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ABSTRACT — This paper aims to review mostly rigorous results on 

frustrated Ising systems and present a unified approach to the statistical 

mechanics of frustrated systems. The formalism is presented in a general 

enough manner to include q-state Potts models wherever this extension was 

possible. 

I — INTRODUCTION 

The present review was motivated by two lectures I gave at 

the Laboratorio de Fisica, Faculdade de Ciéncias, in Porto. It is 

intended as a_ tutorial introduction to the subject, with a 

pedestrian’s approach to the connection with gauge theories. The 

interested reader is encouraged to go to other existing reviews in 

the field, notably that by Toulouse (1980), and to the seminal 

article of Fradkin et al. (1978). 

Although in this review I will confine myself to spin models, 

the usefulness of the concept of frustration is certainly not limited 

to spin models. The ideas of frustrations and frustration lines have 

been extended by various authors to continuum models (see for 

example Dzyaloshinskii and Volovik 1980, and the review article 

by Halperin 1981 as well as the more recent work of Rivier). 

I have, moreover, both for the sake of brevity and unity of 

presentation, not included models with continuous symmetries, 

although a few references have found their way in. (This is a big 
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shortcoming, as some of the most interesting results, analogies 

and open questions are to be found precisely in these systems). 

Above all, I do not pretend to make an exhaustive review of the 

subject, but hope to have included the highlights of the progress 

in the field, enough to indicate problems and loose ends. At the 

same time I hope I have been able to introduce the reader to some 

useful techniques in dealing with frustrated systems. 

The paper is organized as follows. In Section II, I will give 

an intuitive definition of frustration and then proceed to review 

the results on ground state properties, the existence or nonexistence 

of phase transitions and their universality class, and the behaviour 

of the correlation functions, in periodically frustrated and, where 

available, on randomly frustrated Ising models. (The fully 

frustrated (ff) models are a special case of the former). This 

is not meant to be a review of the vast literature existing on spin 

glasses (SG), and only a few papers dealing with randomly 

frustrated systems are touched upon, the selection having been 

made on the basis of emphasis, namely, on the direct interrelation 

between the behaviour of the system and that of the distribution 

of frustrations. 

In Section III, I introduce the concept of gauge variables and 

gauge transformations. The invariance of the partition function 

under these transformations is derived. The continuity between 

annealed and quenched averages is demonstrated. 

In Section IV, the duality transformation and disorder variables 

are introduced. The interrelations under duality transformations, 

between disorder-disorder correlation functions in two dimensions 

(2d) (gauge invariant correlation functions in three dimensions 

(3d) ) and the defects in the ordered spin system are displayed. 

The relevance of these correlation functions to the probability 

distributions of configurations of frustrations (and thus quenched 

averages) is shown. Finally, phase transitions in the frustration 

system as a function of the concentration of antiferromagnetic 

(AFM ) of ferromagnetic (FM ) bonds are considered. 

Where possible, the material in Sections III and IV has been 

presented with enough generality to cover systems with Zy type 

symmetries, and some consequences of the generalization to Potts 

systems of analogous results on the Ising model are indicated. 
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II — FRUSTRATED SYSTEMS 

Consider a system of spin s, located on the sites, i, of a 

lattice, with interactions Jj; on the bonds. The Hamiltonian is 
given by 

H=-— = Jyjf(s;,sj)= = Ey (2.1) 
(ij) (ij) 

where the sum is over all pairs i, j. The most intuitive definition 

of frustration is to say that the system is frustrated, if not all E,, 
may take their minimum values simultaneously, for any config- 

uration of the spins s,. Observe that this is a property of the 
set of interactions J,; on the bonds and the functions f(s;, sj) ; 
however it does not depend on a particular set of values of the 

functions f(s;, s;) or s;. From now on we will refer to the 
situation were E,; takes its minimum value as ‘the bond (i, j) 

being satisfied’. (Otherwise, we shall say it is broken. Using 

‘frustrated’ in this context gives rise to a lot of confusion). 

Let us illustrate. The simplest such spin model is the Ising 

model, where 

It is obvious that on a one dimensional chain with only nearest 

neighbor interactions (no overlapping bonds) and open ends, it 

is always possible for the s,; to take on a set of values which will 
satisfy any given set of J;;. However, as soon as we have a 
closed loop of bonds, e.g. a triangle with the set J,; of bonds on 
the edges as shown in Fig. la, b the problem is no longer trivial. 

In fact both of these systems are frustrated. It can easily be 

checked that any such loop with an odd number of bonds equal 

to -J, and the rest equal to J, is frustrated. Moreover, any 

lattice in d dimensions, incorporating such loops will also be frus- 

trated. 

Toulouse (1977) has defined the frustration function for the 

Ising model to be given by 

op = SBN (a Jij) (2.3) 

where the product is over all the bonds on a loop p. This function 

is positive if the loop is not frustrated, and negative if it is. If this 
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loop is the smallest loop that can be constructed on the given 

lattice, it will be called a plaquette. If the function 4, associated 

with some plaquette is negative, that plaquette will be said to be 
frustrated, or is a ‘frustration’. 

+ J +J 

  

  
  

(a) (b) 

  

  

  

  
(cy) (d) 

Fig. 1—(a), (b) Simple frustrated plaquettes, (c) possible configurations of 

frustrations in two dimensions, (d) smallest possible ‘tube’ of frustrations in 

three dimensions. Dark lines are AFM. Frustrations are marked with an ‘x’. 

The distribution of frustrations on a lattice in d dimensions 

obeys certain topological constraints. As can be seen from Fig. Ic, 
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in two dimensions, any finite number of AFM bonds give rise 

only to pairs of frustrations. A single frustration can only be 

created with an infinite ‘ladder’ of AFM bonds going out to the 

edge of the lattice. In three dimensions, only a closed ‘tube’ of 

frustrated plaquettes may exist, the smallest possible such ‘tube’, 

surrounding a single AFM bond is shown in Fig. 1d (Fradkin et al. 

1978). One can see that in the ordered phase spins would tend 

to align parallel, except along the faults, or defects, created by 

the AFM bonds, with the frustrations in two dimensions acting 

as the sources and sinks of the defect line. In three dimensions, 

an arbitrary loop of frustrated plaquettes is created by flipping 

all the spins incident on some surface bounded by this loop. 

The concept of frustration has been generalized to other types 

of spin systems. The frustrated x - y model has been treated by 

Villain (1977b), Fradkin et al. (1978), José (1979), and more 

recently by Dzyaloshinskii and Obukov (1982). The latter have 

also treated a frustrated Heisenberg model. The extension to 

continuous spins has been provided by Herz (1978). In this review, 

I will, as already stated, stay for the most part with the Ising 

model. In section III, and IV, a more general treatment will also 

include the Potts model. 

The usefulness of this quantity can be illustrated as follows: 

There are many conceivable ways in which bond randomness 

may be introduced into a Hamiltonian like Eq. (2.1), allowing 

for J,; to take on both positive and negative values. (For simplicity, 

let us for the moment assume that the magnitude of the coupling 

constant stays the same). However it turns out that the models 

obtained via some of these schemes may be transformed, by a 

suitable redefinition of the spins, into uniform ferromagnetic 

models, and thus contain a ‘hidden order parameter’, namely the 

magnetization of the related ferromagnetic model. The partition 

functions and the free energies of the original and transformed 

models are of course the same, and so are the singularities 

encountered at the transition temperature, if there is one. The 

classical example of this phenomenon is the ‘Mattis model’ 

(Mattis 1976), where 

Jij = J oj; 9; ’ o=t1 
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and o;, 0; are independent random variables. For Ising spin s, 
one may define 

7% = S; Cj 

so that the partition function 

Z= xX exp[B J & a; oj § 8;] 
18,$ (ij) 

reduces identically to that of the ferromagnetic Ising model: 

Z= > exp[sp J & 7% 75] 
(ij) 

Tj 

where £ is the inverse temperature in units of the Boltzmann 

constant, as usual. Note that although <s,;>=0 for all 
temperatures, for an even distribution of the o,, <7; > > 0 for 

T<T,, where T, is the critical temperature of the ferromagnetic 
model. (See Section III for a more general discussion of this type 

of transformation). Upon inspecting the original model we see that 

it is completely unfrustrated! For any closed loop on the lattice, 

j 

where the product is over all pairs i, j lying on the loop c. 

An inspection of the ground state of the system will show that 

there is in fact a unique way (with the overall degeneracy of 2) of 

choosing the spins s; such that all the bonds J;;= J o; oj; are 
satisfied. This ground state is precisely the ferromagnetic ground 

state in the variables 7;. In section III we will see that a system 
with frustrations cannot be transformed into an unfrustrated system 

by such a redefinition of the spins. We conclude that frustration 

is a necessary and irreducible feature of spin glass models. 

Random and Periodically Frustrated Systems 

An Ising spin glass model where the exchange interactions 

are distributed independently of each other with some probability 

P(J), where P(J) includes negative couplings, will give rise 
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to a lattice with a random distribution of frustrations. (In fact, 

on a square lattice with an even distribution of +, — bonds, 

exactly half the plaquettes will be frustrated on the average). 

