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ABSTRACT — We consider the propagation and dissipation of waves 

in fluids, in the presence of external force fields (§ 1), namely the magnetic 

and gravity fields: the former in connection with Alfvén-gravity waves (§ 2) 

in an ionized atmosphere, including the damping by Ohmic electric resistance; 

the latter in connection with acoustic waves of large amplitude (§ 3), which 

tend to shock formation, delayed by diffusive processes such as viscosity. The 

propagation and dissipation of waves in atmospheres is an effective physical 

process of transfering mass, momentum and energy; analogous problems of 

engineering interest occur in the propagation of sound in ducts of varying 

cross-section, such as the horns of loudspeakers and the nozzles of jet 

engines. 

1 — INTRODUCTION 

Two of the main trends in current research on waves in fluids 

are the study of the effects of internal inhomogeneities and tur- 

bulence, which were discussed in the first part of the present 

essay, and the consequences of external applied force fields, which 

we consider in the present, concluding part. Gravity, being 

intrinsically associated with the existence of matter, is an ever 

present force field, which causes fluids to become stratified, and 

affects considerably waves in the oceans (Stoker 1953, Eckart 
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1960, Philips 1960, Kraus 1977) and atmosphere (Yih 1965, Beer 
1974, Hines 1974, Gossard & Hooke 1975, Pedlosky 1979) of the 
earth. More than a few miles away from the earth’s surface 

magnetic fields are important, both in the mantle and ionosphere, 

and ionized matter is predominant in most regions of the universe 

(Chapman & Cowling 1949, Spitzer 1952, Akasofu & Chapman 

1972, Parker 1979), the basic properties of waves in these condi- 

tions being a standard topic in magnetohydrodynamics (Alfvén 

1948, Landau & Lifshitz 1956, Cowling 1957, Ferraro & Plumpton 

1961, Alfvén & Falthammar 1962, Cabannes 1970, Priest 1982). 
The Alfvén speed, which characterizes the propagation of 

transverse (and hence incompressible) hydromagnetic waves, 

scales on the inverse square root of the mass density, and thus 

increases rapidly with altitude in an atmosphere. The acceleration 

of the Alfvén-gravity waves with altitude implies that the wave 

forms are not sinusoidal, neither for standing nor for propagating 

modes; also, the phase of propagating waves, instead of increasing 

linearly with altitude, has an increasing slope, and tends to a 

finite asymptotic value. The effects of dissipation, say, by electrical 

resistance, on the Alfvén-gravity wave, are significant at low 

altitude, where it propagates slowly, and become less important 

at higher altitudes, as the wave speed increases, and there is less 

time to dissipate its energy; thus there is a transition layer 

between the low-altitude, diffusion regime and the high-altitude, 
propagation regime. 

Acoustic-gravity waves have rather different properties, since 

the sound speed is determined by temperature alone, and thus 

varies slowly. As the atmospheric density decays with altitude, 

the amplitude of the acoustic-gravity wave increases, until 

non-linear effects become important and shocks may form. The 
steepening of the wave front that leads to shock formation is 

opposed and delayed by dissipation effects, such as viscosity. 

Even if the static viscosity is small, the kinematic viscosity, 

which varies inversely with the mass density, may be significant 

at high-altitude, and thus be a moderately effective dissipation 

mechanism. Thus acoustic-gravity waves can cause significant 

compression and mass transport in an atmosphere, together with 

moderate heating; the Alfvén-gravity waves, which can be 

dissipated by electrical resistance, are a more effective mechanism 

of energy transport and heating, but carry no net mass flux since 
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they are transversal. Another contrast is that the combination 

of compressibility and gravity can cause the appearance of cut-off 

frequencies for acoustic waves, whereas Alfvén waves are not 

affected by filtering effects. 

2— DAMPING OF HYDROMAGNETIC WAVES 

WITH VARIABLE SPEED 

Waves of small amplitude in homogeneous media are 

described by linear partial differential equations with constant 

coefficients, e.g., for magnetic (Alfvén 1942, Lehnert 1952, 

Lighthill 1960) and magneto-acoustic (Herlofson 1950, Jones 1964, 

Campos 1977) waves, and spectral methods can be used in space 

and time (Lighthill 1978, Adam 1982, Campos 1984a). In the 

case of stratified media, e.g., atmospheres, the equations describing 

small amplitude waves are linear with variable coefficients, and 

exact solutions can be found usually in terms of special functions, 

e.g., for Alfvén-gravity (Ferraro 1955, Hide 1956, Ferraro & 

Plumpton 1958, Zhugzhda 1971, Hollweg 1972, Leroy 1982, Campos 

1983b, d) and magnetosonic-gravity (Nye & Thomas 1976, Adam 

1977, Campos 1983b,c) waves. We choose among these, as an 

example, Alfvén waves propagating in an ionized atmosphere 

under a vertical external magnetic field B, in the presence of 

electrical resistance 1/o— « where «+o is the Ohmic con- 

ductivity. The only propagating components of the velocity v and 

magnetic field h perturbations are horizontal and parallel 

v =ve,,h=he,, they depend on altitude z and time t, and 

satisfy the equation of momentum and induction, VIZ. 

dv/at-B- 4A(z) ¥ dh/az=0, (a) 

dh/at—B dv/oz=—€(z) dh/oz’, (1b) 

where the Alfvén speed A(z) and magnetic diffusivity ¢(z) 

generally depend on altitude: 

