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ABSTRACT —Two estimates for the variance o2(I) of repeatedly 

measured integrated intensities I are given, one based on the sample variance 

the other one based on Poisson statistics, The weighted mean of both is taken 

as the final estimate of o? (I). The ratio of this final estimate to the «sample 

variance» of symmetry dependent intensities plotted once against I and once 

against sin #/x and alternatively a x2-test can help to detect systematic 

errors inherent in the intensities or errors of the final estimates of o? (I) 

1 — INTRODUCTION 

Weighting, in least squares procedures, can considerably 

influence the refined parameters. Given a set of observations x; 
to be compared with calculated values x,,, the function to be 
minimized is [1] 

Q=3(%\— ky)’ of? (1) 

o? is the variance of x;. Its reciprocal o;* is called the weight of 
the observation ‘x;: Repeated observations x, of the same quantity 
under equal conditions have the same variance o?. Therefore 
in (1) they can be replaced by their mean with the variance of 

the mean o?/n if n values x; are observations of the same quan- 

tity [2]. This can be understood without applying the rules of 

(*) On leave from Institut fiir Kristallographie, T. H. Aachen, Germany. 
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statistics by simply considering the normal equations to be derived 
from (1) [3]. The problem is how to determine the variances os 

Undoubtedly the processes of generating and diffracting 
X-rays or neutrons obey Poisson statistics so that the variance 
of an integrated intensity I is known in principle [4]. In practice, 
however, sample variances s’(I), which in statistics serve as 
estimates for the population variances o* (I), often are consi- 
derably larger than o}(I) of Poisson distributions [5] [6] (*). 
McCandlish, Stout & Andrews [6] describe a procedure by which, 
through the use of somewhat modified sample variances derived 
from repeatedly-measured standard intensities, two correction terms 

are added to the variance obtained from the Poisson distribution. 
Abrahams [7] emphasizes the experiment as the best proof for 
any error estimation. He gives a list of some presumed error 
sources and proposes to estimate the contribution of each indi- 

vidual error source to the total error if it is not accessible either 
to experiment or to theory, as for example intensity drift of 

the primary beam or statistical variances are. On the other side 

Hamilton [8] (p. 148) strictly gives preference to theoretical 

variances over sample variances at least for small samples just 

as Schulz & Schwarz [9] practise. 

In electron density work the reliability of the variances o? (I) 

(or their estimates) seems to be as important as the reliability 

of the integrated intensities I themselves. The variances o?(I) in 

least squares refinements besides their action through weights 

via the goodness of fit parameters serve as an indicator if either 

the model is inadequate or the data are burdened by some hidden 

errors or if both situations occur. In Fourier methods reliable 

estimates. of o? (I) are indispensable to decide whether the experi- 

mentally determined electron densities are significant or not. 

Regarding the «instability constant» [6] it must be noticed 

that in X-ray diffraction the strongest reflections are low order 

reflections and these contain most of the information on bonding 

electrons. If therefore the deformation of the atoms or ions caused 

by bonding effects are not taken into account the differences 
A = |Io4; — Ica, | naturally will be larger for strong reflections than 

(*) Schulz in his expression for the variance of the corrected intensity 

already took into account a term representing the uncertainty of the scaling 

parameter deduced from control or standard reflections. 
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for weak ones. Furthermore strong reflections are most affected 

by extinction and counting losses through dead time of the 

counting devices. The correction of these effects introduces 

additional errors whose magnitudes must be estimated and taken 

into account. 

If, however, the estimation of o? (I) through sample variances 

reveals a linear dependence of o*(I) upon I? this error can be 

kept small using small crystals or weaker primary intensities. Some 

other error sources which preferably affect strong reflections like 

weakening filters or movable £ - filters can be easily avoided. 

In this paper it is assumed that all intensities have been 

corrected for time drifts according to McCandlish et al. [6] if 

this turned out to be necessary. The variances o}., are thought of 

to have the form of, = o, + og where oj is the variance derived 

from Poisson statistics and o% is the variance which takes into 

account the uncertainty of the scale parameter. 