One may, on the other hand, construct periodic arrays of 

frustated plaquettes, or systems where each plaquette is frustrated, 

namely, fully frustrated systems. (See Fig. 2 for the fully frustrated 

  
  

  

  
PAST / 
LLAADLV 
LIVV/V/\ 

(a) (b) 

  
  

            
  

Fig. 2—(a) Segment of the triangular lattice. Fully frustrated with all AFM 

interactions, this lattice corresponds to the fcc lattice in three dimensions, and 

generalizations thereof in higher dimensionality, (Alexander and Pincus 1980). 

(b) The Odd Model (FFSI) in two dimensions. This model can also be 

generalized to the fully frustrated hypercubic lattice in d dimensions. 

(Derrida et al. 1979, Villain 1977 a). 

lattices to which we will most frequently refer). Since the periodic 

systems are easier to treat, and in fact in two dimensions can be 

solved exactly (Ising, Potts) a lot of effort has gone into deter- 

mining their properties. (See Fig. 3 and the references given 

there). Moreover, by considering periodic strips in 2-d, within 

each of which the distribution of frustrated layers might be 

random, and then letting the width of these strips go to infinity, 

certain results may be obtained on systems with translational 

invariance in one direction and complete randomness on the other. 

(Hoever et al. 1981, Kardar and Berker 1982). I shall try to 

review these results here from the point of view of ground state 

properties, the existence or nonexistence of a phase transition, 

the nature of the low temperature or zero temperature phase and 

the behaviour of the correlation functions. 
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3 — Periodically frustrated lattices. For »=1, n=number of AFM 

rows and m= number of FM rows in r. 

u=1. Hoever and Zittartz (1981), Wolff et al. (1981). 

u#=1. Kardar and Berker (1982). 

w=1, |K, | = constant. Hoever et al. (1981), where the same frustration 

distribution with the minimum number of AFM bonds is also considered. 

Hoever et al. (1981), Bryskin et al. (1980) with n=1,m=3. 

w=1,7=1, 2,3, n/m=1, 1/2, 1/3. Longa and Olés (1980). 

y y 

e=1, »=2, |K’|=|K"] WUD), «=2, 1=2, J=K’=K’, 
K, =K, =J' (ZZD). André et al. (1979). 

’ x’ x y y’ 
uw=2, »=2, K, = K, = J,, K, = K,=J,, K, = K, =J,, 

K, =K, =J,. Gabay (1980). 

=2, »=2, Ki =-Ki=J,, K,=-K)=J,, K-=K.=4,, B 

K, =K. =J,. Garel and Maillard (1983). 

w=1,»=2,K =|K’|, K.=~—K’. The Odd model, Villain (19778), 
André et al, (1979), Bryskin et al. (1980), Forgacs (1980). 

F x x’ 
—J, K, =J, K,=K, =J, 

y x x 

w=2, y=2 |K|=|K[=J, Ki= 
Ki=-—J, K, =J, K=K’ 
al. (1980). 

f and i above could also be 

diagonal symmetry direction, 

= J. The chessboard lattice, Bryskin et 

considered under periodic models with a 

as in André et al. (1979). 
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Ground State Entropy 

One consequence of frustration is the increase in the ground 

state degeneracy of the system. To illustrate: in Fig. 1, had all 

the bonds been equal to + J, the system would have had a 

unique ground state (all spins aligned), with the sole degeneracy 

associated with the overall (+) symmetry of the Hamiltonian. 

However, the frustrated system has an additional degeneracy 

associated with the breaking of a particular bond, e.g., a bond on 

any edge of the triange may be broken, to yield the same ground 

state energy, —J. On a full lattice the effect is even more 

strikingly illustrated (Fig. 4). 

  

  

            
Fig. 4— The light bonds are FM, dark bonds AFM. The plaquettes marked 

with an ‘x’ are frustrated. The central spin indicated by a dark dot is effectively 

decoupled from the rest of the system, contributing a degeneracy of 2 to the 

ground state. In other words, the ground state is degenerate with respect to 

the breaking of the bonds J, and J, or J, and J,. 

In an array, random or ordered, of frustrated plaquettes, 

there may be macroscopically many such spins, giving rise to a 

finite ground state entropy per spin (Binder 1980). Moreover, 
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there may be not only such single spins, but many-spin clusters 

under whose reversal the ground state entropy is invariant, giving 

rise to the cluster picture of spin glasses (Binder 1980, Miyashita 

and Suzuki 1981, Smith 1975, Soukoulis and Levin 1977), where 

one considers a system of uncoupled or loosely interacting clusters 

of spins who interact strongly within themselves. There is an 

interplay between dimensionality and ground state entropy that 

is remarkable; viz., not even all fully frustrated systems have 

finite ground state entropy (GSE) per spin. Both the triangular 

Ising AFM (Wannier 1950, Alexander and Pincus 1980) and the 

odd model of Villain (Villain 1977) have finite GSE, and no 

transition at finite temperatures. However their three dimensional 

counterparts, namely the Ising AFM on the fcc lattice and the 

FFSI in 3-d, have, respectively, ground state degeneracies of the 

order of 2N*”* (Danielian 1961) and 2N*/* (Chui et al. 1982) and 
thus zero GSE per spin. These models are thought to have, 

respectively, first order (Phani et al., 1979) and second order 

(Chui et al. 1982) transitions to an ordered low temperature 

phase (*). 

Although it is tempting to already try and draw conclusions 

with respect to the low temperature behaviour (existence or 

nonexistence of a phase transition, nature of the low temperature 

phase, etc.) from the existence or nonexistence of a finite rest 

entropy, it has been demonstrated (Hoever et al. 198la) that 

this relationship is rather subtle. In particular, the existence of a 

finite rest entropy may or may not be accompanied by the absence 
or presence of a phase transition to an ordered phase at a finite 

temperature (see also Wolff, Hoever and Zittartz 1981). 

Hoever et al. (198la) have made the following conjecture: 

‘If all of the ground states (in the ensemble of ground states for 

the system) can be obtained one from the other by a succession 

of purely local transformations on the spins (s—>—s), then the 

global symmetry of the Hamiltonian (all s+-—s, uniformly ) 

cannot be broken, i.e., there cannot be a phase transition to a 

phase with broken symmetry’. However, as they already point out, 

() It has been claimed by Villain et al. (1980) that the AFM fcc Ising 

Model has a re-entrant paramagnetic phase at T—0O. The results of Phani 

et al. (1979) are from Monte Carlo simulations. See also Binder (1980b). 
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the converse is not true, i.e., in the case where one needs to make 

some ‘global’ transformation to go from one gound state to another 

(in the sense that you have to flip over certain sets of ‘rigid 

spins’ (André et al. 1979) simultaneously) no decisive statement 

can be made. What makes the field so challenging is that most 

systems of interest happen to fall into this category! (see Fig. 5 

J 
  

s24 

  

Fig. 5—,As may be easily checked, even the extremely simple system of a 

triangular strip as shown in the figure, with Ising spins and AFM bonds, 

has sets of ground states which may be obtained one from the other by 

purely local transformations, as well as those that differ by ‘global’ 

transformations. This system has no phase transition even at zero 

temperature (de Nunes 1983). 

and caption). Monte Carlo simulations of Ising systems on square 

or simple cubic lattices with a random distribution of + bonds 

have revealed precisely this kind of picture, with large (typically 

proportional to N) energy barriers between degenerate ground 

states or low-lying states (Malaspinas, Kirkpatrick 1977). 

André et al. (1979) moreover hypothesize that if a phase 

transition exists in a frustrated system, it would be due to the 

internal field of the ‘rigid spins’ aligning the rest of the spins; 

thus, in a periodic frustrated system the ordered phase would 

necessarily reflect the periodicity of the ‘rigid spins’. This implies 

that if there exists a transition to an ordered phase in a periodic 

frustrated system, it cannot be to a spin glass phase. Although 

the last part of this statement is supported by studies on layered 

frustrated models (see next paragraphs) the argument is not 

convincing. A similar assumption is employed by Chui et al. (1982) 

in constructing a Landau type argument for determining the nature 

of the phase transition encountered in the FFSI model in 3-d. 

However, if exact renormalization group (RG) transformations 
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on fully frustrated hierarchical lattices are any guide at all, we 
know that the ordering in the low temperature phase may be 
incommensurate with the underlying lattice, as evidenced by the 
chaotic RG trajectories. (Mc Kay et al. 1982, Svrakié et al. 1982, 
Derrida et al. 1983, Erzan 1983). 

Derrida et al. (1978) have conjectured that for those frustrated 
models that have a transition temperature T, #0, there is a 
negative entropy associated with the formation of defects (negative 
interface entropy). The vanishing of the defect energy at T = 0 
does not signal the absence of a phase transition, but the vanishing 
of the negative interface entropy does. They have checked their 
conjecture in the case of the anisotropic odd model (where the 
AFM couplings — J’ are taken so that J’ >J, the FM couplings) 

and the anisotropic triangular AFM, where the AFM couplings in 

one direction are taken to be stronger than in the other two. 

In the latter case, T, = 0 although the GSE per spin is zero, and 

the interface energy in the direction perpendicular to the anisotropy 

direction is finite; but the interface entropy is zero. In the 

anisotropic odd model they recover the results that T,—0 as 
J’-+J; and they also show that the interface energy tends to 

zero in this limit as well. 