{ A(z) ? =yB’/479(2), €(z)=C?/4ryo0(Z), (2a, b) 

through the density stratification » (z) and Ohmic conductivity 

o(z); we have denoted by » the magnetic permeability and 

by c, the speed of light. 
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Eliminating between (la,b) respectively for the velocity v 

and magnetic field h perturbations, we obtain the wave equations: 

4 0°/ ot? — 0 /dz (A(Z))* 0/dzZ—E(z) d%/dtaz*} h(z,t) =0, 

(3a) 

{ 0?/dt?—(A(z))*? 0?/0z2—(A(z))? d/dz £(z) 

d/0zZ (A(z))~* d/dat +} v(z,t) =0; (3b) 

it is clear that: (i) in an homogeneous medium, for which (2a, b) 

are constants, the two wave variables satisfy the same equation: 

{ ?/ot—A?® 9?/d2—€ 9°/dtozw + v,h(z,t)=0, (4 

and have the same altitude dependence; (ii) in a_ stratified 

medium the magnetic field (3a) and velocity (3b) satisfy different 

equations, as suggested by (la), and their waveforms are generally 

different. Resistive Alfvén-gravity waves are characterized by four 

parameters, namely the frequency » which is conserved if the 

atmosphere is at rest, the scale height L(z)=4{d (log p)/dz }" 

specifying the density stratification p (z) , the Alfvén speed A(z) 

and the magnetic diffusivity €(z) , with which we can form two 
dimensionless parameters: 

a(Z)=oL(Z)/A(Z), B(z)=06 (Zz) AZ) P, (5a, b) 

which may be interpreted as follows: (i) a~2z72/L is the 

compactness since it compares the wavelength \ to the atmospheric 

scale height L, and describes non-dissipative waves; (ii) in the 

presence of electrical resistance an additional dissipation parameter 

8 ~ 2x7 %/L appears, comparing the damping scale X=¢/A to the 

scale height. 

The Ohmic electrical conductivity « , and hence the magnetic 

diffusivity ¢ (2b) are independent of density and are functions of 

temperature, so that they are bounded in a _ non-isothermal 

atmosphere (provided the temperature be finite); the mass density, 

on the other hand, tends to zero p > 0 as altitude tends to infinity 

Z— oo, and thus the Alfvén speed (2a) diverges asymptotically 

A—o. From the second terms of (3a,b), since A?® )*v/92z?, 

A? dh/dz must remain finite as z—> » and A(z)—o, and we 
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have 92v/0z?, dh/dz—> 0, ie: (i) Alfvén-gravity waves, with 

electrical resistance or not, propagating in a non-isothermal 

atmosphere (of bounded temperature), have a velocity perturbation 

which grows linearly and a magnetic field perturbation which 

tends to a constant in the asymptotic regime as z—> ow: 

V(Z3;0) ~fi(o) z+f.(0), (6a) 

h(Z:o) ~i(B/o) f,(o), (6b) 

where f, , f. depend on frequency w; (ii) in the case of a standing 

mode perfectly reflected from infinity the velocity perturbation is 

bounded and thus the magnetic field perturbation decays to zero: 

V(Z3o0) ~fi(o), hA(Z;o0) ~ 0. (7a, b) 

Thus, although initially the velocity and magnetic field pertur- 

bations are proportional v/A ~h/B, in agreement (la) with 

equipartition of kinetic and magnetic energy pv*/2 ~ p (A*/B?) 

h?/2 ~ »h?/8r, asymptoticaly: (i) for standing modes (7a, b) both 

the kinetic E, = pv’/2 ~ o and magnetic E, = wh’/87 ~ o energies 

(per unit volume) tend to zero; (ii) for propagating waves (6a, b) 

only the kinetic energy E, = pv’/2 ~ O(z?e-7/4) 0 since the 

density decays exponentially on altitude » ~ O(e~7/4), but the 

magnetic energy E, = puh?/87 ~ »B? f?/870? tends to a constant, 
so that asymptoticaly all energy is magnetic, i.e., the opposite 

of equipartition. 

The preceding results can be checked in the case of an 

isothermal atmosphere, for which the wave fields can be calculated 

exactly at all altitudes and frequencies. In an isothermal atmosphere 

the density decays exponentially ¢(z) = 9(0) e~?/4 on the scale 

height L=RT/g, and the Alfvén speed (2a) and compactness (5a) 

are given by: 

A(z) =44/4r9(0) #? Be2@L= a e2/AL, (8a) 

a(Z) =(oL/a) e72/2L (8b) 

Considering non-dissipative Alfvén-gravity waves (= 0 in 2b), 

and using as variable the compactness (2. given by 8b) instead 

of altitude z, the velocity perturbation spectrum V(z;.) at 
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altitude z for a wave of frequency w is shown to satisfy a Bessel 

equation of order zero. The solution is a linear combination of 

Hankel functions H{) (2a), H?’(2«) but if we want to select 

a wave propagating upward, i.e., in the direction of increasing z 

and decreasing a (8b), we must select H‘). The constant of 

integration is determined from the initial velocity spectrum 

V(0;) at altitude z= 0, and we have: 

V(Z;0) = V(0O;o) {Hy ((2oL/a) e-7/")/H) (2oL/a)$; (9) 

for the exact wave field at all altitudes. The solution (9) specifies 

the transition between the initial and asymptotic regimes, respec- 

tively of exponential and linear growth: 

V(zZ30) =V(0;0) e7/4% ei /adz 4140 (o2z?/2aL) $, (10a) 

V(z30) ={V(0;0)/H® (QoL/a) $ {41+ y—i2z/rL} 
(10b) 

41+ 0 ((e*L*/a*) e-*") }, 

where ¥=(2/7) log (wL/a) + ¢, and ¢ is Euler’s constant. 

