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ABSTRACT — The breaking of the SU(2),, collinear symmetry arising 

when leaving the forward direction in scattering processes is studied, The 

starting point is the null-plane hydrogen atom Hamiltonian of Bell and Ruegg 

which exhibits this SU(2),, symmetry in an approximate form. Introducing 

an electromagnetic interaction with non-zero momentum transfer photons, it 

is found that breaking is mainly due to transversely polarized photons. 

Application to hadron-hadron scattering can only be realistic in the low 

q2 exchange sector. 

1 — INTRODUCTION 

The null plane dynamics of hydrogen-like atoms was studied 

by Bell and Ruegg (BR) [1] in an approximation depending on c, 

the velocity of light, being large. Their ground state Hamiltonian 

exhibits an approximate SU(2),, symmetry which arises upon 
neglecting third order and higher terms in c* and which we will 

use as our starting point (‘). They implicitly assume the interaction 

with q = 0 photons in their calculation of the magnetic moment. 

In this paper we examine the breaking process of a collinear 

symmetry like SU (2),, by calculating the interaction with non-zero 

momentum transfer (t = q*=£0) photons. 

To this end we split the Hamiltonian into two terms 

H, + H, (1.1) 

(*) Present Address: Centro de Fisica da Matéria Condensada, 

Av. Prof. Gama Pinto 2, 1699 Lisboa Codex, Portugal. 

(@) Either expression (17) or (26) of [1]. 
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where H,, the free part, given by BR, is supposed to be symmetry 

conserving and H,, depending explicitly on q? through the form 

factors, will be symmetry breaking. The basis for the analysis of 

the symmetry breaking will be to compare the order of magnitude 

of the q? dependent terms involving spin in H, with the terms 

of Ho. 

The plan of the paper is as follows: in part 2 the calculation 

of the form factors of the hydrogen atom is outlined. In part 3 

the SU (2),, symmetry breaking is analyzed in order to determine 

the minimum value of q? which breaks the symmetry. The result 

is valid for the long range sector of the potential. 

2— THE FORM FACTORS OF THE HYDROGEN ATOM 

The model we use for the hydrogen atom is that of a bound 

state in a Coulomb-like potential. Thus the proton is just a force 

centre and the interacting external photon only «sees» the electron 

spin and electron charge. The hydrogen atom is therefore consid- 

ered as a charged spin 1/2 particle with structure. The electro- 

magnetic interaction of a non-point-like spin 1/2 particle is given 

by the usual expression [2, 3]: 

v [i Vp a Fi (q’) +.¢,,, q, om F.(q’?)] ¥ (2.1) 

to which corresponds the diagram of Fig. 1 

q? 

a, 

Fig. 1 — Photon-hydrogen atom interaction with a structure described by the 

form factors. 
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Here F,(q?), F.(q?) are the form factors of the hydrogen 

atom (electric and magnetic, respectively), q, is the photon 

four-momentum, e, is the polarization four-vector of the photon, 

Oy = Ly,» y,]; the Dirac matrices are (*) 

7= |, Y= (2.2) 

and y= vt y,. Expression (2.1) is to be calculated between 

initial and final states which are just described by solutions of 

the free particle Dirac equation. 

Here the information on the structure of the system is all 

contained in the form factors. In order to evaluate these, we 

equate the above description (2.1) for the interaction to the one 

within the impulse approximation in which the structure of the 

system is all contained in the initial and final wave functions and 

to which corresponds the diagram of Fig. 2. 

ore 

Fig. 2— The same process considered as a point-like interaction. Here the 

structure lies in the wave functions of the hydrogen atom. 

Here, contrarily to Fig. 1, we have now a point-like interaction 

at x of the usual form: ie ts e. 

In the case of deuteron scattering, the amplitude for the 

diagram of Fig. 2 was written by Abers, Burkhardt, Teplitz and 

(:) At this stage we use the conventional «low energy» Dirac notation. 
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Wilkin (ABTW) [4] (‘) and becomes in our case after some 
manipulation [5] in which the convolution theorem was used: 

Jar Ue (F) ley, ei (r) exp (iq-T/2) (2.3) 

where the y’s are now electron spin wave functions within the 

hydrogen atom (see for instance [6]), q is the 3-momentum transfer 

carried by the photon and T is the distance of the electron from 

the proton. 

In equating the two descriptions (2.1) and (2.3), care must 
be taken of the motion of the final state relative to the initial one. 

