AN EPITOME OF CONFIGURATIONAL DATA ON CONNECTED CLUSTERS

J. A. M. S. DUARTE

Departamento de Física — Faculdade de Ciências do Porto, 4000 Porto, Portugal (Received 26 June 1981)

ABSTRACT — New lattice data on configurational histograms are given for bond and site clusters grouped by fixed percolation perimeter, fixed energy perimeter and fixed cluster size. The latter are illustrated by several combinations of interest of cyclomatic number discriminations.

INTRODUCTION

It has long been recognized that configurational studies are a fundamental tool in the theory of critical phenomena. Recently, however, powerful techniques (like transfer-matrix renormalization and field theoretical methods [17]) have surged on to the statistics of lattice clusters in the percolation and animal problems (see e. g. ref [18]) and significant advances in the knowledge of the critical exponents for both problems have been brought close to a virtually «exact» solution. There is, however, still open a rich field of specializations (valence, cyclomatic number, specific connectivity requirements, restricted sets of clusters (animals) defined through topological constraints). Our aim in this paper is twofold: written in mid-81 it should concentrate on selected topics referring to the cluster topology which are likely to assume physical relevance in the future, and where series expansions and configurational studies will remain competitive. On the other hand, it should unify various treatments that have remained scattered in the literature without any systematic exploration (like bond or site content in percolation). We have divided the data in 5 broad groups: fixed energy groupings, fixed percolation perim-

eter groupings, fixed size percolation groupings, cyclomatic number distributions (in percolation) and fixed size energy groupings. Each one of them is preceded by a succint description of the graph theoretical procedures used in its derivation.

The notation to be consistently applied throughout the paper is:

- s denotes the number of cluster sites
- b denotes the number of cluster bonds
- e denotes the external bond (energy) perimeter
- t denotes the perimeter in the percolation sense

 g_{se} ; g_{sbt} – give the number of geometrically different cluster configurations with a given label *s*,*e* or *s*,*b*,*t*.

Note that the normalization of the various $g_{s...}$ may occasionally vary for convenience. We have indicated in each case the factor relative to a normalization per lattice site.

A — Fixed energy groupings

Whenever the bond perimeter of connected site clusters is fixed, the resulting distributions according to the variable number of sites enclosed within a given configuration of boundary bonds can easily be translated topologically into a fixed perimeter — enclosed area problem by considering the dual lattice (Sykes et al [1], [2]). Consider figure 1 for the triangular — honeycomb system: in Fig. 1 A, the connected cluster of 8 sites and 11 bonds on the triangular lattice is the *dual* of the honeycomb configuration with 26 sides and area 8. Denoting the number of sites by s, the number of (*internal*) bonds by b and external bonds by e, the following linkage rule for site clusters (strongly embedded clusters)

$$e = zs - 2b A. 1$$

is valid on any lattice (coordination number z). For configurations of the type in Fig. 1A there are no sites enclosed within

Portgal. Phys. -- Vol. 12, fasc. 1-2, pp. 99-138, 1981

the configuration and not belonging to it but Fig. 1B indicates the possibility of such configurations: all clusters that can be derived from the fully compact cluster limited by the outermost boundary through the exclusion of any combination of hexagonal faces marked with (x) are still duals of connected clusters on the triangular lattice, but, unlike the case of Fig. 1A, their boundary is no longer singly-connected (it is no longer a simple polygon).

Fig 1

- A Site cluster on the triangular lattice and its dual on the honeycomb lattice. The triangular configuration is compact (no inner perimeter sites) and its dual is bounded by a simple polygon.
- B Another example of a honeycomb configuration. Exclusion of any face marked with (x) generates a connected dual from the larger simple polygon.

The situation recurs for the simple quadratic lattice, which is well known to be self-dual (Fig. 2). Fig. 2C is a compact configuration bounded by a simple polygon (it is, in fact, the isoperimetric solution for perimeter 18, Duarte and Marques [3] — and area 20). Once again, exclusion of any combination of square faces marked with (x) generates a connected area (alternative examples are drawn in 2A and 2B), which is still a dual of some site cluster on the same lattice. Fig. 2D shows, explicitly, a square site tree (17 sites) and its connected dual.

Now all perimeter distributions of site clusters contribute to the low temperature ferromagnetic polynomials for the Ising

model [1]. It is, however, required, for their isolation, to separate the contribution of multicomponent graphs as described in [4]. To go one stage further and separate the simple polygons from the nonpolygonal connected duals, we note that on the honeycomb lattice (Fig. 1) it is impossible to have more than 3 ele-

Fig. 2

A, B - Examples of connected duals on the square lattice.

 C — Simple polygon on the square lattice. Exclusion of any face marked with (x) generates a connected dual from the larger configuration.
 D — A square lattice tree and its dual.

mentary hexagonal faces meeting at a site and, therefore, the contribution from those configurations can be singled out from clusters discriminations on the triangular lattice taking into account the number of elementary triangular faces f (as well as s and b). Isolated inner boundary sites will then occur for all clusters where f does not account for the total cyclomatic number:

$$b - s + 1 \neq f$$
 A. 2

and this inequality identifies the non-polygonal connected duals: all inner boundaries will be separate from the outermost boundary.

Portgal. Phys. - Vol. 12, fasc. 1-2, pp. 99-138, 1981

It is impossible to proceed in this way for the square lattice: a tree like in Fig. 2D does not verify A.2 and yet its dual is not a polygon. In general the problem of determining the connected duals up to a reasonable order is lessened by simple conversion of fixed s distributions (b groupings), like those below in section D. Earlier results for the square polygons can be found in Hiley and Sykes [5].

The additional data should sum to the known results for the total number of polygons (fixed perimeter), greatly extended in a recent paper by Enting [6] through the use of transfer matrix techniques.

We give new data for polygons on the honeycomb (e \leq 42) and square lattices (e \leq 22) as well as for the corresponding connected duals.

B — Fixed percolation perimeter groupings

When the perimeter is measured in the percolation sense, i.e. by the number of sites (bonds) t necessary for the isolation of a given cluster on a lattice, the perimeter groupings suffer considerable rearrangement of the various cluster contributions. The usual perimeter method can, of course, be used for obtaining these groupings — once again, they can be obtained through a straightforward conversion of the fixed size percolation distributions, although such information must be completed (for detailed descriptions see Sykes et al [4], Blease et al [7]).

In this paper we present results for these groupings on the square ($t \le 16$) and honeycomb ($t \le 13$) lattices (site problem) as well as for the Kagomé site problem ($t \le 16$). As in section A, the problem is equivalent to the enumeration of the histograms g_{st} or g_{bt} at fixed t; g_{st} or g_{bt} gives the number of geometrically different cluster configurations per site (or per bond) with a given perimeter value t (here t refers to bond and site perimeter for bond and site percolation respectively).

In addition, we have used inequality A.2 (and further discrimination through b, s, t and f) to isolate all the non-polygonal connected duals of the triangular lattice according to their percolation weight. The resulting perimeter polynomials are given

through order 21 (they should be compared with the complete set of perimeter groupings for the problem, given in Sykes et al [4] (t \leq 22)).