An Exact Criticality Condition 

Hoever et al. (1981) have treated random layered frustrated 

Ising models with translational invariance of both the horizontal 

and the vertical bonds in one direction, using transfer matrix 

methods. They have found that if the layering has a period 

of length v, with n, and n_ being the total number of ferro- 

and antiferromagnetic couplings in the vertical direction within 

each period (the horizontal bonds were chosen to be 

ferromagnetic) (‘), the transition temperature depends only on 

the absolute value of the mean coupling, or, |n, —n_|/v and is 
otherwise independent of the particular distribution of bonds 

@) We will show in Section III that the free energy depends only on 

the distribution of the plaquette frustration functions bp (Eq. 2.3). Thus 

there is no loss of generality in this coiche; bp is invariant under 

all Kx —» — Kx, 
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within each period. Their results have been extended by Kardar 

and Berker (1982) and Wolff et al. (1981) to anisotropic random 

layered systems involving a distribution of magnitudes as well as 

signs of the coupling constants. The exact criticality condition 

is given by 

y mi v 

% Kx =| & Ky| 
i=1 i=1 

where Kx is the dual (see section IV) of Kx and i is the row index. 
When the average vertical coupling within a strip is equal to zero, 

the transition temperature is depressed to zero. 

For all other values of the average vertical coupling the 

transition is either to an antiferromagnetic or ferromagnetic phase 

depending upon the ratio of the horizontal and vertical couplings. 

The important thing to note is that the transition is of the ordinary 

Ising type, the specific heat has a logarithmic singularity, except 

in the case where »v is allowed to go to infinity, in which case one 

obtains an infinitely weak singularity (Hoever and Zittartz 1981, 

Mc Coy 1977). For the model with K¥ = K; Ky = K,i=1...m, 

and Ky =—K,i=m+1,...¥,v=n-+m, Hoever and Zittartz 

(1981) find that if n=m,T,=0, the specific heat has a 

rounded maximum with respect to the temperature at some T + 0; 

and as m—o this maximum goes over to the logarithmic 

singularity of the Ising model. Their conjecture, that the rounded 

maximum signals ‘local’ ordering within the unfrustrated strips, 

effectively decoupled from each other by the frustrated layers, in 

the same spirit as the ‘cluster’ picture mentioned above, is 

remarkably born out by the behaviour of the specific heat reported 

from finite size scaling calculations made on strips of width m 

(Droz and Malaspinas 1982, Nightingale and Bléte 1980). On the 

other hand, for nm, but n/m~1, the amplitude of the 

logarithmic singularity is extremely small, and only a rounded 

maximum above T, is really visible — caution to experimentalists! — 
quite indistinguishable from the smooth specific heat curves 

obtaining for m =n, or in the limit v— o (see also Longa and 

Olés 1980). 

Besides coupling constant anisotropy, the introduction of an 

external field has been a fruitful approach to studying the effects 
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of ‘fine tuning’ (Toulouse 1980) frustration (Villain 1978, Penson 

et al. 1979). A third venue is provided by RG studies of hierarchical 

models (McKay et al. 1982, Svraki¢ et al. 1982, Erzan 1983) where 

the lattice structure, e.g. the coordination number, can be varied 

at will. However, there does not yet seem to be a universally 

applicable, quantitative measure of competition, comparable in 

elegance to the frustration function itself. 

Ground State Energy 

A way of tackling the problem of determining the ground 

state energy per spin in frustrated systems has been to define an 

average internal field (Derrida et al. 1979) equal to the difference 

between the number of satisfied and broken bonds incident on a 

spin, the average being taken over the ensemble of ground states. 

An amazing universality is displayed by this quantity, which is 

proportional to z, the coordination number of the lattice, 

for d< 4, and z’/”? for d >4 (Derrida et al. 1979, Alexander and 

Pincus 1980) for the fully frustrated lattices given in Fig. 2. 

Another universal feature of these lattices is the existence of a 

borderline dimensionality above which it is not possible to construct 

ground states such that only one bond is broken per each plaquette, 

i.e., the ‘overblocking effect’. For the generalized fcc and FFSI 

lattices this borderline dimensionality is found to be four (Derrida 
et al. 1979). 

The connection between ground state properties and the 

singularities of the free energy at T > 0 remains a subtle matter. 

Wolff et al. (1981) have shown for a random layered model, 

containing the odd model as a special case, that the critical surface 

as a function of the coupling constant anisotropy fails to reflect 

the discontinuities in the rest entropy, or the singularities 

(discontinuities in the slope) of the ground state energy surface. 

More recently, Garel and Maillard (1983) have demonstrated a 

remarkable fact: the partition function of a four parameter fully 

frustrated model (‘) (see Fig. 3g) is equivalent to the partition 

function of an anisotropic ferromagnetic model. The T = 0 point of 

(1) This does not violate gauge invariance. The reduction in the number 

of parameters is what allows the mapping to be possible. 
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the fully frustrated model maps to the critical temperature of the 

ferromagnetic model. In particular, for the odd model, the rest 

entropy is linked to the critical free energy of the ferromagnetic 

model. I am unable to comment on the implications of this fact 

at this moment. 

Correlation Functions 

Concerning the two point spin-spin correlation function of 

periodic or random layered, frustrated Ising systems, the following 

picture emerges: The triangular Ising AFM (Stephenson 1970a) 

and the FFSI in 2-d (the odd model) (Southern et al. 1980, Forgacs 

1980, Wolff and Zittartz 1982) and the ZZD model (see Fig. 3f) 

(Gabay 1980), where the coupling constants are uniform in 

magnitude and all the plaquettes are frustrated by a periodic 

arrangement of + bonds, and where T, = 0, have the common 

feature that at T = 0 the correlations decay with a power law, 

r(r)~r-? 

(quasi-LRO, Halperin 1981). The value of 7 is universally equal 

to 1/2. This behaviour is also found for the layered model with 

Ky > 0, KY > |K¥| and K¥ = —K¥,, (i is the row index). Note 
that here, too, T, = 0 (Wolff and Zittartz 1982). These authors 

have also found that for T> T,, 

T(r) ~exp(—r/é) 

with é~' ~ exp (— 2K* ). However, if | K*| > KY, although T, is 
still zero, there is perfect FM or AFM order within the rows, 

depending on the sign of Kx, and, at T = 0, P(r) within the rows 

tends to a constant as r— o (Wolff and Zittartz 1982). 

In all the cases that a nonzero transition temperature is 

allowed (and where the periodicity of the random layers stays 

finite) one has the usual Ising behaviour, i.e., 

T(r) ~r-? exp(—é/r) T>T, } ¢-(T-T,;)- 

r(r)~r-? 7 = 1/4 T= T, 

T(r) —- const T= 1. 
r>o 
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This is the case for the anisotropic triangular AFM (Stephenson 
1970b) and those layered models where 3,K*-=+ 0 (Wolff and 
Zittartz 1982). The anisotropic triangular AFM has the further 
peculiarity that for some T,, T,< T< Ty, short range order of 
the above type obtains; however for T > T,, the exponential decay 

of the correlation functions is modulated in the direction of the 
anisotropy axes by an oscillatory factor, with a temperature 

dependent wavelength (Stephenson 1970b). 

Another class of fully frustrated systems is afforded by the 
checkerboard lattice (Bryskin et al. 1980, André et al. 1979) and 
the ff hexagonal and Kagomé lattices (Siité 1981). For these 
‘superfrustrated’ lattices (Siit6 1981) there is no quasi-LRO even 
at T=0: the correlation length stays finite even at this 
temperature. Unfortunately, so far one cannot give a rule by 
which one may a priori decide if a lattice is superfrustrated or not. 
Bryskin et al. (1980) have given explicit expressions for the free 
energy, from which the zeroes of the partition function in the 
complex temperature plane may be calculated, for a partially 
frustrated lattice with a nonzero transition temperature, the odd 

model, and the checkerboard lattice. Work is in progress at this 

point for a full characterization of these systems via the distribution 

of the zeroes of their partition functions. 

The effect of frustrations on the correlation functions of 

systems with a quenched random distribution of frustrations has 

been studied by various authors. Fradkin et al. (1978) have made 

a high temperature study of pair correlations and shown that the 

correlation functions decrease in the presence of frustrations (*). 

Miyashita (1983) has considered the behaviour of correlations on 

frustrated lattices in 2-d, in the whole temperature range, 

depending on the relative positions of frustrated plaquettes with 

respect to the correlated spins. The results are extremely intriguing 

in that they reveal a non-monotonic suppression of correlations 

for certain configurations. This non-monotonicity of near-neighbour 
spin correlations had shown up in Migdal-Kadanoff type RG 

calculations on ff hierarchical lattices (Derrida et al. 1983, Erzan 

1983) and was the origin of the novel RG behaviour (stable and 

unstable periodic RG trajectories) found in those models. 

() See Section IV for further details. 
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Dilute Frustrated Systems 

Another approach to the spin glass problem has been to 

investigate the effect of dilution on fully frustrated systems, or, 

alternatively, the effect of low concentrations of frustration on the 

properties of unfrustrated systems. 