In the case of Alfvén-gravity waves perfectly reflected from 

infinity, the velocity perturbation spectrum V(z;) must be 

bounded as z— o, and the solution is given by (9) with the 

Hankel functions of second kind H‘*) replaced by Bessel functions 

of first kind J, . The vanishing of the denominator J, (2wL/a) =o 

corresponds to resonance, so that the roots p, of the Bessel 

function J,(p,) =o specify through p, = 2o0L/a = 4rL/A the 

frequencies », and wavelengths \,, of the standing modes: 

o,=ap,/2L, »A,=47L/p,, (11a, b) 

@n/o, = dy/An = P1/Pn; (11c) 

it will be noted that the frequencies of the eigenmodes depend on 

the Alfvén speed and scale height (lla), the wavelengths depend 

only on the scale height (11b), and their ratios are absolute 

non-integral numbers (llc) independent of wave or atmospheric 
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properties. The velocity perturbation is the superposition of all 

standing modes with non-vanishing initial spectrum V(0;.,): 

v(z,t) =(7a/2L) S Im{V(0;0,) exp(—io,t) } 

dn’ Jo(Pne-*?"), (12) 

where q, =Ji,(Py) = —J,(P,) is the slope of the Bessel function 

J, at its zero p, . The exact solution (12) is valid at all altitudes, 

and shows the transition between the initial and asymptotic 

regimes: 

v(z,t) =(a/L) (2/2)'” e2/4L 3 Im {V(0;o0,) e iat f 

(13a) 
q,* py” sin { (o/a) (z—2L) $ {1+ O(02z?/2aL) }, 

V(z,t) =(na/2L) Im {V(0;oq) eMat f ga! 
{1+ 0((pi/4) e-*) f, (13b) 

respectively of exponential growth and finite amplitude. 

In the presence of resistive dissipation, bearing in mind that 

the magnetic diffusivity is bounded (2b) and the Alfvén speed 

unbouded as z— o (2a), the dissipative wave equations (3a, b) 

have at most three regular singularities: (i) the singularity at 

Z = oO specifies the initial wave field; (ii ) the singularity at z = 

specifies the asymptotic radiation field; (iii) an intermediate 

singularity at z = z, specifies a transition layer where the effects 

of propagation and diffusion balance: 

o€(Ze) ={A(Z,) P; Z,=L log (wf/a?),  (14a,b) 

specifies the altitude of the transition layer for an isothermal 

atmosphere, where the magnetic diffusivity ¢ is constant and the 

Alfvén-speed A (z) increases exponentially with altitude according 

to (8a) from the initial value a=A(o). The transition layer 

separates the atmosphere in two regions: (i) in the low-altitude 
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region z<z, the magnetic diffusivity predominates, the wave 

equations resemble the Schrodinger’s type, and we have mainly 

resistive dissipation modified by propagation; (ii) in the high- 

-altitude region z > z, the Alfvén speed predominates, the wave 

equations resemble the hyperbolic type, so that we have propa- 

gation with damping which decays with altitude, and preserves 

the form of the asymptotic laws (6, 7a,b). The situation is 

similar to the plane, isentropic, compressible flow, for which the 

transition is specified by local Mach number unity M = 1, sepa- 

rating subsonic flow for which the hodograph equations are elliptic 

from supersonic flow for which they are hyperbolic (Molenbroek 

1890, Chaplygin 1904, Lighthill 1947, von Mises 1960); another 

case is wave absorption at critical levels (Bretherton 1966, Booker 

& Bretherton 1967, McKenzie 1973, Eltayeb 1977, Ahmed & 

Eltayeb 1978, Rudraiah & Venkatachalappa 1979). 

The dissipation parameter 8 (5b) is unity at the transition 

layer (14a), and if we chose it as independent variable instead of 

altitude, the singularities are located at 8 = 0, 1, o. The simplest 

special function with three regular singularities is the hyper- 

geometric, and indeed the fields of resistive Alfvén-gravity waves 

propagating in an isothermal atmosphere can be expressed exactly 

in terms of hypergeometric functions of parameters c = 1 and: 

a=1+(1-i)KL=o, b=1-(1-i) KL=2- 0, 

K =V0/2€, (15a, b, c) 

where the frequency w is related quadratically to the effective 

wavenumber K _ through (twice) the magnetic diffusivity, 

» = 2¢K?. The velocity perturbation spectrum is given by: 

V(Z3;0) =V(0;0) (ia?/og + e77/E)~? 

{ F(v, o—1;20—1;(1—i(wf/a?) e~2/L)-7) | (16) 

{F(v, 0; 20—1;ia?/of) }? 

which applies at all altitudes 0 <z< wow, including the transition 

layer. 
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Considering standing modes, the spectrum is discrete, and 

the eigenvalues for the complex frequency w, are given by the 
roots of: 

0 = F(0,2—031; iwf/a? ) 

(17) 
1 

=1+ = (iot/a®)P (p!)-? Nl (q? + 2q +14 ing/a?) 
p=1 a=0 

the roots o, =f,—i d, specify, through their real part, the fre- 

quency f, = Re(o,) , and through minus the imaginary part, the 

damping rate d, = Im(—o,) , since exp (— io, t) = exp (—if,t) 

exp (—d,, t). The wave field is the superposition of all standing 

modes with non-vanishing initial spectrum V (0; 0, ) : 

v(z,t)= 3 Im{V(O;e,) e-fot } edt 
0 

qi, 

(18) 

19 F(v,2—031; iof/a’)/dw, $-? F(v,2—v0;1;i(wf/a?) e*), 

in the case of perfect reflection above the transition layer. 

