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ABSTRACT —We study the instability saturation by the process of 

resonant three-wave coupling, comparing the results obtained in the fixed 

and random phase approximations. We show that the transition to chaos 

occurring in the fixed phase equations does not exist in the random phase 

equations. In quite general conditions the random phase leads to a well defined 

saturation level of the unstable mode. 

1 — INTRODUCTION 

It is now commonly accepted in Plasma Physics that the 

turbulent state arises from some instability which eventually 

saturates and breaks into a number of different modes. In this 

context, an important problem is the determination of the nonlinear 

state resulting from a linearly unstable wave. 

One of the elementary processes leading to the instability 

saturation is the resonant three-wave coupling. The equations 

describing the interaction of three waves have been already 

studied, assuming that the two linearly damped modes into which 

the unstable mode decays are equal and further assuming that the 

unstable wave is strictly monochromatic [1], [2]. It has been shown 

numerically that in this case a strange atractor occurs and the 

wave amplitudes can behave chaotically. This fixed phase appro- 

ximation is only valid when the frequency width of the unstable 

wave packet, A, is less than 1/7,, where 7-, is the characteristic 
time for the instability saturation. 
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In the present work we discuss the instability saturation from 

a more general point of view. In Section 2 we state the nonlinear 

equation for the wave field amplitude in its general form. In 

Section 3 we discuss the fixed phase approximation which can 

be used in order to solve the nonlinear equation. Section 4 is 

devoted to the analysis of the random phase approximation, which 

is valid when A>>1/;,. Finally in Section 5 we state the 

conclusions, and compare the results obtained in the fixed and 

random phase approximations. 

2 — NONLINEAR EQUATION 

Let us assume the general situation of an infinite, homogeneous 

and nonlinear dielectric medium, which can be a plasma. Using 

Maxwell equations and making space and time Fourier transforms 

we can get the equation of propagation for the electric field 

E(k) in the following form: 

D(k, ©) E(k) =—(Ci/oe,) ay - Inn Ck) (1) 

where 

k? c? 
  Cc = 

D(k, o) = — |k-&|*— + a -e(k, o) - a (2) 

In these equations eC k, ) is the dielectric tensor describing the 

medium, » and k are the frequency and wavevector associated to 

the field E(k) and 4, is the unit polarization vector. The nonlinear 

current appearing in equation (1) is given by: 

iQ@t dk’ 3 (20) (3)   In (kK) =| tk, k’) -E(k’) E(k”) e 

where o (k, k’) is the ‘second order conductivity’ tensor, 

k” = k—k’ and Q is the frequency mismatch 

Q = o(k) —o' (kK) — 0” (k”) (4) 
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We see from equation (1) that when the nonlinear current is 

neglected, Jx;,(k) =0, a nontrivial solution for the electric 
wave field E(k) implies that: 

D(k,o) =0 (5) 

This is the linear dispersion relation which specifies » as a function 

of k, » = »(k). Equation (4) shows that, in the expression for 

the nonlinear current (3) we assume that each Fourier component 

of the electric field in the medium E (k ) obeys the linear dispersion 

equation (5). However, if the nonlinear current is taken into 

account, Jy; (k ) ‘0, equation (5) is no longer valid. Developping 

D(k,) around the linear dispersion relation we get [3]: 

gD 3 3 Olk. oh = fo) |] ee.-t4 (6) 
: cath sor | 

where v, = do/dk is the linear group velocity and y, is the linear 

damping coefficient for the wave field E(k). Replacing (6) in 

equation (1) we get the nonlinear equation in its final form: 

(20 )* (d/dt + yy.) E(k) 
iQt (7) =— [H(k,k’) E(k’) E(k-k’) e dk’ 

where the total time derivative means: 

d 0 0 =o + = 8 
dt gt “or 8) 

and the nonlinear coupling coefficient H(k,k’) is given by: 