De Seze (1977) has given a phenomenological argument for 

the existence of a spin glass phase with a concentration dependent 

critical temperature in bipartite fully frustrated lattices (T, > 0 

for x <1). Ono (1980) finds an ordered phase in a bond diluted 

AFM triangular ‘cactus tree’ in an intermediate concentration 

range. André et al. (1979) give an argument that for the diluted 

odd model the critical temperature remains at T= 0, and that 

the correlations will have the same power law decay as in the 

pure lattice. 

Grest and Gabl (1979) have performed Monte Carlo computa- 

tions on the triangular and fcc AFM lattices, and have found 

spin glass-like ‘freezing’ behaviour for concentrations above the 

percolation threshold. In the fcc lattice the transition to the AFM 

phase is first changed from first to second order, and then 

for .8 < x < .4 a phase appears with no LRO but strong hysteresis 

effects (The Edwards-Anderson order parameter has been cal- 

culated and shows slow decay). The prevailing wisdom in spin glass 

literature rules out a stable SG phase in 2-d, but not in 3-d (see, 

for example, Sherrington 1983). 

De Nunes (1983) has performed a real space RG calculation 

on an AFM ff hierarchical lattice with bond dilution. At lower 

effective dimensionalities (or coordination number, z), the T = 0 

critical point is destroyed by dilution, whereas for higher z one 

has a transition to an antiferromagnetically ordered phase. For 
these higher effective dimensionalities, at fixed concentration x, 

the recursion relations exhibit stable periods (rather than fixed 
points) in the low temperature region. The transition line termi- 

nates at some x bigger than the percolation threshold, at a critical 

point of infinite order. 

The introduction of AFM bonds into an FM square lattice 

has been found (Vannimenus and Toulouse 1977) to destroy 

the FM transition at a concentration c of AFM bonds equal 

to .09. De Almeida et al. (1981) report a value of c = .166 
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obtained via an effective field approach. It is believed that the 
frustrated plaquettes percolate at this concentration (or an infinite 
string of frustrated plaquettes first appears). Miyashita and 
Suzuki (1981) have found a cluster (of rigid spins effectively 
decoupled from the rest by frustrated bonds) boundary percolation 
threshold at c=.15. For a triangular lattice the frustrated 
plaquette percolation threshold cy = .10—.15 (Sadiq et al. 1981). 
It is interesting to note that the concentration of frustrated 
plaquettes, c, , shows a saturation effect, and stays nearly constant 
at about 1/2, while c is varied above c;, up to the percolation 
threshold for the FM bonds (1/2 for the square lattice; the 
situation is of course symmetric around this concentration). The 
ground state energy per spin is therefore rather insensitive to the 

variation of c above cf (Kirkpatrick 1977). 
Schuster (1979), by implementing methods to be outlined in 

section III, has shown that there is a further transition in the 
frustration network as a function of c. Namely, an infinite ladder 
of AFM bonds first appears at c = .29, leading to the possibility of 
isolated frustrations. His results have been corroborated by Kolan 
and Palmer (1980) using Monte Carlo methods. It still remains to be 
ascertained whether this transition in the frustration network is 

accompanied by a corresponding ‘transition’ in the behaviour of the 

spin system at T>0O. For a topological phase transition in a 

frustrated x - y model, see Dzyaloshinskii and Obukov (1982). 

IlII— GAUGE VARIABLES, GAUGE INVARIANCE AND THE 

FRUSTRATION FUNCTION 

In the preceding section we have tried to give an overview 
of the phenomenology of frustrated systems. The methods 
employed to derive the results reported up to here were 
generalizations of methods applicable to conventional (unfrustra- 

ted) spin systems; in particular, transfer matrix methods, high 

temperature expansions (this last, however, making use of the 

gauge invariance and duality transformation concepts to be 

presented henceforth (Fradkin et al. 1978)), renormalization group 

analysis, and of course, Monte Carlo simulations. In this section we 

will introduce gauge variables as an extension of systems with 

spin degrees of freedom (Kadanoff 1976, Fradkin et al. 1978) and 
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the natural language in which to discuss ‘bond randomness’. This 

allows us to extract the thermodynamically relevant features of 

an ensemble of frustrated systems, as well as allowing us to 

treat annealed and quenched bond randomness as part of one 

continuous picture. 

Gauge Variables and Symmetries 

We shall define gauge variables to be those variables that 

depend on two nearest neighbour site (vertex) indices on the 

lattice. As opposed to the spin variables which are located at the 

vertices of the lattice and depend on only one site index, the 

gauge variables can be thought of as variables living on the edges 

connecting the nearest neighbor sites. They are, then, a type of 

random variable custom made for representing a system of random 

interactions between nearest neighbor sites on a lattice. (Actually, 

the generalization to long range interactions as, for example, in 

the case of the infinite range spin glass, has also been made, 

Nishimori and Stephen 1983) Clearly, we can label the gauge 

variables y, either y,; Where i and j are site indices, or yi,» 
where i indicates a site and » a particular lattice direction. 

Let us recall that the Hamiltonian in (2.1) 

=— 3 Ji f£(s;, 8;) 
(ij) 

is usually invariant under a set of symmetry operations 

1S f{ Se. (3.1) 

The simplest example is the Ising model, where 

i= +1, f(s,, 5;) =s,s;, and the only nontrivial such 
symmetry operation consists of 

{sj fr>{-sif- (3.2) 

This is a global symmetry: the operation is applied to all the 

spins s,; in the system at once. We can easily construct other 

examples. The q-state Potts model has 

E( 8:5 8) = by g (3.3) 
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where 6, , is the Kroenecker delta and spins s; can take on q 

different values. The relevant set of symmetry operations is 

obviously the group of permutations of q objects. We could, in 

fact, write the Potts spins (including the Ising model as the special 

case with q = 2) as q-dimensional vectors, 

ofr) (8,08) « Set) eS, (Cr) ) (3.4) 

with sx(r) =0,1 and * S,(r) = 1. We can then express the 

permutation transformations as 

(1) = Mh §,(r) BS) 

where the matrix M is a realization of the group of permutations 

of q objects, and a labels a particular element of this group. 

Following Kadanoff (1976), one can generalize this formulation to 

any set of spins s(r) with some number (not necessarily discrete) 

of internal states, and the group of transformations between these 

states. Let us choose M to be a unitary representation. Then the 

simplest scalar that can be formed from these spins s(r), under 

the group of transformations M, is, in matrix notation, 

f(s(r), s(r’)) =si(r) (M*)™ M* s(r’) (3.6) 

where r, r’ label lattice sites. Note that the particular element of 

the group, a, employed, is taken to be independent of r, and 

the resulting Hamiltonian is invariant under this global transfor- 

mation (3.5). 

Now let us consider a more general form of interactions 

between generalized spins residing at the lattice sites r, r’, which 

may depend not only on the lattice sites r, r’, but also on the 

internal states of the spins at those sites, and must have the 

matrix form %;(r, r) where k,1 label the internal states of 
the spins at r, r’. In matrix notation, 

H=-J 2 et (r) v(t, ") s(r7) (3.7) 
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The simplest example is again the Ising model, where 

wo (3) (8) 
and (3.8) 

vert (48) oF (28) 
the first giving rise to FM, the second to AFM interactions. If the 

spins in (3.7) are Potts spins as defined in eq. (3.4), and the 

v(r, r) then elements of the group of permutations of q objects 

(traceless except for the identity element), the Hamiltonian (3.7) 

represents a random vector Potts model (*). (Nishimori and 

Stephen 1983. These authors use a one dimensional representation 

of the symmetry group). 

These (matrix) variables y(r, r’) which can be thought of 

as residing on the bonds connecting the lattice sites r, r’, we shall 

call gauge variables. They, in turn, transform under gauge 

transformations, which one can write 

Ynn (fF, 7) = % Mie via Cr, ) (Mir? (3.9) 

Note that here one has the extra freedom of allowing the parti- 

cular element a of the symmetry group to depend on r, r’. One may 

(*). In Nishimori and Stephen’s (1983) notation, the Hamiltonian is 

given by 

H=-J y 8 (o,—o,+4%)=- % % Jy exp(2Ti(o,—o,)P/a) 
Gj) (ij) p 

where Ji5= exp(2 vir; /q) » Ti; =0, 1,...q-—1 may have any desired 

distribution. Clearly, i= 0 reduces to the FM Potts model. Ti; 0 constrains 

spins on adjacent sites i,j to be in states differing by V5 The AFM Potts 

model is equivalent to taking 

H=¥ ¥ 3 Jj, exp(27i(o,—o,)P/q) 
(ij) r#0 p 

(This model also correctly reduces to the Ising model for q= 2). The cyclic 

matrices y in the matrix representation above are given explicitly by 

Vey (ii ) = Sitter? lit rj! + Tj - 45 rn;=¢ pee GQ = 1 K, LHL, oe. 

ij 
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construct scalars from these gauge variables, that will be invariant 

under the (local) gauge transformation (3.9). The simplest such 

scalar is the trace of products of u(r, r’), such that r., r,... 

form a closed loop, and where we have again taken M to be 

unitary (Kadanoff 1976); see Fig. 6. 

f.(y) = Tr vrs te) Cte, ts) 0 Crm» 1) 
(3.10) 

= Tr MO) y Cri, te) (MOD Me) Cry tr) (Me )— 

  

  

a plaquette 

Li 
    

  

        

  

Fig. 6—T labels the path formed by the bonds (r,, r,), (13, Y3)--- 

(r,, T,). See Eq. (3.10). 