C — Fixed size percolation groupings

The g_{st} (fixed size s) are the best illustrated groupings in the literature. They have been listed for 2,3 and higher dimensions [8], [9], for both site and bond [10] problems on most usual lattices. The interested reader should refer to those papers for an outline of the method and detailed considerations on the applicability of the corresponding series expansions. We have added in this paper the groupings for the site problem on the 2 archimedean lattices of coordination number 5, (3,3,3,4,4) and (3,3,4,3,4) (s \leq 12). Both lattices (their Ising points are known exactly) provide good testing ground for the variation of the perimeter – to – size ratio and its connection with criticality (Duarte [11]). The well known sum rule to be verified by the g_{st} is

$$p = \sum_{s,t} s g_{st} p^{s} (1 - p)^{t}$$
 C. 1

D — Cyclomatic number distributions in percolation

A different type of configurational weighting which has been the object of much recent interest is the set of three – indexed discriminations of clusters by their site, bond content and perimeter (in the percolation sense). Through Euler's law these discriminations lead to the expansions of the average cyclomatic number $\langle c \rangle$ (Cherry [12], Gaunt et al [13]).

$$< c > = < b > - < s > + < 1 >$$
 D. 1

and from expansion of the higher moments of the cluster size distribution of the type

$$< s^{k} > = \sum_{s,b,t} s^{k} g_{sbt} p^{b} (1 - p)^{t}$$
 D. 2

Portgal. Phys. - Vol. 12, fasc. 1-2, pp. 99-138, 1981

for bond percolation and

$$< b^k > = \sum_{s,b,t} b^k g_{sbt} p^s (1 - p)^t$$
 D. 3

for site percolation, new quantities of interest, paralleling the moments in the usual cluster size distribution are obtained. They are expected to belong to the same universality class as normal percolation and therefore constitute alternative ways of calculating the critical exponents for percolation. For k = 2, D.2 and D.3 lead to «susceptibility» series diverging near p_c with a critical exponent γ , like the mean cluster size

$$p \to p_{c}^{-}, < s^{2} >_{bond} \sim |p_{c} - p|^{-\gamma}, < b^{2} >_{site} \sim |p_{c} - p|^{-\gamma}, D. 4$$

This property has been occasionally used in the literature (Dunn et al [14], Agrawal et al [15]). A systematic study for 2 dimensional percolation (p_c lattices) is reported in [16].

We present results for the set of histograms Σ_b bg_{sbt} for the triangular, square matching, Kagomé, honeycomb and archimedean (3,3,3,4,4) and (3,3,4,3,4) site problems and for Σ_s sg_{sbt} for the square and honeycomb bond problems, as well as for Σ_b b² g_{sbt} for the Kagomé site problem. We recall that for the first moment distributions the sum rules

$$\sum_{b, s, t} b g_{sbt} p^{s} (l - p)^{t} = (z/2) p^{2}$$
 D. 5

for site percolation and

$$\sum_{b, s, t} s g_{sbt} p^{b} (1 - p)^{t} = 1 - (1 - p)^{z}$$
 D. 6

for bond percolation, should be verified.

It also seems adequate to mention that the use of detailed valence discriminations constitute an alternative way of determining their cyclomatic number distributions. Since they represent an expansion from 3-indexed to z-indexed discriminations it is usually more cumbersome to take this line of procedure (it was however followed in refs [12], [13]). If the sites in a connected cluster are partitioned according to the number of

Portgal. Phys. - Vol. 12, fasc. 1-2, pp. 99-138, 1981

site neighbours in the cluster (their valence) the following linkage rules are verified

$$\sum_{\mathbf{v}} \mathbf{s}_{\mathbf{v}} = \mathbf{s}$$
 D. 7

$$\sum_{v} v s_{v} = 2 b \qquad D. 8$$

with s_v the number of sites with valence v and where the summations run from 1 to z. Equations D. 7 and D. 8 are unwieldy for bond percolation (valence considerations apply equally to bond and site percolation clusters), since b is usually fixed and any cyclomatic number mixing in a given g_{bt} must be disentangled from a combination of different s as well as from all compatible combinations of s_v 's. It is generally more direct to start from bond percolation distributions and exploit the following properties of the yield factor generation (see Blease et al [7] for an exposition of the method):

a) For a given space-type strongly embeddable on the specific lattice under investigation, the number of bonds that can be transferred from the bond content to the bond perimeter is not greater than the cyclomatic number, if connectivity is to be preserved.

b) The number of transferable bonds is zero for strongly embedded trees.

c) The length of the bond tree percolation polynomial (with b = s - 1 bonds) is $c_{max} + 1$, where c_{max} is the maximum cyclomatic number of s-site clusters.

d) Strongly embedded clusters always maximise the bond perimeter for given values of b and c. Recalling that the linkage rule for strongly embedded clusters is e = t = zs - 2b, it can be seen that the difference in bond perimeter between clusters with successive cyclomatic numbers (same b) is z. These properties enable a separation of the cyclomatic number contributions in bond perimeter polynomials of not too high b (like those in Sykes et al [10]). In every case the sum rule D. 6 acts as a check on such graph theoretical manipulations and use of valence discriminations is thereby avoided.

E — Fixed size energy groupings

These enumerations are converse of those considered in section A. For site clusters, these groupings constitute (through eq. A. 1) a strict partition according to the cyclomatic number (or alternatively, according to the number of bonds *b* in the cluster). No data exist in the literature regarding this specific partition, which has emerged in recent times as a very relevant tool for the study of branched polymers in the dilute limit (mainly through the studies of Lubensky and coworkers [17], [18]). Clearly, in this partition the 3-indexed discriminations in D. 2 and D. 3, the g_{sbt} , are summed over the perimeter index, so that with the resulting g_{sb} (which are equivalent to the g_{se}) new moments of the «animal distribution» [17] can be defined and numerically investigated.

We present data on the three 2-dimensional regular lattices. The first noticeable difference with respect to the g_{ts} is that the corresponding histograms evolve very slowly in shape, so that it might be argued that for this specific partition the lattices are not very effectively sampled. Now, in each case, the maximum bond perimeter corresponds to the minimum number of bonds in the cluster, so that the last value in each of the g_{se} histograms just gives the total number of site trees on each lattice. As we have mentioned, in the previous section, this total number will also appear as the maximum perimeter configuration value in the bond percolation polynomial of bond size b = s - 1. Hence, the present data represent an extension over the data of ref [10].

Unfortunately the following term in g_{se} (corresponding to the total number of polygons, tadpoles and other configurations of cyclomatic number 1) does not grow sufficiently fast for a non-degenerate histogram to occur for loose-packed lattices. Consideration of the bond case only worsens the balance of the histogram: A. 1 is no longer valid, so that the g_{sb} with s = b + 1, gives the total number of bond trees and through the use of the yield factor generation all site clusters of b + 1 sites give non-zero contributions to $g_{b+1,b}$.

In order to avoid these problems one must concentrate on high coordination number (site) lattices where the strong embeddability «propagates» the distributions towards lower *e* values. But,

Portgal. Phys. - Vol. 12, fasc. 1-2, pp. 99-138, 1981

better still, the careful exploitation of local linkage rules and consideration of both site and bond valence and the changes they undergo in bond-to-site transformations have enabled Duarte and Ruskin [19] to identify the valence structure on lattices which are covering lattices of bond problems. For the site trees $(g_{b+1,b})$ are always neighbour avoiding walks, belonging to a totally different universality class from branched trees and with a comparatively smaller growth parameter. The same happens for the terms of the form g_{bb} which originate from the corresponding bond polygons and bond trees with one single site of valence 3. Hence the g_{se} for the corresponding site covering problem shows a rapid evolution towards non-degenerate configurational histograms. We illustrate this point with the square covering g_{se} (s \leq 13).

This research was funded, at various stages, by I.N.I.C. (Portugal), The Royal Society — Academia das Ciências (Lisboa) and the Gulbenkian Foundation. The author is greatly indebted to Prof. J. M. Araújo for assistance with the manuscript. H. J. Ruskin and R. Cherry made an invaluable contribution towards the computing proficiency of the author.

APPENDIX

FIXED ENERGY GROUPINGS

A — Honeycomb polygons

	e = 6	g_{os} (× 1)		e = 20	
1		1	5		60
	$e \equiv 10$		6		42
2		3	7		30
	e = 12		8		6
3		2		e = 22	
	e = 14		5		99
3		9	6		129
4		3	7		105
	e = 16		8		69
4		12	9		27
5		6	10		3
	e = 18			e = 24	
4		29	6		280
5	1000	21	7		276
6		14	8		246
7		1	9		160

Portgal. Phys. - Vol. 12, fasc. 1-2, pp. 99-138, 1981

J.	Α.	M.	S.	DUARTE -	Configurational	data	on	connected	clusters
----	----	----	----	----------	-----------------	------	----	-----------	----------