We choose for illustration the case of non-dissipative Alfvén- 

-gravity waves perfectly reflected from infinity in an isothermal 

atmosphere, and plot in Fig. 1 the waveforms of the first three 

standing modes, using an altitude z made dimensionless by 

dividing by the scale height L. The waveforms are shown for the 

velocity (top) and magnetic field (bottom) perturbations, made 

dimensionless by dividing by initial reference values, respectively 

Va» H,={ eat /o, V(0;0,) }{v,(z,t), (a/B) h,(z,t) } 

From the waveforms for the first (left), second (centre) and third 

(right) standing modes it follows that: (i) the velocity perturbation 

vanishes at the node z = 0, whereas the node at infinity (where 

the density is zero) corresponds to a constant asymptotic ampli- 

tude, decreasing in value (when divided by o,) and alternating 

in sign with the order of the mode; (ii) the magnetic field 

perturbation starts out-of-phase with a non-zero value at z= 0, 

and decays exponentially to zero in the asymptotic regime, which 

is attained at higher altitude for higher order modes; (iii) as 

typical of Sturm-Liouville problems, the velocity and magnetic 

field perturbations of the n-th mode have (n—1) nodes at inter- 

mediate altitudes, with interlacing between the nodes of velocity 
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Fig. 1 — Alfvén-gravity modes standing vertically in an isothermal atmosphere, 

with perfect reflection between altitude zero and infinity. The first three 

normal modes n = 1, 2, 3 are illustrated by plotting the waveforms for the 

dimensionless velocity (top) and magnetic field (bottom) perturbations as 

function of altitude z divided by the scale height L. Note that the magnetic 

field perturbation starts out-of-phase to the velocity, and decays to zero 

asymptotically as the velocity tends to a constant value. 
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and magnetic field of the same mode n, and between sucessive 

modes n,n-+1. The compactness (5a, lla) a, =o,L/a = 

= p,/2 = 1.202, 2.760, 4.327 respectively for the modes of orders 

n= 1, 2,3, specifies the local wavelength measured on the scale 

height A,,/L = 27/a, = 5.225, 2.276, 1.452, and shows that the 
atmospheric density change over a wavelength A =p(0)/p(A,) = 

= exp (A,/L) = 185.95, 9.74, 4.27, is substantial, and thus the 

effects of atmospheric stratification could not have been neglected 

or treated approximately by procedures like the W. K. B. J. method. 

In Fig. 2 is illustrated the case of non-dissipative Alfvén- 

-gravity waves propagating vertically, for a compactness (5a) 

a = 1, corresponding to a local wavelength equal to 27 times the 

scale height A= 2z7L, and an atmospheric density change 

a = e?™ — 535 in a wavelength. The altitude z is divided by the 

scale height, and the velocity and magnetic field perturbation 

spectra for a wave of frequency » at altitude z are rendered 

dimensionless by dividing by initial values V=V(z;0)/V(0;0) 

and H=(a/B) H(z3;)/V(0;o). The amplitude of the velocity 

perturbation (bottom left) initially grows exponentially on four 

times the scale height ~ e”/44 (10a), and asymptoticaly grows 

linearly (6a, 10b); the amplitude of the magnetic field perturbation 

(bottom centre) evolves differently, since it decays initially on 

four times the scale height ~ e~2/44 , and tends asymptoticaly to a 

constant value (6b). Since the magnetic field perturbation is 

horizontal, and hence transverse to the direction of propagation, 

there is an associated electric current, according to Maxwell’s law: 

VAH = (4x/c) J; j(Z,t) =(c/4r) dh(z,t)/dz, (19a, b) 

specifies the electric current propagated with the wave, which 

for a frequency component »w at altitude z is rendered dimensionless 

by dividing by initial values J=47ra*7J (z;0)/c,BoV(0;0) ; the 

magnitude of the electric current (bottom right) decays exponen- 

tially with height, initially on four-thirds the scale height ~ e ~°2/44, 

and asymptoticaly on the scale height ~ e~2/“, thus tending to 

zero. The phases (top) of the velocity perturbation (left), magnetic 

field (centre) and electric current (right), initially vary linearly 

with altitude, and, as a consequence of the increase of propagation 

speed with height, the slope increases, so that asymptotically the 

value is finite in all cases. 
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Fig. 2 — Alfvén-gravity waves propagating vertically in an isothermal atmo- 

sphere, for a compacteness parameter unity, corresponding to a change in 

atmospheric density by a factor of e?*—535 over a local wavelength. The 

wave fields are illustrated by the phases (top) and amplitudes (bottom) of the 

velocity (left), magnetic field (centre) and electric current (right) propagated 

with the wave, plotted against dimensionless altitude as in Fig. 1. Note the 

different initial and asymptotic amplitude laws for each wave variable, and the 

finite asymptotic phase in all cases. 
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Since the Alfvén-gravity waves propagate an electric current 

j, they supply heat to the atmosphere by Joule effect at the 

rate W = (l/c) j?, and thus are an effective energy transfer 

mechanism for atmospheric heating (Osterbrock 1961, Uchida & 

Kaburaki 1975, Ionson 1982, Campos 1984b). On the other hand, 

being transversal and incompressible, the Alfvén modes carry no 

mass flux. The transfer of mass is more appropriate to the acoustic 

modes, in particular non-linear or of finite amplitude, which can 

cause a strong compression of the medium. Acoustic modes can 

be dissipated by viscosity, which is generally much less effective 

than electric resistance in transfering energy to the medium. Thus 

the different modes of magneto-acoustic-gravity waves provide 

effective mechanisms of transfer of mass, energy and momentum, 

by propagating from one atmospheric region to another, and then 

depositing their flux. Having considered Alfvén-gravity waves, for 

which the variation of propagation speed with altitude is impor- 

tant (8a), but non linear effects are not, since the Alfvén 

number N=v/A(z) ~ z e~2/24 decreases with height, we consider 

next acoustic modes, which will be shown to have contrasting 

properties. 