The smallest such loop f that may be formed on any given 

lattice is what is called a plaquette. Therefore, the simplest 

gauge-invariant objects we can construct out of the gauge 

variables, live on plaquettes (as opposed to the functions (3.6) 

formed from spin variables, which are invariant under global 

transformations, and live on bonds). 

In the case of the Potts model (‘) (with q > 1) let us define 

$, =CTr Ty) /Ca—1) , (3.11) 
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where II ¥ denotes the (matrix) product of the w variables around 
Pp 

the plaquette p. The function ¢, may be taken as the frustration 

function for the (vector) Potts model (*) with 

-~1/(q-1)_ plaquette frustrated 

p= 1 ” unfrustrated. 

Obviously, ¢, is invariant under the transformation (3.9). 
For q = 2, ¢$, reduces to the plaquette frustration function as 
defined by Toulouse (1977) using a one dimensional representation 

of the symmetry group Z, of the Ising model (*). 

Symmetries of the Partition Function 

After Kadanoff (1976) we shall call those representations of 

the symmetry groups of the spin and gauge variables simple, 

where one may write 

Tr f(s) => f(M"%s) 

and * * (3.12) 

Tr f(y) = f(M*y) 

g
M
 

where f, f are some function of the variables. Thus, if we have 

chosen simple representations for our spin and gauge variables, 

(¢) Clearly this choice is not unique. 

(2) In taking such a one dimensional representation of the symmetry 

group Z,, the form of Eq. (3.9) should be kept in mind, since it implies 

a constraint on the transformations that may be performed on a string of 

gauge variables forming a loop. E.g., in Fig. la, b, ‘flipping’ all the bonds 

simultaneously (multiplying each bond by -—1) is not an allowed gauge 

transformation, as will be immediately seen if one takes care to write 

Uij=M(i) Jij M(j)-? 

where i, j=1, 2, 3 are the vertices of the triangle, M(i)==+1, 

M(i)-1=M (i). However, Fig. 1 a and b are related by a gauge trans- 

formation, where M(1)=M(2)=-1, M(3)=1. Notice that the 

frustration function for this loop is again invariant under this transformation. 

Portgal. Phys. — Vol. 15, fasc. 1-2, pp. 9-54, 1984 31



  

A. ERZAN — Frustrated spin systems 

we may write the partition function of a quenched random bond 

system as 

Z= &% exp[K & s(r)i(M™)~*y(r,r°) M* s(r’) ] 
q4a(r)} (x, ¥’) (3.13) 

where K= 8 J. 
Now notice that Z is invariant under the set of gauge trans- 

formations (eq. 3.9) 

y(r,°) > M™ w(r, rv) CM), 

Thus we have our first result that the partition functions of 

two spin systems on lattices whose bond configurations may be 

obtained one from the other by a set of transformations (3.9) for 

some {a(r) }, are equal (Fradkin et al. 1978). 

A further symmetry of the partition function and, furthermore, 

of the (field free) Hamiltonian, is given by the following local 

transformation that affects not only the gauge variables impinging 

upon a particular site r, but also the spin variable at that site 

v(r, %)> M*® g(r, &”) I 
(3.13a) 

s(r)—> s(r) [M*%®]™ 

where I is the identity matrix. (In the more familiar language of 

the Ising model, this would, for example, correspond to reversing 

the sign of all the bonds impinging on r, and redefining the spin 

at r such that s——s). This mixed transformation is not needed 

for the development in this section, but in Section IV, when 

dealing with correlation functions, we will see that the correlation 

functions <s(r)s(r) > are not invariant under a mixed gauge 

transformation performed at the site r or r’, and therefore we 

have to consider slightly more generalized objects. 
It follows immediately from this invariance, that the partition 

function of a quenched random bond system must depend only 

on those sets of quantities (constructed from gauge variables) 

that are scalars under such transformations, and the partition 

function may be labeled by this set of quantities. We have already 

constructed such a quantity in Eqs. (3.10, 3.11) and for q-state 

Potts models we have shown that it is the direct generalization 
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of the frustration function of Toulouse for the Ising case. Thus, 

for a quenched random system we way write 

Z=Z4 op} (3.14) 

where p runs over all the plaquettes of the lattice. This is a 

rather remarkable fact. In particular, it leads, e.g. on the square 

lattice, to the simplification, that one may treat, instead of a 

system with a completely random distribution (magnitudes being 

held fixed), one where, say, the horizontal bonds are taken to be 

all of the same sign, and the vertical bonds are chosen randomly, 

since any distribution of ¢, may be realized in this way (Hoever 

et al. 1981a). 

Another immediate consequence of Eq. (3.13) is that Z can 

be written 

Z= 3 exp[K 3 si(MeO)—¥ (4) MAO oo] B18) 

where gs, is an arbitrarily chosen state of the variables s(r), 

which leads to (via Eq. 3.12) 

Z4 gy b= Oy % exPLK 3 99 ¥(ts H) 80] (3.16) 
v r,r 

where Qy is the ‘volume’ of the group of transformations M at 

each site (e.g. for the Z, symmetric Ising model, this is just 2 ), 

and where the prime on the sum indicates that the sum over the 

v is restricted to those configurations of y that give the same 

distribution of plaquette functions ¢,. Without this constraint, 
we clearly have the partition function of the annealed system. 

We may express this constraint by means of delta functions, viz., 

Z{ dps =O > 1 S[¢,—CTr W y—1)/(q-1)] 
{yt p Pp 

-exp[K Yo (r, *)]} (3.17) 

where too = s! y¥ s,. If we can construct some be such that 

fp>0. ¢=(Tr UD y—-1)/(q-1) 
° (3.18) 

f, <0 op CTE H ysl p/Ca-1) 
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the y being the integration variables and 4, now a fixed set of 
numbers for the plaquettes p, then we could write (Fradkin et al. 

1978) 

Z4oop = Om , lim & exp[K & Yo(r,r) + Ky ¥ fp] (3-19) 
>” {vt rr p 

For the Potts model, with definition (3.11), we may take 

f=, (Tr 1 y—1)/(q-1) (3.20) 

Notice that this has the interesting (and foreseeable) conse- 

quence that as q— o, those configurations which are frustrated 

contribute to Z with a vanishing weight compared to those that 

are not, ie., in this limit, with K,— «, the model becomes 

completely unfrustrated. 

Some comments as to the consequences of Eq (3.19) are in 

order. For instance, Toulouse and Vannimenus (1980) have pro- 

posed a ‘restricted annealing scheme’ where, instead of inserting 
the delta-functions in Eq. (3.17), one takes 

Z=OQy & exp[K & Yoo + Ky & by | (3.21) 
{yt ne P 

with the constraint that 

oInZ/dK,= <3 ¢,>=0 (3.22) 
p 

(K, = 0 is, of course, the annealed model). In the Ising case, 

which they treat, this corresponds to a constrained — annealed 

system with an equal number of frustrated and unfrustrated 

plaquettes. Since this is also expected to be true of the quenched 

model with an equal number of + bonds, on the average, this 

provides a first order approximation to the properties of the 

quenched system. With our definition of the frustration function 

for the Potts model, this same approximation holds true, for a 

distribution of couplings (in the one dimensional representation) 

given by 

Jip =I with probability p 

Jij=Jexp(27ir/q) ” ° (1-p) /(q-1) 
(r=1, 2,..., q-1) (3.23) 
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The solution of Eq. (3.22) in the space of K, K, (a solution 

exists only for K, <0) defines a subset, then, of models with 

spin and gauge coupling terms, which approximate the quenched 

random frustrated spin models in some sense. Note that the limit 

K, — © gives the pure Potts partition function. The limit K, > — 

gives the fully frustrated system. The line (3.22) interpolates 

between the annealed and the fully frustrated cases (Toulouse and 

Vannimenus 1980, Toulouse 1980). It would be interesting to work 

out how this line actually behaves for different models in d 

dimensions. Toulouse and Vannimenus (1980) ask the question 

whether it intersects any phase transition lines in the K, -K, 

space. This would be an approximation to a SG transition. One 

would also like to know if there is another transition on the 

K, > — co line and whether the < %, $, > = 0 line comes close to 

this in some way, as, say, the dimensionality is raised. Do the 

two transitions (if there are two) merge? This would be a step in 

the direction of the conjecture of Alexander and Pincus (1980) 

that the SG transition might become ‘like’ a transition in ff 

systems at high enough dimensionality. 