10	86	17 1368	
11	24	18 606	
12	2	19 198	
	e = 26	20 42	
6	348	21 6	
7	726	e = 34	
8	720	8 4644	
9	609	9 18786	
10	432	10 27627	
11	249	11 33405	
12	117	12 32061	
13	27	13 29097	1
14	3	14 23553	1
	e = 28	15 18597	1
7	1242	16 13128	
8	1710	17 8877	1
9	1812	18 5412	1
10	1458	19 2943	
11	1164	20 1401	
12	702	21 507	1
13	414	22 147	1
14	168	23 27	1
15	42	24 3	1
16	6	e = 36	
	e = 30	9 23472	:
7	1260	10 54148	5
8	3759	11 76662	:
9	4611	12 88378	\$
10	4769	13 86860)
11	3870	14 78978	\$
12	3163	15 67134	Ł
13	2126	16 53826	;
14	1320	17 40866	;
15	729	18 29076	5
16	290	19 19672	2
17	87	20 12006	5
18	14	21 6936	5
19	1	22 3424	ŧ
	e = 32	23 1458	3
8	5436	24 496	3
9	9804	25 128	3
10	12186	26 24	ł
11	12030	27 2	2
12	10476	e = 38	
13	8406	9 17382	2
14	6336	10 90924	ł
15	4134	11 160131	
16	2622	12 218436	5

Portgal. Phys. - Vol. 12, fasc. 1-2, pp. 99-138, 1981

	J. A. M.	S. DUARTE -	— Configura	tional data o	n connected clus	ters
13		240579		27	13128	
14		242613		28	6060	
15	5	219816		29	2412	
16		193602		30	798	
17		158682		31	216	
18		126099		32	42	
19		93948		33	6	
20		68019		e =	: 42	
21		45531		10	65822	
22		29049		11	431448	
23		17115		12	897289	
24		9138		13	1369834	
25		4338		14	1691994	
26		1719		15	1865164	
27		579		16	1873893	
28	982	147		17	1778925	
29		27		18	1601354	
30		3		19	1397388	
	e = 40			20	1168533	
10		100740		21	951897	
11		287838		22	742157	
12		464580		23	564297	
13		604434		24	410122	
14		661206		25	288397	
15		669792		26	192099	
16		619944		27	122932	
17		553584		28	73674	
18		469290		29	41040	
19		384144		30	21083	
20		300192		31	9632	
21		226296		32	3918	
22		163500		33	1341	
23		111960		34	392	
24		73266		35	87	
25		44646		36	14	
26		25626		37	1	

A — Square polygons

	e = 4	9	656
	e = 6	10	482
	e = 8 (see Hiley, Sykes [5])	11	310
	e = 10 (see easy, symmetric)	12	151
	e = 12 e = 14	13	68
	$e = 16$ g_{-} (× 1)	14	22
7	566	15 .	6
8	676	16	1

Portgal. Phys. - Vol. 12, fasc. 1-2, pp. 99-138, 1981

J.	A.	M.	S.	DUARTE -	Configurational	data	on	connected	clusters
----	----	----	----	----------	-----------------	------	----	-----------	----------

	e = 18	21	187
8	1868	22	68
9	2672	23	22
10	2992	24	6
11	2592	25	1
12	2086	e = :	22
13	1392	10	21050
14	864	11	39824
15	456	12	56162
16	218	13	61032
17	88	14	60864
18	30	15	54032
19	8	16	45936
20	2	17	35952
	e = 20	18	26858
9	6237	19	18744
10	10376	20	12456
11	13160	21	7648
12	12862	22	4472
13	11717	23	2408
14	9332	24	1208
15	7032	25	560
16	4748	26	238
17	3010	27	88
18	1728	28	30
19	914	29	8
20	426	30	2

A — Honeycomb duals

$ \begin{array}{c c} e = 10 \\ e = 12 \\ e = 14 \\ e = 16 \\ e = 18 \\ e = 20 \\ e = 22 \end{array} \begin{array}{c cccc} & & & & & & & & & & & & & & & & & $		e = 6	A CAN PROVIDE THE A		e = 26	
$ \begin{array}{c c c} e = 12\\ e = 14\\ e = 16\\ e = 18\\ e = 20\\ e = 22 \end{array} \begin{array}{c c} Same \ as \ polygons & 9\\ 10\\ e = 22 \end{array} \begin{array}{c c} Same \ as \ polygons & 9\\ 10\\ 11\\ 249\\ 2\\ 12\\ 11\\ 12\\ 12\\ 11\\ 14\\ 14\\ 13\\ 27\\ 14\\ 14\\ 3\\ 10\\ 10\\ 160\\ 10\\ 160\\ 10\\ 1458\\ 10\\ 11\\ 11\\ 164\\ 11\\ 24\\ 12\\ 2\\ 2\\ 13\\ 10\\ 13\\ 10\\ 164\\ 11\\ 1164\\ 11\\ 11\\ 164\\ 11\\ 12\\ 13\\ 10\\ 13\\ 10\\ 10\\ 1458\\ 10\\ 11\\ 1164\\ 11\\ 11\\ 164\\ 11\\ 11\\ 11\\ 12\\ 13\\ 13\\ 14\\ 14\\ 11\\ 11\\ 12\\ 13\\ 13\\ 14\\ 14\\ 14\\ 14\\ 12\\ 12\\ 13\\ 13\\ 14\\ 14\\ 14\\ 14\\ 14\\ 12\\ 12\\ 13\\ 13\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14$		e = 10		6		348
$ \begin{array}{c c c} e = 14 \\ e = 16 \\ e = 18 \\ e = 20 \\ e = 22 \end{array} \begin{array}{c c c c c c } Same as polygons & 9 & 609 \\ 10 & 432 \\ 10 & 432 \\ 11 & 249 \\ 12 & 117 \\ e = 24 \\ g_{se} (\times 1) & 13 & 27 \\ 14 & 3 \\ 6 & 281 \\ e = 28 \\ \hline 7 & 276 & 7 & 1248 \\ 8 & 246 & 8 & 1737 \\ 9 & 160 & 9 & 1818 \\ 10 & 86 & 10 & 1458 \\ 10 & 86 & 11 & 1164 \\ 11 & 24 & 12 & 702 \\ 12 & 2 & 13 & 414 \\ \end{array} $		e = 12		7		732
$ \begin{array}{c} e = 16 \\ e = 18 \\ e = 20 \\ e = 22 \end{array} \left(\begin{array}{ccc} \text{Same as polygons} & 9 & 609 \\ 10 & 432 \\ 11 & 249 \\ 12 & 117 \\ 12 & 12 \\ 12 & 117 \\ e = 24 \\ g_{se} (\times 1) & 14 \\ 3 \\ 6 \\ 281 \\ e = 28 \\ 7 \\ 276 \\ 7 \\ 276 \\ 7 \\ 276 \\ 7 \\ 276 \\ 8 \\ 246 \\ 8 \\ 10 \\ 160 \\ 9 \\ 1818 \\ 10 \\ 86 \\ 11 \\ 1164 \\ 11 \\ 24 \\ 12 \\ 702 \\ 12 \\ 2 \\ 13 \\ 414 \end{array} \right) $		e = 14		8		720
$ \begin{array}{c} e = 18 \\ e = 20 \\ e = 22 \end{array} \begin{array}{c} 10 \\ 11 \\ 249 \\ 249 \\ 12 \\ 12 \\ 117 \\ 14 \\ 3 \\ 6 \\ 281 \\ e = 28 \\ \hline \\ 7 \\ 276 \\ 7 \\ 276 \\ 7 \\ 276 \\ 7 \\ 276 \\ 7 \\ 276 \\ 7 \\ 276 \\ 7 \\ 1248 \\ 8 \\ 246 \\ 8 \\ 10 \\ 10 \\ 160 \\ 9 \\ 1818 \\ 10 \\ 10 \\ 86 \\ 11 \\ 1164 \\ 11 \\ 24 \\ 12 \\ 702 \\ 12 \\ 2 \\ 13 \\ 414 \end{array} $		e = 16 (Same as polygons	9		609
$ \begin{array}{c c} e = 20 \\ e = 22 \end{array} \end{matrix} \qquad \begin{array}{c} 11 \\ 12 \\ 12 \\ 117 \\ 14 \\ 14 \\ 3 \\ 6 \\ 281 \\ e = 28 \\ \hline \\ 7 \\ 276 \\ 7 \\ 276 \\ 7 \\ 276 \\ 7 \\ 276 \\ 7 \\ 276 \\ 7 \\ 1248 \\ 8 \\ 246 \\ 8 \\ 10 \\ 160 \\ 9 \\ 1818 \\ 10 \\ 10 \\ 86 \\ 11 \\ 1164 \\ 11 \\ 24 \\ 12 \\ 702 \\ 12 \\ 2 \\ 13 \\ 414 \\ \end{array} $		e = 18		10		432
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		e = 20		11		249
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		e = 22		12		117
$c = 24$ $s_{se} (X I)$ 14 3 6 281 $e = 28$ 7 276 7 1248 8 246 8 1737 9 160 9 1818 10 86 11 1164 11 24 12 702 12 2 13 414		e = 24	g (X 1)	13		27
6281 $e = 28$ 727671248824681737916091818108611116411241270212213414		c – 24	s _{se} (A I)	14		3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6		281		e = 28	
8 246 8 1737 9 160 9 1818 10 86 10 1458 11 24 12 702 12 2 13 414	7		276	7		1248
9 160 9 1818 10 86 10 1458 11 24 12 702 12 2 13 414	8		246	8		1737
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9		160	9		1818
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10		00	10		1458
11 24 12 702 12 2 13 414	10		86	11		1164
12 2 13 414	11		24	12		702
	12		2	13		414