In the case of (2.1) this is explicitly included in the form of the 

spinor y. As for (2.3), and assuming the initial state at rest we 
apply a Lorentz boost along the z-axis to the final wave function, 

in order to bring it to rest. This is given by [7] 

S; = exp (— 0 03/2 ) (2.4) 

where «, the rapidity of the transformation, is: 

ch » = (1— £?)-% 

where 2 = Q/E, is the velocity. Q is the z-component of the 3 

momentum of the final state (assumed to be along the z-axis, 

q = (v, 0,0, Q)), M its mass, and E, its energy [5]: 

E, = (2M? — q?)/2M?, Q = (q! — 4M’q?)“/2M ,v = q2/2M_ (2.5) 

Separating transverse components (spin-flip) and longitudinal 

and time-like components (non-flip), we obtain the following two 

equations: 

Transverse 

_> > 
a > i (q/2) .r - 

Jar vr (1) ie 7°", © vj (1) 

=[0,1,0,Q/(E.+M)].{7 .€ Fito ae F.}- 
ok. pe pas ak 

o
o
o
 
fe

 

(@) Equation (2.18) of ABTW. 
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Longitudinal and time-like 

> > 
i (4/2) -r iy ~ >. = 

J ar Ge (F) ie (ym ev &) @ nm @) 
=[1, 0, Q/(E.+ M), 0] {i(yoeo — ys es) Fi | 

+f "Ve a, - Oy q, o) _ } 0 

LO] 

where the twiddles over the final wave functions represent the 

Lorentz boost given by (2.4): Up = S, Y- 

Solving this system of equations, we obtain for the hydrogen 

atom form factors the following expressions: 

F,(q?) = (q?/2M) F.(q?) + (e/2M) z (1 + y*)* (6) 

Fi(@) =e zt(lt+y)*te/(et1)-2diry)* 

+ peaz/4M (y2 +1) - (1 +y?)? (2.7) 

—we/(wet+1) z* [(2+y-*) (1+ y*)*—y*angtgy] 

where 

z= (4M? —q’) , y?>=(a/8M)? (q*—4M?q’) , «’=(me—E)/(me+E) , 

e = 1/\ 137 is the electron charge and a the typical electron orbit 

radius. 

Therefore 

F,(0) =e , F:(0) =e(2 — p2 + apM)/2M(p2+1)~e/4 (2.8) 

F’,(0) = (1/2M) F.(0) + e( M?a? — 1)/8M? ~ ea*/8 (2.9) 

F’,(0) =e(1 + M’a?)/16M? . [1+ 1/(u2+1)] 

+ pea (a®2M2 — 1) /16 M?(w2 +1) (2.10) 

+ ye / 160M? (yw? + 1). (9a2M2 — 20) =~ ayue / 16 (np? + 1) 

These form factors are smoothly decreasing functions of q’ 

behaving as (q?)~ for large q?. It is easy to check that F,(0) =e 
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as expected, since the hydrogen atom in this model is a charged 
particle with charge e. This model also gives a reasonable pre- 
diction for the mean square radii of the spatial distributions [2, 5]. 

3—THE ANALYSIS OF THE SYMMETRY BREAKING 

Expanding the form factors in series of q?, (2.1) can be 

converted into (F, (0) = «wy = magnetic moment): 

u [y,¢,€e+ q’?F’(0) +...) +o,,4,¢, (4 :+q?Fi{(0)]Ju (3.1) 

This is of course a transition matrix element which, since we are 

treating the interaction in perturbation theory, is directly related 

to the Hamiltonian. However, it can only provide a quantitative 

measure of BR symmetry breaking if we use the usual «high 
energy» Dirac notation as in [1], 

= _ oo, 0 | m0) = os | me) 03 

Y a » ¥3 = » Yo = 

= 0 _ one, 03 0 C3 0 

u=uty , uy = V/20y, ] Ss = exp (— io om/2) 

to which correspond the following solutions for the free Dirac 

equation 

for spin + and — respectively. 

As we said previously we will now compare the order of 

magnitude of the spin dependent terms arising in (3.1) with the 
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spin dependent terms of BR’s free Hamiltonian for the ground 

state hydrogen atom in the null-plane, which is repeated here (*): 

h = 1/2 (9 + 97) 

+12 pp? gtt Vv +12 tv 

-> 

+1/2 q [ose, . By. Vv) 9" 

+1296. dD, Vv oP, tl2 pve vg (3.2) 

+ as 

where p is the momentum of the hydrogen atom electron, supposed 

to be a first order small quantity, v the binding Coulomb potential 

and » denotes the z-differentiation in the null-plane. We note that 

the terms up to second order in small quantities are spin inde- 

pendent. Introducing q?40 photons via (3.1), the appearance of 

any spin dependent terms of order of magnitude equal or greater 

than p? will therefore break BR symmetry (*). To state it more 

precisely, a term like ( ra P) p will be responsible for a symmetry 

breaking as well as something like (e; p) (even stronger effect), 

but iz ‘ Dp ) p?, for instance, will not. 

We need to adopt units as BR, that is, # = c = m = 1. Thus 

the Compton wavelength of the electron is our unit of length: 

h/me=1. 