Quenched Averages 

Clearly, now, the task of taking ‘quenched averages’, or 

averaging the observables over all possible realizations of the 

(bond) randomness is simplified to a great extent, since one does 

not have to take into account each such possible realization but 

only those that differ from each other in a gauge invariant way, 

namely, those that give rise to distinct distributions of the 

generalized frustration function ¢,. These configurations will 

then have to be weighted by the probability of occurence of { ¢, | 

namely by P{¢,}, given a certain distribution P{ yf}. Let us 

write this (Fradkin et al. 1978, Schuster 1979) 

<Q>= 2 P{ by} QM spt (3.24) 
‘got 

where Q is any gauge independent quantity, and <> indicates 

a quenched average. Now one has to determine P{¢,}. Let us 
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assume that each bond (gauge) variable is distributed independently 
with a probability p, , (¥). Then, 

Plopp= ¥ Pid ft/S Pivt 
{yt {ut 

= > II Py w(¥)/% ae Py w (Cy) 

{yt Oe) {yt Gor) y 

=  exp[> Inp, ~(¥)]/% exp[> Inp, »(v)] 
it ,¥’) {yt le 

where the prime indicates that the sum includes only those 
configurations of y that give rise to { ¢, +. Let us again consider 

f, = So v(r, r) So 

Notice that if we have a distribution for the y» such that 
P,,» (y¢) is independent of r, r’, and for example, 

~ x f,=1 

we may write, 

p(f,) =p? exp[K, (f,—1/2) ] (3.26) 

where, 

p=x(l—x), K,=—In[x/(1-x)] (3.27) 

with the result that 

P{ tt = 3 exp [K, a foray 21 y 3 oxi f(r) ] 

Y : (3.28) 

Factors of pexp(—K,) have cancelled from the numerator 

and denominator: One immediately sees that P{ ¢, } is nothing 

but the ratio of the partition functions of the original spin system 

in the fixed gauge with all the s(r) = s, (see Eq. 3.16), i.e., 

Pater = 24 dginm, 1 a Ae te (3.29) 
p 
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with the effective coupling constant (temperature) given by 

Eq. (3.27) (Fradkin et al. 1978, Schuster 1979). 

Nishimori (1981) has noticed that this form of P { ¢, } together 
with Eq. (3.24) allows one to rigorously calculate the internal 

energy, and obtain bounds on the specific heat and correlation 

functions, on a subspace of the phase diagram given by K; = K. 

This leads to constraints on the form of the PM-SG-FM phase 

boundaries. (Nishimori 1981, Nishimori and Stephen 1983). 

To calculate P{ 4, { is not a trivial matter. In the next 

section, we will see that if { 4, ; has n frustrations, this task is 
equivalent to calculating an n-point correlation function in the 

system dual to the original system. This is certainly no great 

simplification! However, there are certain results that are 

accessible, as we shall see. 

IV — DUALITY TRANSFORMATIONS 

Duality is essentially a geometrical concept. Since we are 

dealing with statistical mechanical models on lattices, it is useful 

to introduce the notion of a simplex as an s dimensional element 

of the lattice in d dimensions. Thus, a point (vertex) has simplex 

number 0, a bond (edge) has simplex number 1, a plaquette 2, and 

an elementary volume, simplex number 3, etc. The dual to any 

lattice can be constructed by ‘intersecting’ each element of simplex 

number s of the original lattice by a simplex of dimensionality 

s = d-—s. (It is easy to convince oneself, that for a hypercubic 

lattice, where the dual can be obtained simply by displacing the 

lattice by 1/2 the lattice spacing in the (111...) direction, the 

above scheme holds. Thus, e.g., in 3d, each vertex (s = 0) of 

the original lattice is surrounded by a cube (s = 3), each bond 

(s = 1) is intersected by a plaquette (s — 2) and each plaquette 

(s = 2) is in turn intersected by a bond of the dual lattice (s = 1 ) 

etc.) (Savit 1980). 

Statistical mechanical models may be characterized by a 

simplex number s (Savit 1980, Toulouse 1980). The terms appearing 

in the Hamiltonian —invariants constructed from objects (spins, 
gauge variables etc.) living on simplices of dimension s— are 
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obtained by multiplying together such objects bounding a simplex 

of dimension s+ 1, on the given lattice. Thus in Eq. (3.6), 

spin-spin interactions involve a product of spins at the two ends 

of a bond, and the invariant constructed from gauge variables 

(Eq. 3.10) involves a product of gauge variables around a plaquette 

of the given lattice. 

Duality transformations are exact transformations that map 

a theory with simplex number s into one with simplex number 

s — d—s, in such a way that the partition functions of the two 

theories are simply proportional to each other, with a temperature 

dependent proportionality factor, and the temperature (coupling 

constant) of the dual theory is a monotone decreasing function of 

the first (In those theories that are self-dual — e.g. the Ising and 

Potts models on square lattices — this provides a unique way of 

determining the critical temperature). 

Duality transformations for the Ising model (Kadanoff and 

Ceva 1971, Wegner 1971), Ising model with gauge coupling term 

(Balian et al. 1975), models with Zy and U(1) symmetry (Savit 
1980) and the ordinary Potts model (Wu 1982) have already been 

extensively treated in the literature. What I propose to do here 

is to illustrate the basic ideas by deriving the duality transformation 

for the 2d Ising model with a gauge coupling term (The generali- 

zation of this to vector Potts models is given in the Appendix). 

Then I will discuss the concept of disorder variables and show 

how the partition function of a model with n frustrations (Eq. 3.29) 

is related to an n-point (disorder-disorder) correlation function in 

the dual model. I will then consider gauge invariant correlation 

functions and a few remarks about their asymptotic behaviour and 

phase transitions will follow. 

The Two-Dimensional Ising model 

Following Balian et al. (1975) let us consider the partition 

function in Eq. (3.19) with a finite gauge coupling constant K, . 

We may represent the gauge variables by A;; = + 1 in this case, 

and write, with the choice all s;—1, up to numerical factors, 

Z= x exp[K = Aj,+K, => OU Ajj] 
A. (ij) Pp Pp 

qj 

(4.1) 
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where II ,, A;; indicates a product of the gauge variables around 

the plaquette p, and &,, runs over all plaquettes. Note that we 

have set all the frustration functions ¢, = 1 for the time being, 
i.e., we are dealing with an unfrustrated system. Writing 

exp ( KA;; ) = cosh K (1+ A,, tanh K) 

(4.2) 

exp (K, If Ajj) = cosh K, (1+ II Aj; tanh K,) 
p p 

Z becomes 

Z = (cosh K)¥ (cosh K,)N = If (1+ Aj; tanh K) 
Aijt } 

ir (1+ i A,; tanh K,) (4.3) 
p p 

where N and E are the total number of sites and edges on the 

lattice, II, denotes a product over all plaquettes and H, denotes 

a product over all links (i,j). We may represent the result of 

expanding the products as a sum over graphs G on a lattice 

consisting of all distributions of plaquettes p and edges 1 on the 

lattice, 2, 

1m (1+ A,; tanh K) mn (1+ 0 A;; tanh K, ) 
1 i) Pp (4.4) 

= UU A,; tanh K fi (I, A,;) tanh K, 
GcfLlceGe per 

Now it is easy to see that as a result of the trace in Eq. (4.3), 

only those terms will survive where each plaquette edge is shared 
between two plaquettes, or coincides with a link 1, and is not 

shared by other plaquettes. This gives . 

Z = (cosh K )® (cosh K, )% 2 (tanh K)"™ (tanh K,)P = (4.5) 

where P is the total number of such plaquettes and L the total 
length of the boundary of the clusters of plaquettes, i.e., the total 
number of plaquette edges that belong to only one plaquette. Now 
we can construct /, , the dual graph to “2, and make a one to 
one correspondance with spin variables located on Ly with the 
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graphical elements of G. Thus we shall stipulate that if a 

plaquette on / belongs to G, then a spin residing at the site dual 

to this plaquette on £,, has the value sj; = —1, and if not, 

Ss = + 1. Thus we have 

P=3 (1—s;)/2 (4.6) 
1 

where i now runs over the sites of 2 p: This gives us automatically 

L= &% (1-s7s;)/2 (4.7) 
a,j) 

where the (i, j) are the adges of £,, and each of them 
intersects an edge of /. Clearly, Eq. (4.7) holds, because the 

product s; sj is positive for (i, j) crossing any link on 2 that 

is shared by two plaquettes on G, and is only negative if this link 

happens to be on the boundary of a cluster of plaquettes on G. 

Finally we have 

Z = (coshK )F (cosh K, )N 3,_{ exp[1/2IntanhK = (1—s; sz) ] 
1 Ti 

- exp[1/2 In tanhK, 3 (1—sz)]} 
i 

which we may write 

J 

48 } (iy) (4.8) 
+h X(s;-1)] 

Z = (coshK )® (coshK,)% - 3% exp[K* & (sz7s;-1) 
S~ j 

where 

K* = —1/2 In tanh K 

h =-—1/2 In tanh K, 

(4.9) 

are the dual couplings (inverse temperatures). Observe that the 

term in Eq. (4.1), of simplex number 1 has given rise to another 

such term, and the gauge coupling (s = 2) has given rise to a 

field term, with s — d—2 — 0. The transformation in 3d proceeds 

in like manner (Balian et al. 1975) where now the terms of the 

form 3; Aj; generate plaquette couplings and vice versa. 
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endpoints. It is easy to convince oneself that it is possible to 

deform this path arbitrarily, by performing a series of gauge 

transformations on the dual lattice. However, the correlation 

functions, unlike the partition function, are not invariant under 

the full mixed transformation, Eq. (3.13a). performed on the gauge 

variables impinging on i ori+r and the spins at these points. 