In the following two estimates of the intensity variances shall 

be given, the first one based on sample variances according to (8), 

the second one derived from Poisson variances. The weighted 

mean of both shall be taken as the final estimate of o? (I). 

2— CONFIDENCE LIMITS AND WEIGHTS 

Suppose (with close reference to Hamilton [8] (p. 40)) that'm 

samples each with n, observations all having the same population 

mean » led to m means x, with variances o*(x;,). Then it is 

reasonable to take the weighted mean x: 

x= 
i I

M
B
 

; Ww; X; (2) 

w, = 0?) / 3 0-* &) 3) 

In w;, the quantity o (X), considered as a confidence limit, 

guarantees a certain probability P, for the interval (x,—o (x), x; 
+ o (x))) to include the population mean ,». For normally distri- 

buted observations this probability has the value P, = 0.682689. 

Portgal. Phys. — Vol. 12, fasc. 1-2, pp. 49-60, 1981 51



W. GONSCHOREK — Sample, expected and estimated intensity variances 

Therefore it is proposed to replace the o &)) in (3) by confidence 
limits s,, for the probability Pg if the o (x;) are unknown : 

Sg = ta, 1s, fn (4) 

t.(@) = fractile ee point) of Student’s t-distribution for 
the probability « = 1— Pg, and the degree of freedom v, s; = sample 
variance of the j-th sample. Table I gives the fractiles t_(). 

TABLE I—Fractiles of Student’s t-distribution for the two-tailed probability 
a=1— Py ‘ P. = 0.682689 (*). » is the number of degrees of freedom. 

  

  

v t ©) v t v tO) 

1 1.837 7 1.077 13 1.040 
2 1.321 8 1.067 14 1.037 
3 1.197 9 1.059 15 1.034 
4 1.142 10 1.053 20 1.026 
5 1.111 11 1.048 25 1.020 
6 1.091 12 1.043 30 1.017 

  

(*) Pg, is the value of the integral taken over the Gaussian density func- 

tion from —o to + o, » = 0. The integration was carried out by the quadrature 
method of Gauss once with 24 and once with 26 grid points for the integration 
from 0 to o. Both results (with 24 and with 26 grid points) agreed to within the 

10th digit after the decimal point. The fractiles were obtained by integration of 

Student’s t-distribution function again using the quadrature method of Gauss 

with 26 grid points. The limits of integration were varied until the value of 

the integral deviated less than 4.10—° from P,, = 0.6826894921. That last limit 

of integration was taken as t ©). 

3—TWO ESTIMATES OF o? (1;) 

Suppose the integrated intensity of the j-th reflection 

repeatedly has been measured n; times yielding the integrated 

intensities I, and variances of =o} + o,: The weighted mean 
ji 

a, 

. (5) 
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is taken as the integrated intensity of that reflection. Here the 

weights w; have the form 

| 
W; = op? /% op’ (6) 

ji k jk 

3.1— Estimate of o*(1,) through the sample variance 

According to (4) the first estimate of o?(1,) takes the form 

si, = tf (nj—1) sj / 0, (7) 

with « =1—Pg and 

n. 
J ue 

8} = (nj —1)* 3 w, (pT)? (8) 

with w, as defined in (6). 
The variance of s; is derived in Appendix A. With that result 

the variance of Si, is 

n 

of(84) = th (mj—1) 2(mj—1)7/(8 Gt) 

a, is the (unknown) variance of I;;. If in (9) oj, is replaced by o};, 
and if the definition (12) is used, o* (sj) takes the form 

op( Si) = t)(nj;— 1) 2(¢n,—1)-* of (1) (10) 