Portgal. Phys. - Vol. 12, fasc. 1-2, pp. 99-138, 1981

-111

14	168	23		27
15	42	24		3
16	6		e = 36	
	e = 30	9		23662
7	1260	10		54411
8	3795	11		78990
9	4697	12		91389
10	4817	13		89680
11	3876	14		81183
12	3163	15		68294
13	2126	16		54261
14	1320	17		40950
15	729	18		29083
16	290	19		19672
17	87	20		12006
18	14	21		6936
19	2	22		3424
	e = 32	23		1458
8	5472	24		496
9	9990	25		128
10	12453	26		24
11	12264	27		2
12	10557		$e \equiv 38$	
13	8418	9	0 00	17382
14	6336	10		92205
15	4134	10		165144
16	2622	12		226125
17	1368	12		250641
18	606	14		250117
19	198	15		202177
20	42	16	2	199110
21	6	10		161712
	0 = 34	18		127287
0	4644	10		94242
9	19014	20		68067
10	28305	20		45531
11	34263	21		29049
12	32901	23		17115
12	29601	20		9138
14	23001	25		4338
15	18627	26		1719
16	13129	20		579
17	9977	27		147
19	5412	20		27
10	2042	30		3
20	1401	50	e = 40	0
20	507	10	0 - 10	101670
21	147	10		205256
44	14/	11		200000

12		482850	13	1431751
13		631218	14	1782600
14		694122	15	1971774
15		702816	16	1985091
16		648951	17	1879842
17		575856	18	1685370
18		484095	19	1458954
19		392556	20	1210437
20		303741	21	975901
21		227472	22	753821
22		163743	23	568761
23		111990	24	411402
24		73266	25	288661
25		44646	26	192123
26		25626	20	122932
27		13128	27	73674
28		6060	20	41040
29		2412	29	21083
30		798	30	0632
31		216	31	2012
32		42	32	3910
33		6	33	1341
	e = 42		34	392
10		65822	35	81
11		438264	36	14
12		929414	37	1
		A — 5	Square duals	
	e = 4	g _{se} (×1)	8	134
1		1	9	72
	e = 6		10	30
2		2	11	8
	e = 8		12	2

	e = 8		12	4
3		6	e = 16	5
4		1	7	570
	e = 10		8	677
4		18	9	656
5		8	10	482
6		2	11	310
	e = 12		12	151
5		55	13	68
6		40	14	22
7		22	15	6
8		6	16	1
9		1	e = 18	8
	e = 14		8	1908
6		174	9	2708
7		168	10	3008

Portgal. Phys. - Vol. 12, fasc. 1-2, pp. 99-138, 1981

A. M. S. DUARTE — Configurationa	l data	on	connected	clusters
----------------------------------	--------	----	-----------	----------

11	2596	23	22
12	2086	24	6
13	1392	25	1
14	864	e = :	22
15	456	10	22202
16	218	11	42012
17	88	12	58742
18	30	13	63256
19	8	14	62396
20	2	15	54908
e =	20	16	46352
9	6473	17	36112
10	10724	18	26906
11	13456	19	18756
12	13034	20	12456
13	11789	21	7468
14	9354	22	4472
15	7036	23	2408
16	4748	24	1208
17	3010	25	560
18	1728	26	238
19	914	27	88
20	426	28	30
21	187	29	8
22	68	30	2

PERCOLATION PERIMETER GROUPINGS

B — Square lattice

	t = 4	g_{st} (\times 1)	6		54
1		1	7		22
	t = 6		8		4
2		2		t = 11	
	t = 7		5		12
3		4	6		80
	t = 8		7		136
3		2	8		80
4		9	9		28
5		1	10		4
	t = 9			t = 12	
4		8	5		2
5		20	6		60
6		4	7		252
	t = 10		8		388
4		2	9		291
5		28	10		154

Portgal. Phys. - Vol. 12, fasc. 1-2, pp. 99-138, 1981

J.	A.	M.	S.	DUARTE -	Configurational	data	on	connected	clusters
----	----	----	----	----------	-----------------	------	----	-----------	----------

11	52	11	11772
12	9	12	12502
13	1	13	10480
	t = 13	14	7508
6	16	15	4608
7	228	16	2406
8	777	17	1104
9	1152	18	396
10	986	19	124
11	644	20	28
12	325	20	20
13	112	21	4
14	28	t = 1	16
15	4	7	2
	t = 14	8	152
6	2	9	2089
7	100	10	9750
8	818	11	24472
9	2444	12	38694
10	3676	13	44574
11	3530	14	41408
12	2644	15	33046
13	1660	16	23311
14	828	10	14295
15	332	17	0146
16	106	18	0140
17	22	19	3982
18	4	20	1730
	t =15	21	651
7	20	22	206
8	480	23	52
9	2804	24	9
10	7612	25	1

B — Honeycomb lattice

	t =	3	$g_{st} (\times 1)$	t = 5	7
1			1	5	15
	t =	4		6	15
2			1.5	7	3
	t =	5		t = 8	3
3			3	6	31.5
	t =	6		7	60
4			7	8	37.5
5			3	9	12
6			0.5	10	1.5

Portgal. Phys. - Vol. 12, fasc. 1-2, pp. 99-138, 1981

	t = 9		12	7078
7		62	13	11181
8		177	14	12937.5
9		190	15	11758
10		111	16	8895
11		39	17	5796
12		9	18	3258
13		1	19	1522
	t = 10		20	565.5
8		123	21	164
9		471	22	37
10		744	22	6
11		705	23	0 5
12		449.5	24	0.5
13		207	t =	13
14		69	11	1029
15		15	12	6927
16		1.5	13	20160
-	t = 11		14	37635
9		246	15	52311
10		1167	16	57960
11		2361	17	53949
12		3006	18	43728
13		2721	19	31536
14		1902	20	20355
15		1083	21	11689
10		492	22	5889
10		162	23	2541
10		33	24	894
19	+ - 10	э	25	234
10	t - 12	503	26	39
11		2074	20	2

B — Kagomé lattice

	t =	4	$g_{st} (\times 1)$	t =	8
1			1	5	31
	t =	5	122	6	12
2			2	8	9
3	t =	6	14/3	11	1
6			1/3	t =	9
	t =	7	-, -	6	81 1/3
4			12	7	54
5			2	9	36 2/3
7			2	10	11

Portgal. Phys. - Vol. 12, fasc. 1-2, pp. 99-138, 1981

I A M. S. DUARTE Configurational data o	r connected	clusters
---	-------------	----------

12		8	15	595?
15		2/3	16	3974
10	t = 10		17	5770
7		216	18	2190
8		220	19	1780
9		35	20	2318
10		133	21	468
11		88	22	748
13		45	23	674
14		10	25	258
16		9	26	126
19		1	28	70
	t = 11		29	10
8		576	31	14
9		798	34	2
10		280	t = 14	
11		454	11	11522
12		496	12	28524
13		58	13	30774
14		212	14	28078
15		138	15	38372
17		66	16	33712
18		19	17	21063
20		14	18	27850
23		2	19	18925
2763	t = 12		20	10303
9		1550 1/3	21	14744
10		2724	22	6903
11		1576	23	3946
12		1620	24	6058
13		2344	25	1542
14		804	26	1729
15		877	27	1904
16		1020	28	139
17		153	29	639
18		371	30	430
19		270	32	195
21		118 2/3	33	68
22		46	35	49
24		29	38	9
27		4 2/3	41	1
30		1/3	t = 15	
	t = 13		12	317770 2/3
10		4210	13	89636
11		8940	14	117736
12		7432	15	120652 3/3
13		6536	16	151052
14		9726	17	162910