In the more familiar language of the Ising model, the trans- 

formation 

83; >(-1) 87 

Ati tine @(-1) AG i, i+w 

gives out a factor of (- 1) in front of Eq. (4.18) (Fradkin et al. 

1978, Savit 1980). 

Gauge Invariant Correlation Functions 

Having obtained a recipe (Eq. 3.24) for calculating quenched 

averages of gauge invariant quantities, let us proceed to construct 

the gauge invariant correlation functions for the Ising model in 

two and three dimensions. In two dimensions one has, 

n-point correlation 

  

Duality function in a sys- 

<s; 1 Ay sj> — tem with two frus- (4.23) 

Vij inasystemwith trations at the pla- 

n frustrations quettes dual to i, j. 

where I; is now a closed loop going through the points i, j 
(Fradkin et al. 1978, Savit 1980). In three dimensions, the 

correlation function 

<U, AUyA> 

where p, p’ are two different plaquettes is a gauge invariant 

quantity. But it turns out that the following object leads to more 

interesting results. For a pure gauge coupling theory, take any 

loop I and take the product of the plaquette functions lying on 
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any surface bounded by this loop. In the Ising case, with Ai, =1 

clearly only the gauge variables lying on the loop I itself survive. 

The correlation function 

Partition function of the 3d 

Ising spin system with all the 

bonds intersecting the surface 

Duality bounded by TI, reversed. (4.24) 
<uA> 

r Partition function of the unfrus- 

trated system. 

  

Fradkin et al. 1978, Savit 1980). Note that the configuration of 

bonds described in the numerator of the RHS of (4.24) corresponds, 

for a system originally without frustrations, to the creation of a 

closed loop of frustrations threaded by T. The from of Eq. (4.24) 

again allows one to calculate the excess free energy due to such 

a closed tube of frustrations, the simplest configuration of frustra- 

tions possible in 3d. In the high and low temperature limits. 

respectively, of the dual (gauge) model, one has 

a A,/K K>K, 
AF ~ (4.25) 

a L,/K K<K, 

where a;, a, are temperature dependent coefficients, An and L, 

are the minimal area enclosed by Tf and the perimeter of ©. K, 
is the critical coupling of the 3-d Ising model (Fradkin et al. 1978). 

Phase Transitions in the Frustration System 

Let us go back to the probability of finding a certain 

configuration of frustrations in an ensemble of random configura- 

tions of bonds. Consider the normalized probability (Schuster 

1979) 

Pidpt / PASS LPH Z4 byte / 24 $=] ix, (4.26) 

by Eq. (3.29). Clearly, the RHS is the same as Eq. (4.13), for 

a 2d Ising system, with K, being the dual temperature to K*. 
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path Tz7,, on the dual lattice gives rise to two frustrations 

precisely at those plaquettes dual to i andi-+r. This construction 

can be generalized to any 2n-point correlation function. Paths 

connecting these points pairwise will give rise, in the dual lattice, 

to n pairs of frustrations (Fradkin et al., Savit 1980). Thus we 

are back to the picture in the previous subsection, Eq. (4.13) and 

the following paragraph. Note, however, the added twist: the 

disorder-disorder correlation function of the Ising model in 2d is 

found to be equal to the partition of the model with frustrations 

located at the plaquettes dual to the disorder variables, normalized 

by the partition function of the unfrustrated model. One could 

equally well say that the disorder variables act as sources and 

sinks of defects within an ordered system (see Fig. 7). On the 

  

  

  

EB 
    

  

  

        
Fig. 7—A_ path (heavy line) Ti itr connects the disorder variables 

OFT? Fjyy, On the original lattice. The dual lattice (dashed lines) has the signs 

of the links dual to [ reversed (wiggly lines). The shaded plaquettes on the 

dual lattice are frustrated. 

dual system, the dual path of reversed couplings costs ground state 

energy proportional to the length of the path Tr (see Fradkin et al. 

for a detailed discussion). 
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In the 2d Potts model, a similar (though not quite identical) 

picture emerges. The relevant two point correlation function is 

(q-—1)"1-<q oer Cis: -1>=2Z"1 aa ub(G) gn(G) 

(4.20) 

where u = eX—1, G are all possible graphs in /, consisting of 

points and edges such that they contain a continuous path 

connecting the points i,itr,b ( G) and n ( G) are the number 

of edges and connected parts of G, respectively. Performing the 

duality transformation on the RHS of (4.20), one obtains 

(q—1)"* -<qd —1>=Z-1qN x (utyr@®) gad 
Def, OF Ci+r 

(4.21) 

where u = eX*—1; K*(K) being given by Eq. (10) of the 

Appendix. The graphs D on the dual lattice Ly now contain all 

possible graphs which have a seam of missing links between the 

plaquettes dual to i and i+r (the seam being dual to the path 

connecting i, i+ r in G). 

The extension of the above considerations to the 3d Ising 

model is also given in Savit (1980). One finds, upon performing a 

duality transformation on the correlation function < oj o7,, > 
that 

Partition function of the 

gauge coupling theory where 

for all the plaquettes pierced 

by a path connectingi,i+r, (4.22) 
Duality K,>—K,: 

Partition function of the frus- 

tration free gauge theory. 

  Sof Cir > 

with the disorder variables again acting as sources and sinks of 

a line of defects, this time in the dual gauge system. 

The correlation functions (4.18) and (4.22) are clearly 

independent of the position of the paths Tf apart from their 
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be in the direction 1. The coupling constants have been normalized 

by a constant factor q/(q—-1). 

Replacing an unfrustrated plaquette by a frustrated one now 

involves the replacement 

K,.> —K,/(q—1). 

at that plaquette (Eq. 3.11). Taking the limit K, — o, one sees 

that at the site dual to this plaquette 

h—-In (q—1)-iz, 

giving a factor, in the partition function, that is precisely 

exp{ [In (q—1)—i7z] 8¢_,1f=1-—4q 85.01. 
1 

At the sites dual to the unfrustrated plaquettes (K, > 0), 

lim h(K,) =0. Once more, we have 
K~+oo 

Pp 

J. Zidytew (24 b> =I tex, (4.15) 

=, lim <I (q8g_,1—-1) >xacx) exp NK, (2—q) /(q-1) 
D = i 

1 

where the product runs over the sites dual to the frustrated 

plaquettes and n is the number of frustrations. Note that the 

RHS of Eq. (4.15) is in the usual form of an n-point correlation 

fuction for the Potts model, in the absence of a field, at the uniform 

coupling given by K*(K). 

Disorder Variables 

Let us take a step back and consider how the dual variables 

are related to the original ones. To do this, it is instructive to go 

back to Eq. (4.1) and rewrite it in terms of spin variables. Let us 

set the plaquette coupling to zero. Then, from Eqs. (4.1) and (4.8), 

Z= x exp[K & s, s;] 
18;} (ij) 

= 2N-1 (coshK)= % exp[K* & (0707-1) ] (4.16) 
oj Vi 
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where we have denoted the dual spin variables by o;. Not that 
there is no one to one correspondance between the configurations 

of the s and the o (Savit 1980). However, the relationship (4.9) 

maps the high temperature region of one model into the low 

temperature region of its dual. If there is a phase transition to 

an ordered phase, the critical temperature for this self dual model 

is uniquely given by 

K, = —1/2 In tanh K, (4.17) 

Moreover, for K>K, (K*<K,) the order parameter 

<s>=0 (<o>=0) and vice versa. Thus in the temperature 

region that s is disordered, o is ordered, and vice- versa. With 

K* as a function of K (Eq. 4.9) we can call <o> sx) a disorder 

parameter. (Kadanoff and Ceva 1971, Fradkin et al. 1978, Savit 

1980). The usefulness of this term will be more apparent when 

we consider the disorder-disorder correlation function, which is 

nothing but the correlation function of the dual variables at an 

inverse temperature K*(K). 

<oj oj, > = & exp[K* & (oz oj —1)] Mog oj / Z(K*) 
7 ij Pi itr 

(4.18) 

where Tz7,, is any path connecting the points i, i+r and 

(k, 1) are links that lie on lzq4r- (This particular cancellation, 

due to the fact that (oz )? = 1 is of course peculiar to the Ising 

model.) Now we can again use the identity (4.12): notice that 

replacing K* by K*—iz/2 in Eq. (4.16) for those links lying 

on Tz 74;, Will give precisely the numerator in Eq. (4.18). Now 

making the duality transformation on the RHS of Eq. (4.18) we 

find (with the cancellation in the numerator and denominator of 

spin independent terms) 

<i tine — % empl Ki; 8; 8;] / Z(K(K*)) = (4.19) 

1 

where K;; = K(K*) on all links except those dual to the path 

Tzi4r Where K;;= —K(K*) (Kadanoff and Ceva 1971, Savit 

1980). The situation is illustrated in Fig. 7. Observe that the 

insertion of negative couplings on those bonds intersecting the 
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The above calculation can be generalized, among, to Zy 

models (Savit 1980; here they are called vector Potts models) 

where the Hamiltonian has the form 

H, = % cos 27p (s,;—s;+ 14;) /N (4.10) 
Pa 

where the s, are now angle variables, taking on values 27q/N, 
q =0,...N—1; and to models with continuous symmetry, e.g., 

the x-y model (Savit 1980). However, the Zy models are not 
self-dual, although the dual model also has Zy symmetry (Savit 
1980). Note, however, that our vector Potts model can be written 

as a sum of such models, in fact 

N-1 

A vector Potts H, 
l
M
 

p=0 

and it is also self-dual. The derivation of the duality relation 

proceeds very much like the standard Potts model (Wu 1982). 