3 — FILTERING OF HYDRODYNAMIC WAVES 

AND NON-LINEAR COMPRESSION 

Returning to small amplitude magneto-acoustic-gravity waves 

(eq. (6) of Part I), in an homogeneous medium, the velocity per- 

turbation may be represented by a Fourier decomposition in space 
and time: 

Vv (xt) =f" aj (k,o) exp {i(k.x—ot) $ d*k do; (20) 

since application of (d/dt,d/dx;,0/dm) to vj; is equivalent to 

multipying a; by (—io,ik;,i(k-m)), where w denotes the fre- 
quency and k, the wave vector, the homogeneous wave equation 

Oi; 1 Vj ¢ = 0 leads to the algebraic condition U;; a; = 0, where 
the dispersion matrix is given by: 

Ni; == 5 85; + (c? + a’) k, k,—i (k, g;— k; 8) —iygik; 
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  where c, a are respectively the sound and Alfvén speeds, 

and m= B/B the unit vector in the direction of the external magnetic 

field B , assumed constant. In order for waves to exist the amplitude 

cannot vanish, and the roots of the equation | [l,;| = 0 specify 

the dispersion relations »(k) for each mode. We can consider 

three cases: (i) for pure acoustic waves m; = 0 = g,;, the first 

two terms of (21) show that the dispersion matrix is quadratic 

in »,k, so that the frequency is a linear function of wavenumber, 

and acoustic waves are isotropic, and non-dispersive, i.e., propa- 

gate at the same speed (of sound c) in all directions and for 

all frequencies; (ii) in the presence of magnetic field m; +0 = g;, 

the dispersion matrix is quadratic on frequency » and wavevector k; 

so that the frequency is linear in the wavenumber k but depends 

on the wavenormal n, = k,/k, and magneto-acoustic waves are 
non-dispersive and anisotropic, i.e, the speed of propagation 

depends on direction, and the wavefronts are not spherical (they 

are plane for the Alfvén mode and curved for the slow and fast 

modes); (iii) in the presence of gravity g,-0, with or without 

compressibility and/or magnetic field, the dispersion matrix 

involves terms of the first and second degree, so that the frequency 

depends non-linearly on the wave vector, and gravity, acoustic- 

-gravity, magneto-gravity, and magneto-acoustic-gravity modes are 

all anisotropic and dispersive, since the wave speed depends both 

on direction and frequency. 

Similar methods apply to the wave equations in homogeneous 

elastic solids, either isotropic or crystals (Love 1927, Cady 1946, 

Schouten 1953, Achenbach 1973, Hudson 1980); surface waves 

in fluids and solids can also be isotropic or anisotropic, dispersive 

or non-dispersive, their dispersion relation being determined 

from the boundary conditions applying at the interface along 

which propagation occurs. As an example of the derivation of 

dispersion relations, we consider the determinant of the disper- 

sion matrix (21), in the case of vertical propagation, when the 

wavevector k=(0,0,k) is anti-parallel to gravity g=(0,0,—g), 

taken in the x;-direction, and the plane (x, , xX; ) can be chosen to 

contain the direction of the external magnetic field m=(m,,0,mz) : 

0 = (o? —a? k? m2) | o?—a?k? m? a?k? m, m, (22) 

ak?m,m, o?—c?k?—a?k? m?—iygk 
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Since (22) is a cubic in o? there are three wave modes, of which 

one is uncoupled from the other two, as shown by the factor in 

curved brackets, which corresponds to the dispersion relation 

w(K), phase speed u and group velocity w: 

» = +akm;, = +a(k-m), u=o0/kK = +a(n-m), 

W=d00/dk—=+am; (23a, b, c) 

thus the uncoupled mode is an Alfvén wave (23a), since it propa- 

gates energy at the group velocity (23c), which coincides with 

the Alfvén speed a along magnetic field lines m, and the wave 

crests move at the phase speed u = w-n, which corresponds to 

the group velocity w projected on the wavenormal direction 

n=k/k. 

The other two modes, described by the determinant of (22): 

ot —4(a?-+c?) k?+iygk} o?+a? (k-m)? (c?k?+iygk)=0, (24) 

are generally coupled, and are distinguished by their speeds as 

slow and fast. The slow and fast modes decouple when the sound 

and Alfvén speeds are of very different orders of magnitude, i.e., 

one of the gas or magnetic pressures dominates the other. In 

hydrodynamics, the magnetic pressure is small compared with the 

gas pressure a?<<c?, and the equation (24) decouples in two 

factors: 

{o?—a® (k-m)?} 4 o? —c’*k? —iygk | = 0; (25a) 

the first factor specifies again the Alfvén wave (23a, b,c) prop- 

agating along magnetic field lines m at a small speed a, and is 

the slow mode, and the second factor specifies an acoustic-gravity 

wave, which corresponds to the fast mode. In the converse case, 

of dominant magnetic field a? >> c? , yg/k, in the vertical direction 

m, = 0,m; = 1, equation (24) factors: , 

4 4? atk? } 4 w? —c?k? —iygk } = 0, (25b) 
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into an acoustic-gravity wave (second factor) as in (25a), but now 

corresponding to the slow mode, whereas the first factor specifies 

the fast mode: 

o= tak,u o/k = +a, w=d0/dk = £an, (26a, b, c) 

which is a wave propagating isotropically in all directions n at 

Alfvén speed a. 