3.2 — Estimate of o?(1,) through Poisson statistics 

For m repeatedly measured reference reflections, the weighted 

means according to (5) and (6) and the quantities s? (eq. (8)) 

j=1, ... m are taken. The variances of I; derived from (5) are 

n, 
te J 

(1) = 5 Wi oj (11) 
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Here oj; is replaced by o},,. This leads to 

Dn. 
J 

o2 (1;) = Cs opi) (12) 

Now the ratios v, are taken 

Vv, = 8%, /03(1) (13) 

Their weighted mean is 

v= be al Ct ST’ (Vx) (14) 

with si(v,) as derived in Appendix B. - 
Then as the second estimate of o?(1;) for each repeatedly 

measured intensity the quantity s’/* is taken: 

s'?? =v o3(1,) (15) 
J 

4—THE FINAL ESTIMATE OF o?(1I,) 

The final estimate of o°(1,) is 

s’* (Ij) = (op? (si) 8;, + 87° (8) 8?) /(op* (Si) + s¢*(8’”)) (16) 

with o5(sj,) as defined in (10) and with si (s’/*) as derived in 
Appendix C. 

An estimate of the variance of s’?(I;) is 

a?(e* (1) = Ca, 79g) + 5? Co") (17) 

If for some j-th reflection there exists only one single 
measurement I; its variance is estimated as 

s?(1,) = V oF, (18) 

An estimate of the variance of s’?(I,) is 

s*(s” (Ii)) = sf (V) o,, (19) 

with s?(v) as defined in (C6). 
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Often I; is corrected by some factor c, (e. g. absorption): 
i= et. In the following s’” (J;) must then be replaced by the 
appropriate estimate of 0° (c;I;). 

5— SYMMETRY DEPENDENT INTENSITIES 

For symmetry dependent intensities 1; j=1,..np the 
weighted mean is taken: 

T=3- 1 (20) 
J 

with weights 

wi=s'*(1) / % s’-*(1,) (21) 

An estimate of the variance of I deduced from (20) is 

n 
— D = 

(I) = (3 s-*(1))-4 (22) 

and this should be taken as the estimate of 0? (1). The estimated 
variance s’*(I) can be compared with the weighted scatter of : 

n 
D she 

s*(1) =(np—1)— ¥ w,(,—I)? (23) 

The ratios of si(1) = t? (ng —1)s?(1) to s’2(T) plotted once 
against I and once against sin #/A may help to reveal systematic 
dependences if they exist. Alternatively a y - test according to van 
der Waerden ([1] p. 222) can be applied. This will be done in a 
paper which is in preparation. 

A considerable part of this work was done at the Institut 
fiir Kristallographie der T. H. Aiachen. The author, therefore, is 
deeply indebted to Prof. Th. Hahn. Thanks are due to Prof. Alte 
da Veiga who gave the opportunity to complete this work. The 
grant of a research and teaching fellowship by Deutscher Akade- 
mischer Austauschdienst is highly appreciated. 
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APPENDIX A 

The variance of the quantity sé (8) is to be derived. For that 
purpose the intensities I,,, with constant j, are assumed to be 
normally and independently distributed with variances o;, and all 
with the same (population) mean ». Then the weights w, instead 
of (6) have the form 

n 
j 

Wi = oj" / > oR (Al) 

Correspondingly the variances of I, ; instead of (12) are 

n. 
— J 

o* (1) = (3 07") * (A2) 

Now the quantity 

C= (nj; —1) of. 0% C1) (A3) 

shall be shown to be ,?—distributed with (n;—1) degrees of 

freedom. For that purpose according to van der Waerden [1], 

(p. 111) I, is replaced by 

X= Cji—e) / oy; (A4) 

x, is normally distributed with mean zero and unit variance. Equa- 

tion (8) can be rewritten as 

n 

s? = (n,—1)-} [3 win—(2 wil » | (A5) 
ij j ; iv ji 7 i iv ji 

or, taking (A4) into account, 

n “ _ 3 
s?=(n,—1)- [= Wi (04, X; + 1)? —(o? (];) = og?x, + »)?| (A6) si 74 

This leads to 

ie n; n, 

§=o(E)(n—1)t [swig y] aD 
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The quantity in square brackets in (A7) is identical with ,? 

