a) 

&,(x)=0 , a=1,...,B—-1, B+1,..., m (2.1 b) 

The proof is easy. According to Theorem 1, the point x, minimizes 
the Lagrangean 

a. 

P(x) =f (x) FER, &, (x)=hy By (*) FF (x) +L An galx) (2.2) 
(= a=-B 

Since by hypothesis hg + 0 we may write 

1 i ha Fisier,(2)4+—st te 2 ete) eb 

and because x, yields a minimum to F (x), VF (x.)=0 
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  Hence 

1 1 ha 0 =) VF (x0) = Vag (x0) + VF (Xo) + BEV e,(%0) (2.20) 

Put, for the sake of simplicity, 

F (x) = gg (x) (2.3 a) 

&q(*) =8,(%) if a8 (2.3 b) 

& (4) =f (4) —f (%,) (2.3 c) 

and consequently 

he 
&(#) (2.4 c) 

Ns) 
  F(2)= gp (#)+—-[f(2)-Sso)] + 2 

B a8 

Expression (2.2 c) shows that F (+) is the Lagrangean and 

  : ifa+8 (2.4 d) 
AB 

ee 

Ap = 1/h8 (2.4 e) 

the Lagrange multipliers of the extremization of §g(#) subject to 

constraints (2.1). x 

It remains to discuss the sign of the second differential F” (x, 2). 

We must have now 

FY (5, 4) =—— FM (0, 4)> 0 (2. 
B 

bo
 

O
L
 

—
 

for all 4=£0 which are solutions of the equations f’ (7, 4) =0 and 

Flt 4)=0 , ee Lyccsy 8-1, 8 + 1,.0.5 2 Cab) 

We have to prove that the 4's so obtained define the same set 
as in (1.1 f). 
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This can be done easily by noting that it x, is a minimum of 

J{(#) subject to constraints (1.1 a) one must have 

f' (40, k)=<Vf(%o),k>=0 (2.7 a) 

for all 2+ O satisfying (1.1 a) Similarly in the second case we 

have at x, the equations 

8'g (#0) hk) = <0 8, (40) h> =0 (2.7 b) 

for all 4 #0 satisfying (2.6 a, b). We see by inspection that the 

two sets of equations differ only in the order the equations are 

written and define thus the same #’s. Therefore the sign of F (x5, 4) 

is the same as F”’ (x, 2) if k8 > O and the contrary if As <0, which 

completes the proof. 

We are in condition to apply the reciprocity principle to Ther- 

mostatics. Consider the following problem: minimize 

WAC SDP, (ie raKd (2.8 a) 

subject to 

S=5o (2.8 b) 

and eventually to other constraints which we omit now. According 

to theorem 1 we must have that at equilibrium (which we denote by 

the subscript 0) 

(555 Uy Itgreoet Ing) $2=0 (2.9) 

and recalling the definition of absolute temperature T 

ou 
rer pete ae Ae A (2.10) 

we see that the minimum of internal energy is equivalent to the 

maximum of entropy if and only if 

a1=7T 0 (2.11) 

The reciprocity principle in this case collapses at T=0O. For sys- 

tems with a negative temperature the minimum principle of internal 
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energy is associated with a minimum principle of entropy, and 
a maximum principle of entropy with a maximum principle of inter- 
nal energy. 

3— INEQUALITY CONSTRAINTS 

In the preceding paragraph we have concentrated on the variables 
w and s to derive the reciprocity principle. When we observe other 
variables as v and y,s we recognize that they are by definition non- 
negative. Thus we must take this fact in due account when setting 
the minimization or maximization problem. If constraints are given by 
inequalities the theorem of Kuhn-Tucker applies [3, 4]. Before presen- 
ting this theorem some preliminary definitions are required. 

Definition 3.1 Let the inequality constraints 

Bleed 5 @= dys, m (3.1) 

be given. If 8, (xo) =0 the Bth constraint is said to be active at x». 

If ge (xo) <0 the Bth constraint is said to be inactive at xp. 

Definition 3.2 Let Q be the set of points x satisfying 

Sa(x)<0,a=1,..., p38,(x)=0,B=ptl,...,m (3.2 a, b) 

A point x, is regular if every outer normal w of 2 at x, is expressible 

in the form 

w= Di, Ve,( x0) (3.2 c) 
O=1 

where 4,,..., 4, are non-negative and 4,=0 wherever g,( x.) <0, 
z.e., the ath constraint is inactive. 