Thus we find that the vertical acoustic-gravity wave, of 

dispersion relation w? —c?k?—iygk = 0 exists, uncoupled from 

magnetic modes, in two opposite circunstances: (a) in the case 

of a magnetic field so weak (25a) that it cannot affect the 

acoustic-gravity wave; (b) in the case of a magnetic field so strong 

(25b) that the gas cannot cross magnetic field lines, and the 

acoustic-gravity wave is forced to propagate along the magnetic 

flux tube. In the absence of gravity g = 0, the dispersion relation 

reduces to »*?—c*k? = 0, implying (26a, b,c) with c replacing a, 

i.e., isotropic propagation at the sound speed c? = yRT, where 

y is the ratio of specific heats, R the gas constant and T the 

temperature. The presence of gravity affects acoustic waves by 

introducing anisotropy, dispersion and filtering, as can be seen 

from the dispersion relation (second factor in 25a, b) written for 

the vertical wavenumber k: 

k? + (i/L) k—o*/e?=0, L =c?/yg =RT/g, (27a,b) 

which involves the atmospheric density scale height given by (27b). 

Solving (27a) for the vertical wavenumber: 

=—(i/2L) 11 +V 1—0?/e? }, (28a) 

o,=C/2L = (g/2)V y/RT, (28b) 

we conclude that it is pure imaginary k = —i8/2L, and the wave 

field non-oscillating exp (ikz) = exp(5z/2L), for frequencies 

below (28b) » < os, which is designated cut-off frequency, since 

below it propagating waves cannot exist. Above the cut-off 

frequency » > o,, the wavenumber k (28a) has a real part: 

k=—i/2L+K, K=(0/c) V1—«2/o’, (29a, b) 
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and propagation is possible, so that the cut-off frequency wo, (28b) 

separates the standing (» <o,) and propagating (» > o,) parts 

of the spectrum, and specifies the properties of the atmosphere 

as a filter of acoustic waves. 

The quantity K defined by (29b) plays the role of an effective 

wavenumber, since by (29a): 

expi(kz—ot) —exp(z/2L) -expi(Kz—ot) (30) 

it determines the phase Kz—ot of a propagating wave o > o,,. 

The effective wavenumber K (29b) simplifies to the acoustic form 

K ~ w/c for frequencies much higher than the cut-off w? >> 2, is 

smaller than the acoustic value K < w/c for intermediate fre- 

quencies » >, , and vanishes K = 0 at the cut-off » = o, when 

propagation becomes impossible. The phase speed u and group 

velocity w corresponding to the effective wavenumber K (29b): 

u=o/K =c 4 1 — w2/w? tae (31a) 

W=d0/dK =c¢ 4 1—o/u? $7; (31b) 

coincide with the sound speed u ~ c ~ w only at high-frequencies 

wo” >>}; at intermediate frequencies w >, the phase speed is 

higher than the sound speed and the group velocity lower 

u>c>w. At the cut-off » =o, the phase speed diverges 

u — oo since the wave ceases to oscillate and wavecrests disappear, 

and the group velocity vanishes w—0 since the energy flux 

vanishes for standing modes. The factor exp (z/2L ) shows that the 

amplitude of acoustic waves grows exponentially on twice the 

density scale height in an isothermal atmosphere, and thus, even if 

the initial amplitude is small, after propagating a few scale heights 

the waves grow to finite amplitude, so that non-linear effects become 

important and shock formation may occur. This law of amplitude 

growth can also be obtained from energy conservation, bearing 

in mind that the sound speed is constant in an isothermal 

atmosphere: (i) the equipartition of kinetic and compression 

energies at all altitudes implies that the total energy E = pv? is 

twice the kinetic part, and the energy flux is F = Ec = pv’c; 

(ii ) since the energy flux must be conserved for a non-dissipative 
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wave v ~p‘/?, and as the mass density decays exponentially on 
the scale height ~ exp(—z/L) the wave velocity perturbation 
grows exponentially on twice that scale v ~ exp (z/2L). 

There is a considerable contrast between the properties of 
Alfvén-gravity ($2) and acoustic-gravity (§3) waves, say, in an 
isothermal atmosphere: (i) the latter have a constant propagation 

speed, namely the sound speed c, whereas the former are 

accelerated with height at an exponentially increasing Alfvén 
speed A (8a); (ii) the velocity perturbation increases linearly 
with altitude v ~ z in the former (6a) and exponentially v ~ e2/2) 
in the latter (30) cases; (iii) for the former, the Alfvén number 
N=v/A ~ z e~2#/2L reduces with altitude, whereas for the latter 

the Mach number M=Vv/c ~ e”/2" increases with height; (iv ) for 

the former a linear, non-homogeneous theory is appropriate, 

whereas for the latter a non-linear, homogeneous approach may 

be needed; (v) the latter satisfy equipartition of (kinetic and 
compression) energies at all altitudes, and the former violates the 

initial equipartition of (kinetic and magnetic) energies as it 

propagates upward. These contrasts for non-dissipative waves 

(Campos 1983a,b) extend to the dissipative modes (Campos 

1983c,d), since: (vi) among the main dissipation mechanisms, 

viscous damping is effective on hydrodynamic and resistive 

damping on hydromagnetic waves; (vii) the electrical resistance 

depends mainly on temperature and is approximately constant in 

an isothermal atmosphere, whereas the kinematic viscosity, 

defined as the ratio of the static viscosity to the mass density 

increases with height as the atmosphere becomes more rarefied; 