Hk, ki) = BRECK De Bir (9) 
, e,0 (0D /do)x 
  

Equation (7) gives the rate of change of the Fourier component 

E(k) of the electric field in the medium due to the nonlinear 

three-wave interaction of E(k) with each of the pairs E(k’) 

and E(k”) of the spectrum which satisfy the selection rule: 

k=k’ +k”. The solution of this equation would give the turbulent 
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spectrum in a plasma if the three-wave interaction was the only 
process of energy exchange between the Fourier components of 
the spectrum. Actually, in a turbulent plasma, not only the 

four-wave or the higher order wave interaction processes are 

present but also are the wave-particle processes which cannot be 

described in the frame of the dielectric theory used here. 

3 — FIXED PHASE APPROXIMATION 

Let us apply the general nonlinear equation (7) to the case 

of instability saturation. The physical picture is the following: 

A given region of the spectrum around k = k, becomes unstable, 

due to the linear properties of the plasma. In this case we have 

¥1 = Yx, <0. If the unstable wave field attains a significant level, 
the nonlinear effect described by the right hand side of equation (7) 

is able to transfer a significant amount of energy from the unstable 

region of the spectrum to the stable regions where dissipation 

occurs. Instability saturation can then be achieved. 

In order to discuss this process in detail it is useful to assume 

that the unstable spectrum reduces to a single wave k = k, and 

is described by a Dirac 85 function. In this case, only two other 

waves defined by k = k, and k = k;, such that k; = k,» + k; can 

take energy from the unstable one and eventually saturate its 

growth. It is the so called fixed phase approximation. We can 

then wite: 

E(k) =(2r)° 3 E,8(k—k;) (10) 

Using this expression in equation (7) we get three coupled 

evolution equations: 

(d/dt+y,) E,=—HE,E, e!* 

~iQt (d/dt+y.) Ef =—H’E*E, e (11) 

(d/dt+y,) Et =—H”E*E, e! 
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where H=H(k:, k:), H’ = H(—k:, ks), H” = H(—ks, kz) 
and 2 = o(k,) —o(k.) —o (k;). Using normalized amplitudes 

for the wave fields: 

,= 1/2 (dD /do) k E; (12) 

and defining real amplitudes a; and phases ¢, such that 

e 3 (13) 

we can give to the system of equations (11) a symmetric form: 

(d/dt+ y,) a, = — Va.a; sine 

(d/dt+ yy.) a, = + Va,a; sino (14) 

(d/dt+y;) a, = + Va,a,.sino 

where the evolution of the phase mismatch © = ¢,—¢,— 4, is 

described by the equation: 

  ao a+ ( a 4. Sie =) cos © (15) 
dt ae a3 ay 

and the nonlinear coupling coefficient V is given by 

va Gh Geht do /k,\ de /k,\ 00 /k, 

Consider now the particular case of an unstable mode o; = (k:), ki 

which saturates by subharmonic generation. In this case we 

have o,= 0; ~0;,/2. And we also have a; = a; and y2 = y3 >0O. 

Equations (14) and (15) then reduce to: 

  

(d/dt+y,) a, =—Va?sino 

(d/dt+y.) a, =Va,a.sino (17) 

de /dt =2+ Va, [2—(a./a,)?] cose 
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It has already been shown that such a system contains chaos [1], [2]. 
This quite remarkable result however has a limited range of 
application. In the first place, the unstable spectrum always has 
a finite bandwidth A and the ideal situation of a monochromatic 
wave (A-— 0) never occurs. In the second place, the two linearly 
stable waves a, and a; are, in general, different waves, as in the 
Brillouin or in the Raman scattering processes. We can avoid the 
first difficulty if we add to the evolution equations (11) a random 
term R, which phenomenologically describes the contribution of 

the spectrum components not entering in (10), say, the neglected 

nonlinear term 

Qe dk’ H(k,k’ E(k’ E(k-k’ i J HCk.K) E(k’) E(k-k’) e cat 
kk, 

The influence of this random term on the transition to chaos and 

its justification will be discussed elsewhere. Here we only want 

to stress that if the phases are assumed to be random the three 

equations (17) reduce to two and chaos is no longer observed. 