We are in condition to give the following 

Theorem 3. Suppose x, yields a local minimum to f(x) on the set 

Q defined by the constraints 
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&g(x)<0,@=1,..., 03 &(x)=0 i PEP ae ly ce ime 

If x. is a regular point of Q then there exist multipliers ),,. 

that 

h,>0, a=1,...,p with 4, =Oif g,(x,) <0 

and such that the function 

F(x)=f(x)+ 3d, a(x) 
= 

is a minimum at xo,i.e., 

VF (x .)=0 

and 

EF! (x%—,4) > 0 

for all 2 = O satisfying the relations: 

&'4(X»2) <Oif a is active and A, = 0 

&'q(% 2) = Oif « is active and 4, >0 

g', (x, 2) = Oif a is inactive 

We are now in position to solve the following problem: 

u=UuU(S, V, I1,..-, ¥,) Subject to the constraints: 

S—50=0 

—uv <0 

v-—b <0 

—y, <0 , #=1,..., 7 

ll 
P
4
~
 

y,;-1=0 
i=1 

(8.3 a) 

seit SUCH 

(3.3 b) 

(3.3 ¢) 

minimize 

(3.4 a) 

(3.4 b) 

(3.4 c) 

(3.4) 

(3.4 e) 

Constraint (3.4 a) specifies the value of the entropy and constraint 

(3.4 b) assures us that the solution of the above problem will not 

yield negative values for the volume. Constraint (3.4 c) is introduced 

here because for perfect fluids the volume is not specified in advance 

but only an upper bound is given. For instance, when dealing with 
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gases, the volume of the container is such an upper bound, but 
there is no a priori reason to suppose the gas will never assume a 
volume less than this. If in fact we do require that the gas occupies 
always the largest volume available to it then we must be aware we 
have introduced a constitutive assumption. Constraints (3.4 d, e) 
are mere consequences of the definitions of molar fractions. 

Applying theorem 3 we obtain 

dufds (...)+4,=0 (3.5 a) 

dufdv (...)—’,=0,4,>0,4,=0if v>0 (3.5 b) 

dufdov (...)+4,=0,4,>0,0,=0if v<b (3.5) 

00/09, (.-)—dyy = 0,h, 4, >0,2,, ,=Oif y,>0 (8.54) 

dufoy;(.-.)—d 4 ;=0 (3.5e) 

where the symbol (...) stands as an abbreviation to the list of 
variables (5,, 0 ;Vigs+++s Pig) 

As we have seen, the temperature is assumed to be non-nega- 
tive, therefore by (2.11) —4, =T > 0. This implies that the entropy 
at the minimum is s,. There is no loss of generality in this case 
to substitute the equality constraint (3.4 a) by an inequality 
constraint 

s—s55:<0 (3.6) 

The pressure is given in Thermostatics by 

ou 
Ps al iy Oy Py rade) (3.7) 

ov 

If a perfect fluid is such that the constraint (3.5 c) is always 
active for all 6 >O then we can assert by (3.4 c) that the pressure 
P is a non-negative function or that the internal energy uw is a 
non-increasing function of the volume v. It is easily seen that the 
converse is also true. , 

If we had set v=d instead of_(3.4 c), the conclusion we have 
just reached would not have been possible. In fact we would have 
introduced, in an implicit way, a constitutive hypothesis. 

204 Portgal. Phys. —Vol. 10, fasc. 3-4, pp. 197-206, 1979



H. L. Pina — Extremum principles in thermostatics 

4— LAGRANGEANS IN THERMOSTATICS 

Let us return to the problem of minimising ~ (s, v, 7,,---,J,) 

subject to s—s,<0. As we have shown in 3, the Lagrangean 

function for this case is 

LHe EE, UF foores KV AT = 5) (4.1 a) 

We can write also that, because f is minimum at equilibrium, 

&(S05Vo,Ii0,-++)ro) <u (S,\V, P,--+; Ie) — To (S—S0) (4.1 b) 

or 

(80); Ua) Vio pss Pe) — To Soi w (5, 0, His sy Pe) Tote eee) 

We recognize both members of this inequality to be the Hel- 

mholtz free energy at the temperature T,, evaluated at equilibrium 

(the LHS) and at any state (the RHS). Therefore for a given tempe- 

ratura 'T', the equilibrium state minimizes the Helmholtz free energy. 

It is now immediate that the corresponding principle for the 

constraint v — v. < 0 is the minimization of the entalpy h = u + Pv, 

such that 

U (So, Vo, Ji0;+-+»Jro) + Poto Ku (5, O; Misses He Pov (4.3) 

For the set of constraints s — s5 < 0, uv— vo <0 the Gibbs free 

energy g = « — Ts + Pv is the one to minimize and we have 

& (So, Vo, Pro) + Po % — To Sox u(s, v, er) +PoU— Tos (4.4) 

This inequality is identical to that postulated by Coleman and Noll [2]. 

The author wishes to thank Professor A. G. Portela for several fruit- 

ful discussions on the subject of this paper. 
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