Portgal. Phys. - Vol. 12, fasc. 1-2, pp. 99-138, 1981

18	119496	19	637131
19	128790	20	608309
20	120932	21	645568
21	69820 ² / ₃	22	472456
22	78394	23	418304
23	62468	24	425165
24	29484 2/3	25	247522
25	40976	26	237541
26	23430	27	216930
27	10837 1/3	28	99805
28	17521	29	122492
29	6096	30	86467
30	4432	31	36226
31	6050	32	55156
32	1082	33	27197
33	1763 1/3	34	12362
34	1689	35	212002
36	612	36	691
37	342	30	5220
39	179 1/3	37	0000
40	41	38	6868
42	42 3	39	800
45	8	40	2052
48	2/3	41	1778
	t = 16	43	693
13	88129	44	360
14	279000	46	203
15	427488	47	32
16	500865	49	49
17	608253	52	9
18	716926	55	1

B — Triangular lattice (without holes)

t = 6	$g_{st} (\times 1)$		t = 12	
	1	4		29
t = 8		5		21
	3	6		14
t = 9		7		1
c = 0	2		t = 13	
10	4	5		66
t = 10		6		42
	9	7		30
	3	8		6
t = 11			t = 14	
	12	5		93
	6	6		153
	t = 6 t = 8 t = 9 t = 10 t = 11	$t = 6 \qquad g_{st} (\times 1) \\ 1 \\ t = 8 \\ 3 \\ t = 9 \\ 2 \\ t = 10 \\ 9 \\ 3 \\ t = 11 \\ 12 \\ 6 \\ 4 \end{bmatrix}$	$t = 6 \qquad g_{st} (\times 1) \\ 1 \qquad 4 \\ t = 8 \qquad 5 \\ 1 \qquad 6 \\ t = 9 \qquad 7 \\ t = 10 \qquad 9 \qquad 7 \\ t = 11 \qquad 12 \qquad 5 \\ 6 \qquad 6 \qquad 6 \\ t = 5 \\ 6 \qquad 6 \\ t = 11 \qquad 5 \\ 6 \qquad 6 \\ t = 11 \qquad 5 \\ 6 \qquad 6 \\ t = 11 \qquad 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	$t = 6 \qquad g_{st} (\times 1) \qquad t = 12 \\ 1 \qquad 4 \\ t = 8 \qquad 5 \\ 3 \qquad 6 \\ t = 9 \qquad 7 \\ t = 10 \qquad 9 \qquad 7 \\ t = 10 \qquad 9 \qquad 7 \\ 3 \qquad 8 \\ t = 11 \qquad 12 \qquad 5 \\ 6 \qquad 6 \qquad 14$

Portgal. Phys. - Vol. 12, fasc. 1-2, pp. 99-138, 1981

7	105	t = 1	9
8	69	8	5310
9	27	9	13488
10	3	10	18006
	t = 15	11	18732
6	298	12	14892
7	360	13	11310
8	264	14	7764
9	160	15	4614
10	86	16	2712
11	24	17	1374
12	2	18	606
	t = 16	19	198
6	306	20	42
7	840	21	6
8	918	t = 2	0
9	717	8	3408
10	444	9	20469
11	249	10	41673
12	117	11	51822
13	27	12	52992
14	3	13	45129
	t = 17	14	33981
7	1290	15	24900
8	2316	16	16188
9	2382	17	10023
10	1884	18	5676
11	1308	19	2879
12	720	20	1401
13	414	21	507
14	168	22	147
15	42	23	27
16	6	24	3
	t =18	t = 2	1
7	1014	9	21372
8	4299	10	71644
9	6486	11	125448
10	6641	12	153614
11	5160	13	152658
12	3913	14	136014
13	2354	15	106416
14	1356	16	79446
15	729	17	55440
16	290	18	36576
17	87	19	22708
18	14	20	12912
19	1	21	7116

22	3442	25	128
23	1458	26	24
24	496	27	2

SIZE PERCOLATION GROUPINGS

C — Archimedean (3, 3, 4, 3, 4) (site problem)

	$s \equiv$	4	$g_{st} (\times 4)$	14		2926
5			4	15		6680
	$s \equiv$	2		16		8164
6			2	17		4632
7			8	18		848
	$s \equiv$	3		19		32
8			20		s = 9	
9			12	12		104
	$s \equiv$	4		13		612
8			2	14		2960
9			28	15		8780
10			66	16		20116
11			16	17		29908
	$s \equiv$	5		18		25312
9			8	19		9888
10			48	20		1266
11			180	21		36
12			156		s = 10	
13			20	12		24
	$s \equiv$	6		13		372
10			28	14		1998
11			108	15		9156
12			432	16		27284
13			676	17		62016
14			304	18		103726
15			24	19		110440
	$s \equiv$	7		20		68554
10			4	21		19204
11			72	22		1836
12			316	23		40
13			1092		s = 11	
14			2180	12		8
15			1928	13		128
16			528	14		1308
17			28	15		7104
	$s \equiv$	8		16		28436
11			20	17		86612
12			204	18		198268
13			988	19		350032

Portgal. Phys. - Vol. 12, fasc. 1-2, pp. 99-138, 1981

20		437312	17	91972
21		356728	18	279622
22		166292	19	645560
23		34668	20	1183662
24		2556	21	1639860
25		44	22	1606806
	s = 12		23	1032628
12		2	24	368306
13		40	25	50220
14		660	20	59220
15		4816	26	3452
16		24572	27	48

C — Archimedean (3, 3, 3, 4, 4) (site problem)

	$s \equiv$	1	g_{at} (\times 2)	13		504
5			2	14		832
	s =	2		15		1084
6			2	16		464
7			2	17		110
8			1		s = 8	
	$s \equiv$	3		11		4
7			2	12		120
8			4	13		504
9			10	14		1523
	$s \equiv$	4		15		2750
8			2	16		3791
9			10	17		2906
10			33	18		1294
11			10	19		118
12			2	20		8
	$s \equiv$	5			9 = 9	
9			2	12	5 - 0	36
10			34	12		346
11			72	13		1512
12			68	14		1012
13			36	10		0004
	$s \equiv$	6		10		120.40
10			7	17		13046
11			90	18		13130
12			172	19		8992
13			254	20		2300
14			254	21	to the fact	314
15			36		s = 10	
16			4	12		5
	$s \equiv$	7		13		158
11			34	14		1080
12			204	15		4758

Portgal. Phys. - Vol. 12, fasc. 1-2, pp. 99-138, 1981

16	13604	23	55766
17	28980	24	9696
18	45462	25	854
19	52606	s = 1	12
20	45831	13	4
21	21304	14	247
22	5518	15	2310
23	358	16	12693
24	16	17	48018
	s = 11	18	137623
13	42	19	306124
14	608	20	541719
15	3670	21	755720
16	14956	22	828850
17	42802	23	676978
18	93434	24	392305
19	157478	25	123404
20	202272	26	21028
21	200886	27	1024
22	133464	28	32

CYCLOMATIC NUMBER DISTRIBUTIONS IN PERCOLATION

D — Triangular lattice

	$s \equiv$	2	$\Sigma_{\rm b} {\rm bg}_{\rm sbt} (\times 1)$	s =	= 7	
8			3	12		12
	$s \equiv$	3		13		330
9			6	14		1098
10			18	15		3198
	$s \equiv$	4		16		6504
10			15	17		8802
11			48	18		6084
12			87	s =	= 8	
	e —	5		13		84
11	3 -	0	12	14		897
11			42	15		3420
12			126	16		10230
13			324	17		22494
14			372	18		37251
	$s \equiv$	6		19		41430
12			126	20		23856
13			342	s =	9	
14			1047	14		432
15			1746	15		2478
16			1530	16		10962