( viii ) resistive dissipation is important at low altitudes for Alfvén 

waves, when their propagation speed is small, and becomes 

negligible at high-altitudes, whereas for acoustic modes viscous 

damping increases in importance as the kinematic viscosity grows 

with height, and is most significant at high altitudes. 
The simple preceding example of the high-pass filtering of 

vertical acoustic-gravity waves in a magnetic field tube illustrates 
three general properties: (a) the filtering of waves in stratified 

media, e.g., three-dimensional acoustic-gravity waves have two 

cut-off frequencies (one vanishes in the case of vertical propagation 

outlined before), in atmospheres either nearly isothermal (Lamb 

1879, Moore & Spiegel 1964, Yih 1965, Yeh & Liu 1974, Campos 

1984a) or with strong temperature gradients (Lamb 1910, Groen 
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1948, Thorpe 1968, Lindzen 1970, Campos 1983a); (b) the 

propagation along tubes is also relevant in the acoustics of ducts 

of variable cross-section, either without a mean flow, such as the 

horns of loudspeakers and musical instruments (Webster 1919, 

Ballantine 1927, McLachlan 1934, Jordan 1963, Olson 1972, 

Zamorski & Myrzykowski 1981, Kergomard 1982, Bostrom 1983, 

Campos 1984c), or with a mean flow, such as the nozzles of jet 

engines (Powell 1959, Eisenberg & Kao 1969, Morfey 1971, Nayfeh, 

Kaiser & Telionis 1975, Nayfeh, Shaker & Kaiser 1980, Campos 

1978, 1984d); (c) the growth in wave amplitude with altitude 

leads to non-linear waves and shock formation (Riemann 1860, 

Raiser & Zeldovitch 1966, Wentzel & Solinger 1967, Chiu 1971, 

Whitham 1974, Roberts & Rae 1982, Campos 1984e), which is 

oppposed and delayed by dissipative effects (Lighthill 1951, 1978; 

Yanowitch 1967a,b, 1969; Lyons & Yanowitch 1974; Campos 

1983c, d). In these as in all other types of waves, it is possible 

to consider three types of propagation and dissipation theories: 

(1) for waves of small amplitude in media for which the prop- 

agation speed and damping rates are uniform, the wave equations 

are linear with constant coefficients, and can be solved by Fourier 

analysis, leading to the use of dispersion relations, as in the 

preceding example (§3) of acoustic-gravity waves in an isothermal 

atmosphere; (Il) for waves of small amplitude in an inhomoge- 

neous or strongly stratified medium, for which the speed of 

propagation and dissipation parameters are non-uniform, the wave 

equations are linear with variable coefficients, dispersion techniques 

are inadequate, and exact solutions must be obtained, often in 

terms of special functions, as illustrated in the case of resistive 

Alfvén-gravity waves (§2); (II1) for waves of large amplitude, 

which cause a disturbance in the medium of propagation com- 

parable with the mean state, the wave equations are non-linear 

and the methods of superposition generally do not apply, and 

apart from cases of short wavelength where non-linear ray theory 

may be used, the derivation of exact solutions may depend on 

finding a special transformation into a known equation, as in the 

example which follows in the remaining part of the present 

section. 

We consider as example a one-dimensional acoustic wave of 

finite amplitude, with dissipation by the kinematic viscosity 7, 
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for which the velocity v and density p are functions only of 
position z and time t, and satisfy the exact, non-linear equations 
of continuity and momentum: 

dp/dt +vdp/dZ+ pdV/dzZ=0 (32a) 

aV/dt + VdV/dzZ + (C*/p)d9/0Z = n O°V/9 Z?; (32b) 

in the latter we have substituted the pressure gradient (jp/)z) = 
= C* (dp/dZ) , where c* = (dp/dp), is the adiabatic sound speed. 

Multiplying (32a) by + c/p and adding to (32b), we obtain: 

{d/dt+(vtc) d/dz} J, =n dv/dz, (33a) 

J. =v+((c/p) dp, (33b) 

which can be interpreted as follows: (i) in the absence of 
viscosity » = o and for linear waves v<<c, from J, ~ 2v and 
dV/dt +c dV/dZ=0, it follows that the velocity perturbation 
v(z,t) =f(z—ct) propagates at sound speed without defor- 

mation; (ii) in the non-linear case the Riemann invariants J are 

conserved along the characteristics T'.. , which are the ‘trajectories’ 

of the wave travelling at a speed (dx/dt), =v-+c equal to 

the superposition of the velocity v and sound speed +c, in the 

same or opposite direction; (iii) in the presence of viscosity 

n+ 0 the Riemann invariants J. (33b) decay along the 

characteristics [T, since (33a) may be viewed as_ non-linear 

diffusion equations, and the wave profile is deformed by two 

opposing effects: steepening by non-linear convection and decay 

by viscous dissipation. 