This quite obvious conclusion will be stated more clearly in the 

next Section. The second difficulty noted above can also be avoided 

if we keep the four equations (14) and (15). In the next Section 

we show that the two great limitations of the fixed phase 

approximation can be avoided if we study the nonlinear wave 

saturation using the random phase approximation. 

  

4— RANDOM PHASE APPROXIMATION 

Let us return to equation (7). If we multiply this equation 

by E*(k) and its complex conjugate by E(k) and sum the 

results, we get: 

27) (d/dt + 2 E(k) |? (27)* (d/ ve) |ECk) | am 

=—2[ Re [H(k,k’) E*(k) E(k’) E(k”) ef Mt dk’ 

If we write the field amplitude as E(k) —|E(k)|exp(i¢,) 

and if we assume that the phase behaves randomly we can make 

a statistical average of equation (18) over the phase. It is easy 
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to see that a statistical average over a random phase leads 

to < E(k) >=o and < E*(k) E(k’) >=|E(k) |? 8(k-k’). 

In order to calculate the mean of product E* (k) E(k’) E(k” ) 

entering in equation (18) we take an approximate solution of 

equation (7), assuming that d/dt ~ iA where A>> yx is the wave 

frequency width. We get then: 

iA (27)* E(k) =—| H(k,k’) E(k’) E(k”) eS dk’ (19) 

Using this result we can write: 

iA(27)? <E*(k) E(k’) E(k”) > 

= { HY (k,s) <E*(s’) E*(k-s’) E(k’) E(k-k)> @7'" ds’ 
(20) 

-j Qt ds” 

~{ H (k’, 8”) <E*(k) E(s”) E(k’-s”) E(k-k’)> e 

-i Qu 

- [ H(k-k’, 8”) <E* (k) E(k’) E(s’”) E(k-k’-8’”)> 7" ‘ ds’” 

where 0’ = 0(k’> 8’, k”>k-—s’) and ©” and 0” are defined 

in a similar way. Now, in the random phase approximation it is 

easy to see that: 

< E*(s’) E*(k-s’) E(k’) E(k-k’)> 

It <E*(s’) E(k’)> <E*(k-s’) E(k-k’)> (21) 

12
 |E(s’) |? |E(k-k’) |* 8(s’-k’) 

Using (20) and (21) we can write the statistical average of 

equation (18) in the form. 

(27)° d/dt+2y.) Ny 
(22) 

=| w(k,k’) [N,N,,—N, N,.—N, Ny] dk’ 
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where N,, = Cj are the number of photons of wavevector k and Cy 
is defined by equation (12). The nonlinear coupling coefficient 
w(k,k’) is now given by: 

|H(k,k’) |? 8(@) 

(so), G2). Ge) do Jy \do /y, \ do /,, 

Assuming further that the main components of the wave spectrum 
lie in the region of wavevectors around k = k; (with i = 1, 2, 3) 
we can use the properties of the 5 function 8 (A) and get, after 
integration in k’, 

w(k,k’) = —(4r/e )   (23) 
  

( d / dt + V1 ) N, = ay ( N.N,; = N,N; — N,N, ) (24) 

where N; = N, (fori=1,2,3), y,=2y, and 
1 1 

a, =w(k,k’) [27(d0/dk’)y J (25) 

For positive energy waves, we always have a, >o [3]. Coupled 
with this evolution equation for N, we have two similar equations 
for N. and N;. If we normalize the time with respect to the 
growth rate of the unstable mode N,, with the aid of a new 
time variable ; = |y,|t, it is easily seen that we can write the 
three coupled equations in the form: 

dN, /dr = N, + A, (N,N; _ N,N, = N,N, ) 

(26) 
dN2,; / dr=- T2,s No,3 ~ Ao,s (N.N; ~ N,N; ~ N,N, ) 

where A; = a; /|y,|>0 and r,, = y2,:/|y1| > 0 are the linear 
damping rates of the stable modes N, and N,. These equations 
are quite similar to the Lotka-Volterra equations for three 
populations in competition, but we will see that the behaviour 
of their solution is quite different. 