J	A.	M.	S.	DUARTE -	Configurational	data	on	connected	clusters
---	----	----	----	----------	-----------------	------	----	-----------	----------

17		32550	23	12435252
18		77244	24	19008123
19		142686	25	23432184
20		196716	26	22557609
21		187836	27	15089856
22		92496	28	5218950
	s = 10			$s \equiv 13$
14		57	16	702
15		1548	17	10626
16		8256	18	67356
17		33522	19	322320
18		107844	20	1241400
19		258930	21	3838218
20		528585	22	10430136
21		822762	23	23661498
22		991227	24	46122252
23		826092	25	76516392
24		356391	26	105213888
	s = 11		27	118095138
15		504	28	103613454
16		5088	29	63161082
17		28686	30	19879872
18		106518		s = 14
19		354294	16	87
20		882774	17	4704
21		1886160	18	40776
22		3269094	19	254682
23		4492410	20	1112547
24		4797486	21	4240902
25		3559656	22	13165455
26		1366230	23	35992752
	s = 12		24	83918157
15		48	25	169687884
16		2691	26	297846975
17		17442	27	446213892
18		97686	28	560840964
19		358230	29	578723592
20		1154871	30	467147454
21		3044358	31	261616854
22		6663264	32	75562266

	$s \equiv$	2	$\Sigma_{\rm b}$ bg _{sbt} (× 1)		$s \equiv$	7	
10			2	16			292
12			2	17			224
	$s \equiv$	3		18			1960
12			16	19			4120
14			16	20			7968
15			8	21			12092
16			4	22			21732
	s =	4		23			22660
12			6	24			26520
14			78	25			24704
15			32	26			21956
16			96	27			13352
17			64	28			7820
18			72	29			3096
19			24	30			840
20			6	31			120
20	e —	5	0	32			12
14	5 -	0	64		$\mathbf{s} \equiv$	8	
14			04	16			100
15			24	17			72
16			332	18			1986
17			336	19			3872
18			568	20			10910
19			452	21			24892
20			612	22			51134
21			336	23			73640
22			208	24			119744
23			48	25			153072
24			8	26			177006
	s =	6		27			172104
14			22	28			168700
16			396	29			127632
17			476	30			86776
18			1422	31			46364
19			2164	32			21414
20			3682	33			6580
21			3064	34			1400
22			4178	35			168
23			3264	36			14
24			2338		s =	9	
25			1180	16			20
26			460	18			1360
27			80	19			2528
28			10	20			11440

D — Square matching site problem

21	32760	37	1800604
22	75996	38	879220
23	146044	39	341348
24	304820	40	101672
25	473628	41	21060
26	700344	42	3204
27	942580	43	288
28	1158604	44	18
29	1203972	$s \equiv$	11
30	1200980	18	208
31	1031344	19	372
32	810160	20	7300
33	519744	21	21692
34	294132	22	81332
35	135616	23	247844
36	49920	24	646804
37	12224	25	1492640
38	2176	26	3236880
39	224	27	6180136
40	16	28	11020012
	s = 10	29	17637232
18	670	30	26672100
19	968	31	36246008
20	10406	32	45860536
21	31096	33	53549768
22	82660	34	57479148
23	219324	35	56049244
24	510996	36	50716588
25	948612	37	41178380
26	1795748	38	30463740
27	2903344	39	19695760
28	4335128	40	11292320
29	5806280	41	5528144
30	7281978	42	2318500
31	8178288	43	756984
32	8407562	44	190168
33	7738904	45	33960
34	6627886	46	4520
35	4895912	47	360
36	3241420	48	20

D — Kagomé lattice site problem

	$s \equiv$	2	$\Sigma_{\rm b} {\rm bg}_{\rm stb} (\times 3)$	12	71826
5			6	13	296724
	$s \equiv$	3		14	1141584
6			30	15	1241916
	s =	4			s = 13
7			120	10	2376
	$s \equiv$	5		11	2682
7	1000	0340	24	12	113640
8			426	13	306876
0	$s \equiv$	6		14	1349736
6	5		6	15	3912288
8			204	16	3762834
0			1416		$s \equiv 14$
9		7	147.0	10	546
7	s –	'	40	11	12126
0			45	12	40842
9			1140	13	511212
10			4548	14	1397292
	$s \equiv$	8		15	5612268
8			258	16	13185468
10			5496	17	11375370
11			14220		s = 15
	$s \equiv$	9		9	42
9			1206	11	8190
10			936	12	53886
11			23052	13	329904
12			43860	14	2159004
	$s \equiv$	10		15	6383382
9			378	16	21974364
10			4932	17	43892388
11			8880	18	34321086
12			88956		$s \equiv 16$
12			134250	10	612
10	e —	11	104200	12	65484
0	5 -	11	40	13	255342
10			42	14	2012856
10			3504	15	9002940
11			18636	16	28199694
12			56616	17	82526616
13			325044	18	144709680
14			408894	19	103371816
-	$s \equiv$	12			s = 17
9			384	11	4824
11			21972	12	10158

Portgal. Phys. - Vol. 12, fasc. 1-2, pp. 99-138, 1981

13	396048	17	118643394
14	1397940	18	301417152
15	10394394	19	473127060
16	38126082	20	310901274

D — Honeycomb lattice site problem

	s =	2	$\Sigma_{\rm b} {\rm bg}_{\rm sth} (\times 2)$		$s \equiv 12$	
4			3	9	234	
	s =	3		10	10797	
5			12	11	68670	
	s =	4		12	156972	
6			42	13	152394	
	s =	5		14	46530	
6			24		s = 13	
7			120	9	30	
	s =	6		10	5616	
6			6	11	69870	
7			150	12	275772	
8			315	13	486714	
070	$s \equiv$	7		14	395352	
7		010	42	15	104496	
8			720		s = 14	
9			744	10	2097	
3	· -	0	744	11	54420	
0	s –	0	550	12	354312	
8			552	13	998700	
9			2478	14	1457295	
10			1722	15	1001676	
	s =	9		16	234312	
8			216		s = 15	
9			3126	10	510	
10			7536	11	34248	
11		-	3936	12	355644	
	s =	10		13	1524900	
8			33	14	3428742	
9			2166	15	4197072	
10			13623	16	2500512	
11			21006	17	524244	
12			9054		s = 16	
	$s \equiv$	11		10	57	
9			882	11	17130	
10			14862	12	295326	
11			47766	13	1849878	
12			57480	14	6028185	
13			20580	15	11161506	

Portgal. Phys. - Vol. 12, fasc. 1-2, pp. 99-138, 1981

16	11757504	S	= 19
17	6162480	11	138
18	1171950	12	64644
	s = 17	13	1285596
11	6198	14	10333392
12	209940	15	47614188
13	1876770	16	137698308
14	8488092	17	258202302
15	22152534	18	311675004
16	34968960	19	227833902
17	32137488	20	87704424
18	15050304	21	12997152
19	2616288	s =	= 20
	s = 18	12	25860
11	1386	13	892020
12	128046	14	9492018
13	1650396	15	55892538
14	10041624	16	206922024
15	35364792	17	506625396
16	77356395	18	832200162
17	105800778	19	896996238
18	86255844	20	593959458
19	36453678	21	209710524
20	5835012	22	28922142

D — Archimedean lattice (3, 3, 4, 3, 4) site problem

	$s \equiv$	2	$\Sigma_{\rm h} \mathrm{bg}_{\rm sth} (\times 4)$	12			2652
6			2	13			3680
7			8	14			1560
	$s \equiv$	3		15			120
8			44		$s \equiv$	7	
9			24	10			36
	s =	4		11			656
8			8	12			2644
9			104	13			8220
10			210	14			15100
11			48	15			12272
	s =	5		16			3240
9			48	17			168
10			248		$s \equiv$	8	
11			832	11			224
12			644	12			2190
13			80	13			9696
	$s \equiv$	6		14			26442
10			208	15			55872
11			724	16			63322

Portgal. Phys. - Vol. 12, fasc. 1-2, pp. 99-138, 1981

J. A	. M.	S.	DUARTE -	Configurational	data	on	connected	clusters
------	------	----	----------	-----------------	------	----	-----------	----------