Considering a simple wave, for which the invariant J_ is 

zero, the invariant J, can be expressed in terms of the propaga- 

tion speed u=v + Cc, so that we obtain Burger’s equation: 

du/dt+udu/dz = (7/2) 02U/d 2; (34) 

the latter balances the linear local and non-linear convective 
acceleration against dissipation by the kinematic viscosity halved, 

and apart from the factor 1/2 coincides with the one-dimensional 

form of Navier-Stokes equation. The equation (34) can be trans- 
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formed, by means of the change of variable (Burgers 1948, Cole 

1951, Hopf 1951): 

(z,t) =exp{—y"[° uCy,t)dy}, (35a) 
—e 

u(z,t) =—7» 0d (log®)/dz, (35b) 

into the linear heat equation: 

0&/dt =(7n/2) 0°@/d2, (35c) 

of which many solutions are known (Fourier 1876, Carslaw & 

Jaeger 1946). 

As an example of the use of the transformation (35a), we 

consider a velocity pulse of magnitude U emitted at altitude z=0: 

u(z,0) = U8(z),#(z,0) =H(—z) +e-'% H(z), (36a,b) 

using the properties of Dirac’s delta § and Heaviside’s unit H 

functions (Schwartz 1949, Lighthill 1958); the solution of the 

classical (Fourier 1876, Carlslaw & Jaeger 1946) heat problem 

(35c, 36b) specifies 6 (z,t ) from which we may calculate u(z,t) 

using (35b), viz.: 

u(Z,t) = (2y/nt)¥? { exp(—z*/2nt)/erfe (z/V(2nt)) $; (37a) 

the pulse thus broadens with time to a scale / ~ V(2nt), and 

asymptoticaly z— o as the error function erfc— 1, it takes a 

pure Gaussian shape: 

u ~ (2n/at )1/? exp (—Z?/2nt ) ~ (2nU/nz )'/? exp (— UZ/27) , (37b) 

where in the second expression we have used z/t ~ U. 

The dissipation by viscosity acts as a heat source (per unit 

volume): 

Q(Z) =en(d0V/dz)? ={4 2p n/(y +1)? } (du/oz)? 
(38a) 

~ 4 pU%/r(y +1)?z} exp(—UZ/n), 
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Fig. 3 — The theory of compression and heating of an atmosphere by acoustic 

waves of finite amplitude with viscous damping (solid line) is compared with 

observations (squares) in solar spicules. The temperature profile (bottom) 

shows an initial rise when the heating function (fig. 4, top) is larger, and levels- 

-off as the latter decays with altitude. The total density profile (top) demon- 

strates the increasing contribution of the wave compression relative to the 

atmospheric stratification, showing that the presence of waves is essential to 

explain the observed total density. 
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which in a rarefied medium is balanced by the thermal radiation 

flux: 

Q = dS/dz, S =(16»/3<) T* dT/dz, (38b, c) 

which is proportional to the cube of temperature and temperature 

gradient through a factor involving Stefan-Boltzmann constant 
v and the opacity «. Integrating (38b) with (38a,c) we obtain 

the temperature profile of a medium in radiative equilibrium, heated 

by viscous dissipation of acoustic waves of finite amplitude: 

{T(z) #={4T(2) + (B/A) {E:(AZ%)—E,(Az)}, (39a) 

where E, is the exponential integral of order 2 and A=U/n, 

B=3pU* «/4y7r(y + 1)*. The medium may be an atmosphere, 

provided that the stratification be gradual on the scale of the wave, 

and in this case the total mass density consists of: (i) the 

atmospheric stratification which decays exponentially on a scale 

D from its initial value 9, at altitude z, ; (ii) a wave compression 

which increases from the initial value , at altitude z, according 

to an adiabatic relation with temperature: 

p(Z) = pr exp —(Z—2)/D} + ps {T(Z)/T (zo) PTD. 
(39b) 

The temperature and density profiles (39a,b) are plotted 

versus altitude in Fig. 3, showing satisfactory agreement with the 

observations (Beckers 1968, 1972) in spicules, which are regions 

of the sun (Bray & Loughhead 1974, Athay 1976) where matter 

moves upward towards the corona, compensating for the mass 

loss due to the solar wind. It can be seen that: (bottom) the 

temperature gradient reduces with altitude as viscous dissipation 

becomes weaker and thermal radiation more effective; (top) the 

wave compression gives an increasing contribution to the total 

density compared with the atmospheric stratification. The presence 

of the compression front due to the acoustic-gravity wave is thus 

essential to the adequate modelling of the density profile. The 

mass and energy transfer to the atmosphere can be related to the 
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Fig. 4— An acoustic wave tends to steepen its wavefront and form a shock 

due to non-linear effects, and this tendency is opposed by viscous dissipation, 

which extracts energy from the wave and transfers it to the medium in the form 

of heat. The heating function (top) specifying the rate of transfer of energy 

from the acoustic waves to the solar atmosphere decays with altitude, as there 

is less energy per unit volume left in the wave; in spite of this energy loss, 

the decaying atmospheric density implies that the wave compression becomes 

gradually more significant in relative terms, and the Mach number (bottom) 

increases steadily up to shock strength. 
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properties of the wave, shown in Fig. 4: (top) the heating function 

due to viscous dissipation decays with altitude, as the temperature 

levels-off (Fig. 3, bottom); (bottom) the Mach number M= v/c 

increases rapidly with altitude, as the wave compression becomes 

more significant compared with the atmospheric density (figure 3, 

top), showing the growth of the wave from small amplitude 

M2 << 1 at low altitude to shock strength M ~ 1 at the top. 
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