defined by (A3). Now the transformation 

n. 
J 

¥.=% wi? x, (A8) 

is considered. The sum of the squares of its coefficients is equal 

to unity. Therefore this equation can replace the first row of the 

linear equations in van der Waerden ([1], p. 112) or the last row 

of the corresponding equations in Martin ([10], p. 59), and the 

conclusions drawn in these works concerning x? as defined there 

apply also to ,? defined in (A3). Therefore y? (A3) assumes a 

x’?- distribution with (n,—1) degrees of freedom and the variance 

of s; is 

o? (s?) = 2(n,—1)- of (I) (A9) 

APPENDIX B 

The variance o*(v;) with v, as defined in (13) according to 

Hamilton ([8] p. 32) is given by 

o? (V,) = 0 (8%) (op? (1,)) +op* (1,) o* (8%) +88, 07 (op? (I; )) (B1) 

Here it is assumed that sj, and op? (1, ) are statistically inde- 

pendent. o*(sj,) is estimated thioleh (10). 0 (op? (I, )) is found 

using a formula again given by Hamilton ([8], p. 32): 

o? (op? (1,)) =o" (o5(1;)) / 0 (1;) (B2) 

To find an estimate of o*(o}(1,)) the weighted mean of oj. 

as defined in (6) is considered 

yy 
; ae 

opj— = W 
1 

een ee (B3) 
i Pi 
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op; is an estimate of the variance of the observations I; for cons- 
tant j. Therefore an estimate of the variance of 4 is ‘of f n, which 
is identical with (12): 

o3(1;) = 05 / 0, (B4) 

Now o},, (B3) being the weighted mean of ob an estimate of 
its variance ds given by 

n. 
J 

Ss? (op) = (n;—1)™* & w, (03 —o3, )# (B5) J 

With (B4) this leads to an estimate of 03 (I, )): 

s*( 05 (T;)) = s*(03,) / n® (B6) 

Now an estimate of o°(v;) (Bl) can be given. First in (B2) 
o (0 (J; )) is replaced by (B6). s* (0% (1,)) (B6) according to (4) 
is multiplied by t (nj—t). sj, in the last term of (Bl) according 
to (13) is replaced. by Vj op CT, ) Then the estimate of o* (v;) is 

s?(v,) =? (n;—1) [ (os) nt ont (1) 

(2t§ (nj—1)/(n,—1) + v;) + 2t? (nj—1)/ (nj—1) | (B7) 

with S* (op,) as defined in (B5) and oj (1) as defined in (12). 

APPENDIX C 

The variance o*(s/’*) according to Hamilton ([8], p. 32) has 

the form 

o° (8) = 68 (v) o*(080,)) toh (,)o(V) +¥ 02(03(T)) (Cl) 

Here v and 0% (I, ) are considered to be statistically indepen- 

dent. An estimate of o? (03 (i, )) is given through (B6). For o?(v) 
two estimates can be derived: 
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1. vas defined in (14) has the variance 

(Vv) => wo"(v,) (C2) 
J 

with 

w= 872) / 3 88%) (C3) 

In (C2) o?(v;) is replaced by s/(v;,) (B7) yielding 

o(V) = (3 so? (v,))—? (C4) 

2. An alternative estimate of o?(v) is the weighted scatter of V; 

s?(v) =(m—1) & wj(v,—v)? (C5) 

with weights as defined in (C3). As the final estimate of o?(V) 

the maximum 

s?(v) = Max (o?(v); t8(m—1)s*(v)) (C6) 

shall be taken. Finally the estimate of o*(s/’*) (C1) to be used 

in (16) is 

i ak _2 

s? (sf?) = t? (nj— 1) s*(o},) nj? [s7(v) + ¥ | 

+ of (TSR (ED 
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