17	33960	14	21148
18	6056	15	107820
19	224	16	407184
	s = 9	17	1168464
12	1344	18	2518668
13	7436	19	4211012
14	33664	20	5012660
15	92464	21	3902412
16	196812	22	1753036
17	275136	23	357472
18	218848	24	25948
19	82256	25	440
20	10396		s = 12
21	288	12	38
	$s \equiv 10$	13	768
12	356	14	12156
13	5408	15	84764
14	27408	16	409734
15	117676	17	1453032
16	327452	18	4178896
17	697796	10	0142376
18	1100140	19	15020266
19	1110356	20	1005484
20	656814	21	21095484
21	178864	22	19821760
22	16796	23	12241136
23	360	24	4242200
	s = 11	25	669848
12	136	26	38508
13	2140	27	528

D — Archimedean lattice (3, 3, 3, 4, 4) site problem

	s =	2	$\Sigma_{\rm h} \mathrm{bg}_{\rm sth} (\times 2)$	S	= 5	
6			2	9		14
7			2	10		184
8			1	11		318
	s =	3		12		280
7			6	13		144
8			8	S	= 6	
9			20	10		56
	s =	4		11		626
8			10	12		1028
9			38	13		1378
10			102	14		1292
11			30	15		180
12			6	16		20

Portgal. Phys. - Vol. 12, fasc. 1-2, pp. 99-138, 1981

J. A.	M.	S.	DUARTE -	Configurational	data	on	connected	clusters
-------	----	----	----------	-----------------	------	----	-----------	----------

	s = 7		19	524380
11		322	20	435309
12		1724	21	196808
13		3826	22	50046
14		5708	23	3222
15		6828	24	144
16		2832		s = 11
17		660	13	754
	s = 8		14	10084
11		48	15	56894
12		1322	16	216292
13		5008	17	579562
14		13914	18	1189958
15		22892	19	1893344
16		29028	20	2301600
17		21208	21	2177084
18		9158	22	1396480
19		826	23	569130
20		56	24	97684
	s = 9		25	8540
12		488		s = 12
13		4316	13	84
14		17404	14	4770
15		47576	15	41758
16		88356	16	215426
17		118700	17	764342
18		112864	18	2066141
19		74098	19	4346780
20		18600	20	7293506
21		2512	21	9678184
	s = 10		22	10131540
12		81	23	7961512
13		2390	24	4476120
14		15100	25	1382338
15		61894	26	232628
16		163962	27	11264
17		326878	28	352
18		480335		

D — Square bond problem

	$s \equiv 1$	$\Sigma_{\rm s} {\rm sg}_{\rm stb} (\times 2)$	10	72
6	0	4	s = 4	
8	s = 2	18	8	4
0	$s \equiv 3$	10	11	160
9		16	12	275

	s = 5		19	97920
10		40	20	58257
12		180	1	s = 9
13		960	13	480
14		1044	14	1072
	s = 6		15	1476
11		84	16	24984
12		240	17	42516
14		2324	18	84992
15		4704	19	273920
16		3990	20	460040
	s = 7		21	432290
10		12	22	222020
13		1092	2.1	s = 10
14		1176	12	48
15		2688	14	558
16		16240	15	6552
17		21696	16	5904
18		15264	17	53080
	s = 8		18	188160
12		154	19	281096
14		1824	20	809612
15		7664	21	1636008
16		7144	22	2281884
17		36576	23	1867624
18		89748	24	845746

D — Honeycomb bond problem

	s = 1	$\Sigma_{\rm s} {\rm sg}_{\rm sth} (\times 1)$	10		5184
4		6		s = 8	
	s = 2		8		216
5		18	10		5940
	s = 3		11		15552
6		56		s = 9	
	s = 4		9		990
7		180	10		1050
	s = 5		11		23940
7		36	12		46510
8		558		s = 10	
	s = 6		9		330
6		6	10		3990
8		252	11		9240
9		1708	12		89892
	s = 7		13		138930
7		42		s = 11	
9		1296	-8		30

Portgal. Phys. - Vol. 12, fasc. 1-2, pp. 99-138, 1981

10	2904	$s \equiv$	15
11	14982	9	26
12	56736	11	5796
13	321840	12	36834
14	414792	13	267840
	s = 12	14	1730016
9	264	15	5652390
11	17856	16	20519424
12	58712	17	41415840
13	289848	18	33004544
14	1112436	s =	= 16
15	1220056	10	378
15	1239030	12	45900
10	S - 13	13	180702
10	1620	14	1618176
11	2262	15	7296948
12	91416	16	25115160
13	260268	17	76400448
14	1292508	18	135462936
15	3764712	19	98498952
16	3701418	s =	= 17
	s = 14	11	2970
10	390	12	7344
11	8268	13	276960
12	33768	14	1037808
12	408402	15	8308410
14	408492	16	31418934
14	1218804	17	105743982
15	5298120	18	277089606
16	12555000	19	439782480
17	11054610	20	293866272

D-Kagomé lattice site problem

	s = 2	$\Sigma_{\rm b} b^2 g_{\rm sbt} (\times 3)$	s =	7
5		6	7	384
	$s \equiv 3$		9	8088
6		66	10	32232
	s = 4		s =	8
7		408	8	2472
	$s \equiv 5$		10	46104
7		96	11	117972
8		1980	s =	9
	s = 6		9	13266
6		36	10	8406
8		1164	11	223344
9		8316	12	416466

J. A. M. S. DUARTE — Configurational d	lata	on	connected	clusters
--	------	----	-----------	----------

	s = 10		15	89507916
9		4344	16	208467996
10		61158	17	176236950
11		94416		s = 15
12		973692	9	882
13		1435470	11	162306
	s = 11		12	1105230
8		588	13	6111624
10		46632	14	40617600
11		255828	15	113174922
12		681552	16	377802300
13		3958824	17	746740380
14		4861974	18	572993958
	s = 12			s = 16
9		6144	10	13878
11		325416	12	1403460
12		1066932	13	5488974
13		3967332	14	40162224
14		15296832	15	179523264
15		16256316	16	531568206
	s = 13		17	1520199504
10		41856	18	2636009496
11		41490	19	1850067696
12		1841832		s = 17
13		4835928	11	117576
14		19813620	12	225234
15		57146988	13	9075648
16		53773968	14	31074372
	s = 14		15	221592582
10		9954	16	799876968
11		231498	17	2375467950
12		693798	18	5918963946
13		8980896	19	9187911360
14		23326068	20	5937914886

FIXED SIZE ENERGY GROUPINGS

E — Honeycomb lattice

	s = 1	$g_{so} (\times 2)$	s = 5	
3		2	7.	36
	$s \equiv 2$		$s \equiv 6$	
4		3	6	1
	$s \equiv 3$		8	93
5		6	s = 7	
	$s \equiv 4$		7	6
6		14	9	244

Portgal. Phys. - Vol. 12, fasc. 1-2, pp. 99-138, 1981

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 10 9 11 8 10 12 9 11 13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 9 11 8 10 12 9 11 13
s = 9 14 16 1728 18 18 1728 18 18 18 18 18 18 18	9 11 8 10 12 9 11
$\begin{array}{cccccccc} & 110 & & 16 \\ & 1728 & & 18 \\ s = 10 & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ s = 11 & & & & & & \\ & & & & & & & \\ & & & &$	9 11 8 10 12 9 11 13
$\begin{array}{ccccccc} 1728 & 18 \\ s = 10 & & & \\ & & 3 & 11 \\ & & 399 & 13 \\ & & 4651 & 15 \\ s = 11 & & & 17 \\ & & & 17 \\ & & & 17 \\ & & & 17 \\ & & & 1262 \\ & & & 12630 & & \\ \end{array}$	11 8 10 12 9 11 13
s = 10 3 399 4651 $s = 11$ 24 12630 12	8 10 12 9 11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 10 12 9 11 13
$\begin{array}{cccc} & 399 & & 13 \\ 4651 & & 15 \\ s = 11 & & 17 \\ & & 24 & & 19 \\ 1362 & & & \\ 12630 & & & 12 \end{array}$	10 12 9 11 13
$\begin{array}{c} 4651 & 15\\ s=11 & 17\\ 24 & 19\\ 1362 & 12630 & 12 \end{array}$	12 9 11 13
s = 11 17 24 19 1362 12630 12	9 11 13
24 19 1362 12630 12	9 11 13
1362 12630 12	11 13
12630 12	13
- 10 12	
s = 12	
135	10
4468 16	12
34566 18	14
s = 13 20	
2	9
636 11	11
14244 13	13
95312 15	15
s = 14 17	
27 19	10
2631 21	12
44706	14
264387 12	16
s = 15 14	
198 16	11
10050 18	13
138938 20	15
736974 22	17
14 16 18 20 11 13 15 17 19 21 12 14 16 18 20 22	s = 12 135 4468 34566 $s = 13$ 2 636 14244 95312 $s = 14$ 27 2631 44706 264387 $s = 15$ 198 10050 138938 736974

