# THE L1 SUBSHELL FLUORESCENCE YIELD OF TI (\*)

M. I. MARQUES, M. C. MARTINS and J. G. FERREIRA

Laboratory of Physics, Faculty of Science University of Lisbon, Portugal

(Received 9 July 1980)

 $ABSTRACT - L_1$  fluorescence yield of Tl has been measured by comparing the relative intensities of the K and  $L_1$ -X-ray spectra. The experimental result is  $\omega_1 = 0.109 \pm 0.016$ 

### 1-INTRODUCTION

Experimental information of atomic fluorescence yields for  $L_1$  subshell,  $\omega_1$ , is scarce mostly for elements in the atomic number region  $Z \gg 70$ . Particularly, the three experimental values [1, 2, 3] reported for thallium (Z=81) do not agree very well.

The purpose of this note is to find  $\omega_1$  for Tl by comparison of the K and L<sub>1</sub> X-ray spectra of this element, which is a different method.

We denote by  $n_{\rm K}$ ,  $n_1$ ,  $F_{\rm K}$ ,  $F_{\rm L_1}$ , the numbers of primary vacancies in K and L<sub>1</sub> shells respectively and the correspondent number of L X-ray photons;  $\omega_{\rm K}$ ,  $\omega_1$  represent the atomic fluorescence yields of the K and L<sub>1</sub> shells and  $f_{\rm KL_1}$  the probability of ionization transfer from the level K to the L<sub>1</sub> level.

The following equations are valid

$$F_{\mathrm{K}} = \omega_{\mathrm{K}} n_{\mathrm{K}} \qquad F_{\mathrm{L}_{1}} = \omega_{1} \left( n_{1} + f_{\mathrm{K}\mathrm{L}_{1}} n_{\mathrm{K}} \right)$$

$$\omega_1 = \omega_K \frac{F_{L_1}}{F_K} \frac{1}{(n_1/n_K) + f_{KL_1}}$$
(1)

or

(\*) This work has been supported by INIC (Portugal); results presented at the Conference of the Portuguese Physics Society (Porto, April 80).

Portgal. Phys. - Vol. 11, fasc. 1-2, pp. 9-12, 1980

9

## M. I. MARQUES et al. - L1 subshell fluorescence yield of Tl

A result for  $\omega_1$  of Tl can be obtained from expression (1) as  $\omega_K$ ,  $n_1/n_K$  and  $f_{KL_1}$  are well known and  $F_{L_1}/F_K$  has been measured in the present work.

# 2-EXPERIMENTAL PROCEDURE

K and L X-ray spectra of Tl were obtained, following  $\beta^-$  decay of  $^{203}$  Hg, using a Si(Li) X-ray detector, 10 mm in diameter and 5 mm deep, fitted with a 0.025 mm Be window and having a resolution of 210 eV FWHM at 6.4 keV.



Fig. 1 --- L X-ray spectrum of Tl

The source preparation and the method used to obtain the efficiency-absorption curve were previously described [4].

The L<sub>1</sub> X ray spectrum is due to the lines  $L\beta_4$ ,  $L\beta_3$ ,  $L_{\tilde{1}2}$ ,  $L_{\tilde{1}3}$ , L<sub> $\tilde{1}4$ </sub> and the contribution of these lines in all the L-X spectrum (Fig. 1) is evaluated by decomposing the L<sub> $\tilde{1}$ </sub> group in the L<sub>1</sub> and (L<sub> $\tilde{1}2$ </sub>+L<sub> $\tilde{1}6$ </sub>+L<sub> $\tilde{1}3$ </sub>+L<sub> $\tilde{1}4$ </sub>) lines. Theoretical L radiative rates of Scofield [5] and experimental values of Salem et al. [6] were used in this

#### M. I. MARQUES et al. - L1 subshell fluorescence yield of Tl

evaluation. L $\alpha$  of Np (13.9 keV) and  $\gamma$  (14.4 keV) of <sup>57</sup>Fe, which have energies very close to  $L_{\gamma_1}$  of Tl (14.29) keV were used to obtain the shape of this line.

### 3-RESULTS

In table I we present the values of  $\omega_{\rm K}$ ,  $f_{\rm KL_1}$ , and  $n_1/n_{\rm K}$  adopted to determine  $\omega_1$  by expression (1); transition rates from Scofield (a) and Salem et al. (b) were used in evaluating  $F_{\rm L_1}/F_{\rm K}$ 

| ω <sub>κ</sub> [7] | f <sub>RL1</sub> [8] | n <sub>1</sub> / n <sub>K</sub> [9] | F <sub>L1</sub> / F <sub>K</sub> |
|--------------------|----------------------|-------------------------------------|----------------------------------|
| 0.966              | 0.0190               | 0.155                               | 0.0217 (a)                       |
|                    | Carlos and and a     | 1.                                  | 0.0176 (b)                       |

TABLE I

Table II shows our result  $\omega_1 = 0.109 \pm 0.016$  together with values obtained in previous experimental work.

| Per 4 | TOT | -  | TT |
|-------|-----|----|----|
| TA    | BI  | H. | 11 |
|       |     | a  |    |

| Sujkowski et al. [1] | Wood et al. [2] | Auler et al. [8] | Present work      |
|----------------------|-----------------|------------------|-------------------|
| $0.11 \pm 0.025$     | $0.07 \pm 0.02$ | 0.10             | $0.109 \pm 0.016$ |

#### REFERENCES

- [1] Z. SUJKOWSKI and O. MELIN, Ark. Fys., 20, 193 (1961).
- [2] R. E. WOOD, J. M. PALMS and P. V. RAO, Phys. Rev., 187, 1497 (1969).
- [3] L. T. AULER, A. G. DA SILVA and A. G. PINHO, Rev. Bras. Fis., 4, 29 (1974).

Portgal. Phys. - Vol. 11, fasc. 1-2, pp. 9-12, 1980

11

M. I. MARQUES et al. - L<sub>1</sub> subshell fluorescence yield of Tl

- [4] M. I. MARQUES, M. C. MARTINS, J. G. FERREIRA, J. Phys. B., 13, 41, (1980).
- [5] J. M. Scofield, At. Data and Nucl. Data Tables, 14, 121 (1974).
- [6] S. I. SALEM, S. L. PANOSSIAN and R. A. KRAUSE, At. Data and Nucl. Data Tables, 14, 91 (1974).
- [7] M. O. KRAUSE, J. Phys. Chem. Ref. Data, 8, 307 (1979).
- [8] P. V. RAO, M. H. CHEN and B. CRASEMANN, Phys. Rev., A5, 997 (1972).
- [9] Table of isotopes, ed. C. M. LEDERER and V. S. SHIRLEY, 7th edition (1978).