Equations (26) have two singular points defined by: 

P55 N, = N. =N; = 0 

(27) 
P,: N, = A.T.T3 /B, N, = AT; /B, N, = A.I. /B 
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where 

B = Ay (ATs + AsI> ) ~ AAs (28) 

The origin P, is always unstable and is of the node-saddle type. 

Its stable manifold is the plane P,N.N, and the unstable manifold 

is the axis P,N,. The second singular point P, exists in the first 

octant of the phase space only if B>o. Equation (26) has a 

physical meaning only when the point representing the system in 

phase space belongs to the first octant, because the numbers of 

photons are positive quantities, N; > 0. Then, in order to get an 

instability saturation the singular point P, must be accessible to 

the system. The necessary condition for the instability saturation 

is then B>o. 

Furthermore, if we use the Hurwitz criterion we can easily 

show that P, is always stable and shows a focus behaviour, 

provided that B > 0. We can then say that the configuration in 

phase space is always the same and no bifurcation parameter 

can be defined. The conclusion is that, unlike the three dimensional 

Lotka-Volterra equations, no chaos can be generated in this 

system, because it would have to exist even for very small values 

of N, when the nonlinear terms are negligible. 

These results are confirmed by the numerical integration of 

equations (26). When B = o the unstable mode boes to infinity, 

as well as the linearly stable modes. When B > 0 the unstable 

mode attains a maximum at a time ;, and then slowly decays 

to the saturation level, as shown in Fig. 1. This maximum of N, 

grows with I, as well as the saturation time 7,. For high enough 

values of © a series of oscillations around P, are observed with 

decreasing amplitudes (Fig. 2), revealing the focus nature of P,. 

The behaviour is essentially of the same nature for T, # Ts. 

5 — CONCLUSIONS 

We have studied the instability saturation by nonlinear mode 

coupling and we have discussed the behaviour of the saturation 

wave amplitude levels in two extreme approximations. The first 

one corresponds to a nearly monochromatic unstable spectrum and 

it is the fixed phase approximation (A7,<<1). In this case the 
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Fig. 1—JInstability saturation in the random phase approximation, for 

A,=A, =A, =1 and [T, = Tl; =1. (a) Intensity of the first mode; 
(b) Intensity of the second and third modes (arbitrary units). 
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Fig. 2— The same as in Fig. 1, but for [, = I's = 100. 
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wave amplitudes starting from zero can asymptotically attain a 
limit cycle regime which eventually bifurcates to chaos. This was 
shown by numerical calculations, assuming that the two stable 
waves are equal (k, = k,;, a, = a;), which means that we have 
sub-harmonic generation (o, = 0; ~ 20,). Of course, if chaos is 
attained, the unstable spectrum broadens and the waves can no 

more be considered as monochromatic. 

The second extremie case is that of a broad-band unstable spec- 

trum, described by the random phase approximation (A7,>>1). 
Making no restriction on the character of the stable waves 

(k, # ks, N. #N,) we have shown that in this case the system 

tends to a stable focus and no bifurcation to chaos is observed. 

It is our intuition that the random phase approximation is 

more appropriate to describe the physical phenomena because, 

even if the unstable spectrum is nearly monochromatic it becomes 

broader when the chaotic behaviour is observed. But only a 

detailed study of the intermediate case described by ‘the fixed 

phase equations with a noise term can eventually give a qualified 
answer to this intuition. 
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