From ref. [6], a = 137 (in units of #/mec) and making use 

of the uncertainty principle: 

p=l/a=7.3 x 10°, p?= 5.3 x 10° (3.3) 

Corresponding to the two amplitudes considered before, there 

are two types of symmetry breaking to consider: one for transverse 

photons and the other for longitudinal and time-like ones. 

(@) Expression (17) of [1]. 

C2) p=Bp >. 
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3.1— Symmetry breaking for transverse photons 

The interaction Hamiltonian assumes in this case the form 

  

0 =+V2e Oo 0 

V2e, 0 0 0 

Sup A} 4 0 0 —-Vy2e_ 

| 0 0 V2e, o | (3.4) 

lo o a. 9Fe| ;o 0 0 Yy2e_| 
0 0 -V2e, 0 0 oO V2e, 0 

0 V2e_ 0 a) |e veo o | 
lVv2e, 0 0 0 l¥V2e,0 0 0 

where A= (e+ @ Fi (0) + ..);B=(og + oF, (0) + «) and 

e . =(1/V2) (e, +ie,) are the polarization vectors. 

For q? = 0 the electric charge term e in the electric form 

factor expansion is still present while all the others vanish. Since 

the symmetry is defined at q? = 0, this term cannot represent any 

symmetry breaking effect and must therefore be excluded from 

the analysis (*). 

As a starting point we may choose a value for q? of the order 

of p? (q? = — p’, since q? < 0). Then, using the solutions of the 

free particle Dirac equation for i and u and equations (2.5), (2.9), 

we have for the electric term in (3.4) 

zero order 

—V2 e (—q?)¥2/2M = — 2.4 x 107 (3.5) 
first order 

2 (— q?)¥2/2M . q?F, (0) =3 x 10° (3.5a) 

which does not produce any symmetry breaking, as we realize 

upon comparison with p? (3.3). 

() In fact one easily sees that it gives zero, 
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Turning to the magnetic terms in (3.4), we have similarly, 

using (2.5), (2.8), (2.10). 

zero order 

V2 (q?/2M) wy (— q?)¥?/2M=—8.7x10"* (3.6) 

first order 

V2 (q2/2M) (—q?)1/2/2M . q?F,(0) =1.08 x 107% = (3.6a) 

for the » terms in (3.4) and 

zero order 

—V2 [1 —q?/4Me}/* (— q*)*/* (AMP — q?)¥? pq / 2M 
~ — 2.2 Xx 10% @G:7) 

first order 

V2 [1 —q?/4MP] (— q?)¥* (AMP — q*)'* q? F, (0) / 2M 
=— 2.8 x 10° (3.7a) 

for the Q terms in (3.4). 

Symmetry breaking is apparent here when we compare (3.7) 

with p? (3.3). Convergence of the series implies smaller values 

for higher order terms, therefore making it unnecessary to cal- 

culate further form factor derivatives. 

Therefore, for transverse photons the symmetry breaking 

effect occurs overwhelmingly in the magnetic part of the amplitude. 

The smallest photon four-momentum able to produce it is easily 

determined from (3.7) being of the order of p?/16. At this order 

of magnitude the contribution of all the other terms from the 

electric and magnetic part is negligible. In fact, substituting 

q? = — p?/16 in (3.7), we have: 

V2 Quy = — 5.5 x 10° (3.8) 

which is just over p? (3.3). 

These results are summarized in Table I. 

3.2— Symmetry breaking for longitudinal and_ time-like 

photons 

The interaction Hamiltonian is in this case: 
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0 0 (1+ v/Q) 0 5 

—= 0 0 0 —(1++/Q) 

Ssur)| (1-1/Q) 0 0 0 * 
0 (v/Q—-1) 0 0 | 

f —4°/Q 0 0 Oo | 
0 —g/Q 0 0 

+ 0 0 q?/Q 0 Co U; (3.9) 

0 0 0 @/Q] 

Whereas in the previous case the Lorentz condition qu en = 0 

did not provide any information, here it is essential for expressing 

€), €; in terms of kinematical quantities. 