E — Square lattice

	$s \equiv 1$	$g_{se} (\times 1)$	12		55
4		1	S	= 6	
	s = 2		10		2
6		2	12		40
	s = 3		14		174
8		6	S	= 7	
	$s \equiv 4$		12		22
8		1	14		168
10		18	16		570
	s = 5		S	= 8	
10		8	12		6

Portgal. Phys. - Vol. 12, fasc. 1-2, pp. 99-138, 1981

14		134	18 864
16		677	20 9354
18		1908	22 62396
	s = 9		24 297262
12		1	26 1056608
14		72	28 2448760
16		656	30 3329608
18		2708	s = 15
20		6473	16 6
	$s \equiv 10$		18 456
14		30	20 7036
16		482	22 54908
18		3008	24 317722
20		10724	26 1359512
22		22202	28 4401192
	s = 11		30 9436252
14		8	32 11817582
16		310	s = 16
18		2596	16 1
20		13456	18 218
22		42012	210
24		76886	20 4746
	s = 12		22 40352
14		2	24 303068
16		151	26 1563218
18		2086	28 6095764
20		13034	30 18173796
22		58742	32 36285432
24		163494	34 42120340
26		268352	s = 17
	s = 13		18 88
16		68	20 3010
18		1392	22 36112
20		11789	24 276464
22		63256	26 1603984
24		250986	28 7477928
26		633748	30 26922156
28		942651	32 74496544
	$s \equiv 14$		34 139297108
16		22	36 150682450

E — Triangular lattice

	$s \equiv$	1	g_{se} ($ imes$ 1)	s = 3	
6	$s \equiv$	2	1	12	2
10		- 250	3	14	9

Portgal. Phys. - Vol. 12, fasc. 1-2, pp. 99-138, 1981

J. A. M. J. DUARTE - Configurational auta on connected ch	Du	S.	DUARTE -	Configurational	data	on	connected	clust
---	----	----	----------	-----------------	------	----	-----------	-------

	$s \equiv$	4		30	4817
14			3	32	12453
16			6	34	28305
18			29	. 36	55411
	$s \equiv$	5		38	92205
16			6	40	101679
18			21	42	65822
20			60		s = 11
22			99	24	24
	$s \equiv$	6		26	249
18			14	28	1164
20			42	30	3876
22			129	32	12264
24			281	34	34263
26			348	36	78990
	$s \equiv$	7		38	165144
18			1	40	295356
20			30	42	438264
22			105	44	434784
24			276	46	251655
26			732		$s \equiv 12$
28			1248	24	2
30			1260	26	117
	$s \equiv$	8		28	702
20			6	30	3163
22			69	32	10557
24			246	34	32901
26			720	36	91389
28			1737	38	226125
30			3795	40	482850
32			5472	42	929414
34			4644	44	1531383
	$s \equiv$	9		46	2050899
22			27	48	1852892
24			160	50	969819
26			609		s = 13
28			1818	26	27
30			4697	28	414
32			9990	30	2126
34			19014	32	8418
36			23662	34	29601
38			17382	36	89680
00	. =	10	11002	38	250641
22	5 -	10	3	40	631218
24			86	42	1431751
26			432	44	2845248
28			1458	46	5093199
				10	

Portgal. Phys. --- Vol. 12, fasc. 1-2, pp. 99-138, 1981

48	7761168	38	252177
50	9484524	40	694122
52	7876554	42	1782600
54	3762517	44	4157097
	s = 14	46	8736174
26	3	48	16309377
28	168	50	27275403
30	1320	52	38620725
32	6336	54	43453965
34	23721	56	33417534
36	81183	58	14680890

E — Square covering site problem

	s =	1	$g_{g_{g_{\alpha}}}(\times 2)$	24	344
6			2 36	26	1924
	$s \equiv$	2		28	4035
10			6	30	10858
	s =	3		32	13259
12			4	34	2958
14			18	s =	9
	s =	4		22	26
12			1	24	168
16			37	26	1076
18			50	28	3336
	$s \equiv$	5		30	13512
16			12	32	25240
18			26	34	56634
20			192	36	47320
22			142	38	8134
	$s \equiv$	6		s = 1	10
18			16	22	4
20			102	24	58
22			246	26	580
24			874	28	2266
26			390	30	9360
	$s \equiv$	7		32	29444
18			2	34	83758
20			24	36	152964
22			226	38	266710
24			640	40	163340
26			1826	42	22050
28			3508	s = 1	11
30			1086	24	16
	$s \equiv$	8		26	236
20			6	28	1372
22			82	30	6260

32	23720	46	4832436
34	74098	48	1784168
36	222372	50	162466
38	493862		s = 13
40	869372	26	12
42	1169136	28	316
44	545580	30	2122
46	60146	30	11//2
	s = 12	24	11440
24	1	34	42428
26	76	36	170104
28	743	38	520236
30	3704	40	1612728
32	17174	42	3966084
34	58860	44	9399652
36	208354	46	15765404
38	553224	48	23066864
40	1507761	50	19101104
42	2822608	52	5711504
44	4625299	54	440750

REFERENCES

- [1] SYKES M. F., WATTS M. G., GAUNT D. S., J. Phys., A8 1448 (1975).
- [2] SYKES M. F., GAUNT D. S., MARTIN J., MATTINGLY S. R., ESSAM J. W. J. Math. Phys., 14, 1071 (1973).
- [3] DUARTE J. A. M. S., MARQUES M. C. A. M., NUOVO Cim. B54 508 (1979).
- [4] SYKES M. F., GAUNT D. S., GLEN M. J. Phys., A9 715 (1976).
- [5] HILEY B. J., SYKES M. F., J. Chem. Phys., 34 1531 (1961).
- [6] ENTING I. G., J. Phys., A13, 3713 (1980).
- [7] BLEASE J., ESSAM J. W., PLACE C. M., J. Phys., C11 4009 (1978).
- [8] SYKES M. F., GLEN M., J. Phys., A9 87 (1976).
 GAUNT D. S., SYKES M. F., RUSKIN H. J., J. Phys., A9 1899 (1976).
 GAUNT D. S., RUSKIN H. J., J. Phys., A11 1369 (1978).
- [9] PETERS H. P., STAUFFER D., HOLTERS H. P., LOEWENICH L., Zeit f. Phys. B35, 399 (1979).
- [10] SYKES M. F., GAUNT D. S., GLEN M., J. Phys., A14, 287 (1981).
- [11] DUARTE J. A. M. S., J. Physique, 40, 845 (1979).
- [12] CHERRY R. J., PH. D. THESIS, London, unpublished (1979).
- [13] GAUNT D. S., MIDDLEMISS K. M., TORRIE G., WHITTINGTON S. G., J. Phys., A13, 3029 (1980).
- [14] DUNN A. G., ESSAM J. W., RITCHIE D. S., J. Phys., C8, 4219 (1975).
- [15] AGRAWAL P., REDNER S., REYNOLDS P. J., STANLEY H. E., J. Phys., A12, 2073 (1979).
- [16] DUARTE J. A. M. S., RUSKIN, H. J., Zeit. f. Phys., B, in press (1981).
- [17] LUBENSKY T. C., ISAACSON, J., Phys. Rev., A20, 2130 (1979).
- [18] HARRIS A. B., LUBENSKY T. C., Phys. Rev., B23, 3591 (1981).
- [19] DUARTE J. A. M. S., RUSKIN H. J., J. Physique in press (1981).

Portgal. Phys. - Vol. 12, fasc. 1-2, pp. 99-138, 1981