Expanding (3.9) and using equations (2.5) for » anf Q we 

obtain 

2 \1/2 2 2 a? \ ie _ 4 _ q » + ome 
4M? 2M (4M? — q?)'” 8 

q@? &. + q? au o (3.10) 

(ae —q?y'? 4 16 (nu? +1) 

      

Proceeding now with the symmetry breaking analysis, we 

first note that, as regards the electric form factor, the first term 

cannot be accounted for, since it produces its largest contribution 

at gq? =0 and therefore does not represent a measure of the 

symmetry breaking effect for small q*. Starting by choosing 

q? = p? as before, we have, for the electric part of the amplitude, 

using (2.9), 

zero order 

—e (q?2/2M) (4M? — q?)7/? =3.36 x 10° (3.11) 

first order 

—(q?/2M) (4M? — q?)7” q?F{(0) = — 4.2 x 10°“ (3.11a) 

Comparing these values with p* (3.3) there is obviously no 

symmetry breaking in this case. 
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For the magnetic part, using (2.8), (2.10): 

zero order 

q? (4M? — q?)*727. (e/4) = —3 X 107° (3.12) 

first order 

q? (4M? — q?)-"/2. q? F2(0) =3.9 X 10 (3.12a) 

which does not give rise to any symmetry breaking as well. The 
smallest q* which is able to produce it, is, from (3.12a), of the 

order of 7p since in this case 

(3.12a) > 3.5 x 10° 

which is of the order of p? (3.3). The contribution from the other 

terms is again negligible. Therefore, for longitudinal and time-like 

photons, the symmetry breaking is much less drastic than for 

transverse ones and also determined by the magnetic part of the 

amplitude. 

These results are summarized in Table II. 

3.3 — Discussion 

As we have seen the minimum photon momentum which is 
responsible for symmetry breaking is About 1.5 x 10‘ times 
greater for longitudinal and time-like photons than for transverse 
ones. It is worth noting that since, in the usual natural units 
system (#=c= 1) the electron mass is m = 0.511 MeV, its 
Compton wavelength will be k / mc = (0,511 MeV)= resulting 
p = 1/a = 3.72 keV. Therefore the limit for transverse photons 

for instance is: q? ~ p? /16 = 0.86 keV?. 

Equations (3.5) to (3.7a) and (3.11) to (3.12a) give us the 
information we require on the symmetry breaking. Higher than 
linear terms in q’ are negligible provided this is kept small. The 
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TABLE I—For transverse photons breaking is determined by the magnetic 

part of the amplitude and always thereby dominated (p = 1/a). 

  

  

  
  

  

  

  

  

a F, 

; Limit Limit 
qo 0 p? p° p* p? p p? P . p2/16 

p+ B 

p°® 

p B B 

p? B B B 

> El Bl»                       
results are summarized in Tables I, IJ where horizontally we 

plot q? values and vertically the order of magnitude of the cor- 

responding terms in the Hamiltonian. The letter B denotes breaking 

at the corresponding order of magnitude. Thus BR symmetry 

breaking occurs everywhere above the row for p’. 

TABLE II—For longitudinal and time-like photons breaking is likewise 

determined and dominated by the magnetic part of the amplitude but much 

‘< less drastic. 

  

  
  

  

  

                    

E, F, 

q?-> 0 p? p 0? rong 0 p? p Limit p? 

2p? 7p 

p | B 
| 

p? B | B 

Pe [B| B | B | B [B| B B 
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One important remark should be made here concerning the 
q°’ = 0 limit: it is an assumption that at q? = 0 there is a residual 
symmetry breaking which is precisely BR’s one (see equation (3.2) ) 
and which is therefore always present. This residual breaking 
is denoted by the boxes enclosing the letter B in Tables I,. If. 
It cannot be given by our model (which gives zero at gq? = 0) and 
must therefore be taken as a starting point. 

Finally, if one shifts the analysis to the final state rest frame 
by reversing the sign of » in the boost matrix S, and boosting the 
initial state instead, it is easily seen that the results are quite insensi- 
tive to the shift for all the orders of q? considered in the tables. 

3.4— Summary and conclusion 

Bell and Ruegg have defined an approximate symmetry which 
is broken by third order small terms at q? = 0 momentum transfer. 
This can be considered as a sort of residual breaking, always 
present, and denoted by the squares in Tables I, II. We investi- 
gated the effects of introducing q?-40 carried by photons on 
the breaking of this approximate symmetry. The photon 4-momen- 
tum was compared to the internal momentum p of the constituents 
of the system (the hydrogen atom was taken as the working 
model). It appears that breaking is more drastic for transverse 
photons than for longitudinal and time-like ones. Thus, whereas 
these produce a limit q?~ 7p, the limit for the transverse ones 
is q? ~ p?/16, about 1.5 < 10* smaller. 

These results are of course applicable to hadron-hadron 
scattering in the small q* sector. Here the quark-quark interaction 
can obviously not be treated in the one gluon exchange approxima- 
tion and some further work is required so as to apply it in a 
realistic way to the confining-like sector of the interaction. 

I am grateful to Dr. Hugh Burkhardt for his suggestion of 
this problem and help throughout the course of the work. I also 
wish to express my thanks to Dr. Jack Gunson for many valuable 
discussions and suggestions. Finally I am grateful to Instituto 
Nacional de Investigacéo Cientifica and Universidade Técnica de 
Lisboa for having provided financial support. 
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