I give a derivation of the duality relation in the gauge represen- 

tation of the partition function, in the Appendix. Note that duality 

is a local transformation, so that non-uniform interactions, as 

in (4.10) can be easily accomodated. 

Partition function of system with frustrations 

Now let us return to Eq. (4.1). Recall from Eq. (3.19) that we 

could represent the partition function of a pure spin system with 

quenched — in frustrations by inserting in the gauge coupling term 

in Eq. (4.1) a set of numbers ¢, , such that ¢, > 0 if the plaquette 

is unfrustrated and $, <0 if it is frustrated, and then taking 

the limit K,-—> «. In the present case, this would amount to 

nothing more than replacing K, by — K, at those plaquettes where 

there is a frustration before taking the limit K,— 0. The effect 
this has on the dual couplings (Eq. 4.9) is that the field at the sites 

dual to those plaquettes would be replaced by 

hoh—i7r/2 (4.11) 

Inserting this in Eq. (4.8), and using the identity 

exp[ixr(l—s)/2]=s (4.12) 
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for s = +1 we see that (for finite K, ) 

Z4 bp t/Z4 dp=l t= <U Si > Kn (4.13) 

where the i’ are sites dual to the frustrated plaquettes (Kadanoff 

and Ceva 1971, Fradkin et al. 1978). (Note that if we had factored 

out the constant terms from Eq. (4.8) we would have gotten 

exp(—izs/2) =~—is giving out a factor of (—i)",n = number 

of frustrations, in front of the correlation function in Eq. 4.13)). 

In order to quench the frustrations, we can now take K,—> « 

(h—0)! Thus the partition function of an Ising model with 

n frustrations, normalized by the unfrustrated partition function, 

is equal to an n-point correlation function of the dual system 

(Fradkin et al. 1978). 

Expression (4.13) also gives an immediate way of writing 

down the difference in free energies between a system with two 

frustrations and an unfrustrated system. Obviously 

—BAF=InZj 4, }|—InZq{ ¢,=1} 

=In< . Si > xs, mh +0 Gs) 

and this gives us a way of defining an effective interaction between 

frustrations (Fradkin et al. 1978, Savit 1980) with the excess free 

energy due to two frustrations in an unfrustrated background, as 

a function of r, the seperation of the frustrations, going 

asymptotically as r (diverging) for K* <K,, and decaying 
exponentially with r for K* >K,. 

The generalization to the Potts case is straightforward. One 

obtains the duality relations (see Appendix) 

K* = —In [(eK—1) /(eK + q—1)] 

h =—In [(eXP—1)/(eKP+q—1)] 

where h is a field acting on the sites i of the dual lattice, via 

a coupling of the form h Sori, Here the Potts spins are 

represented via the scalar variables o- , which take on values 

between 1 and q, and the field has been chosen (arbitrarily) to 
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ABSTRACT — The LX-Ray spectrum of argon, kripton and xenon is 

interpreted in terms of the initial distribution of single and multiple vacancies. 

The relative intensity values of the diagram lines (I 4) , hidden satellites (1) 

and visible satellites (1, ) is calculated. 

The LX - Ray satellites are due to the following processes in 

multihole configurations: 

1. Satellites originated by. LM and LN double holes, created 

by Coster-Kronig (C. K.) L;->L.,. and L,—L, transitions or 

due to shake-off (s.o.) M,N following the L; (i= 1,2,3) 
ionization. The satellites due to double ionized states can be 

divided in several classes: LN—-MN; LN>NN; LM—>MM; 

LM > MN. 
The LN— MN and LN => NN satellites are not separated from 

the parent lines (hidden satellites). 

2. Satellites due to shake-off and Coster-Kronig transitions 

which produce states L,:MM, L,MN and L,NN; the last one 

leads to hidden satellites. 

We can generalize the following conclusions: satellites which 

arise from LM and LMxX states are separated from the parent 

lines; satellites due to LN or LNN states coincide with parent 

lines. 

(*) This work has been supported by I.N.I.C. (Portugal). 
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The number of diagram photons from single-hole states in 
the L; subshells is given by 

R R A . 
F,(L,) =n, (L,) » PL / (Pi + Px) (i= 1, 2,3) (1) 

For a L;— X transition the number of diagram photons is 

R R . 
Fi (L,) Plax / PL, (i= 1,2,3) (2) 

We denote by n,(L,) the vacancies in the L; level following 
the initial ionization and the rearrangement by Coster-Kronig 

A 
transitions and shake-off processes; P;, and P; correspond 

respectively to the radiative and Auger probabilities in atoms 

single ionized in the L, level. 

The relations (1) and (2) are valid for double and triple ionized 

states; however the parameters involved are respectively nj, , 
i 

yk yA wv’ 
R 

ly Ey PL, XY and ny» Pr. , Fi, , PL, YUXYz : 

In the present work we assume P = P’ = P”. The intensity 

ratios of visible satellites to diagram lines I,/I, and hidden 

satellites to diagram lines I, /I, are respectively 

I,/1qg = [nj( LM) + nf (LMM) + n/ (L;MN)]/n, (L,) 

and . 

I,/Tg = [nj (LN) + n? (L,NN) ]/n, (1; ) 

The triple ionizations are due to shake-off and Coster-Kronig 

processes or double Coster-Kronig transitions; obviously L,XY = 0. 

These ratios for the elements argon, kripton and xenon have 

been calculated in the present work; the values for L,, L, and L; 

levels are displayed in tables 1, 2 and 3. 

TABLE 1— Ratios of satellite to diagram lines (L, level). 

  

Z i (s.0.) / 1, 1 (.0.) / 1, 

  

18 0 0.167 

36 0.161 0.058 

54 0.214 0.007 
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NOTE ADDED IN PROOF: The representation chosen for the 

frustration function of the q-state vector Potts model in this 

paper leads to an asymmetry in the plaquette couplings (viz. 

Eqs. (3.19, 3.20), and therefore to vanishing weights for the 

frustrated configurations for q++2. This may be remedied by 

choosing a slightly different representation. Details are given in 

a forthcoming publication. 
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where the graphs 

G consist of bonds and lattice points on the lattice J, 

G, consist of plaquettes on 2. 

Performing the sums over the spin and gauge variables, yields, 

after a bit of work, 

exp (NK, /q) »Z4 ¢)=1 tx = 
(6) 

E+N b(G) 

q oder (U/V (v/q) 
w(G) gh (GG) 

where E and N are the number of edges and vertices in 2, b(G) 

is the number of bonds in G, p(G,) is the total number of 

plaquettes in G,, and c, (G, G, ) is the number closed circuits 

in G that are completely filled by clusters of plaquettes in Gas 

Now consider the (unfrustrated) random vector Potts model 

in the presence of a field. The partition function is 

st j 

(ij) i 

Z (K*,h) = i exp [K* > < vij Sj ths a s,] (7) 
s ~ 

where s, has been chosen in the 1 (Potts) direction. (The 

interaction hs;t s, may be written h 8g7,1in terms of the scalar 

variables o; ) . The Whitney polynomial representation is 

t t 
Zz K*,h = = II * §- wrx is Il 

eS HE OEE aeg "TPT ET ee, ORS (8) 

v 
-
 

where u* = eX*—1, w = eh—1, and the graphs 

G consist of vertices (points) and bonds on the dual lattice 2 

G,, consist only of points. 

Performing the summation over the spin variables gives, 

b(G) (G.) (GG ) 
Z(K*,h) = _% (ut) wk qk 

GG, 
(9) 
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where b has the same meaning as before, p(G,) is the total 

number of points in G, , and m(G, G,,) is the number of connected 

graphs in G that do not contain any points of G, . 
Define, as usual, the dual of the graph G (on J/ ) to be the 

graph obtained on / by placing bonds (rotated by 90°) on all 

links on £2 not occupied by bonds in G. Define the dual of G, to 
be the graph obtained by placing points on all plaquettes in / not 

occupied by plaquettes in G,. Clearly, the graphs generated are 

of the type G and G,. Moreover, observe that 

b(G) =E—b(G) 

p(G,) =N—p(G,) 

c,(G,G,) = m(G, Gy) 

if G is taken to be the dual of G and G, the dual of G,. 
Re-expressing Eq. (6) in terms of the sums over G and G,, we 
have 

NK ee 7146 =1h_% =u WZ (K*,h) 
p 

provided that 

(u*)~* =u/q 

(w)"'=v/q 
yielding the duality relations 

K* =—In[(eX-1)/(e® + q—1)] 10 
h =—In[(e ?—1)/(e?+q—1)]. a) 
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Then, for only two frustrations in { ¢, |, this probability behaves 

with the distance between the frustrations according to the 

exactly known two-point correlation fuction of the (field free) 

Ising model in two dimensions (Schuster 1979). Recall that K, is 

given as a function of the concentration x of (in this case) FM 

bonds (Eq. 3.27). Thus, Eqs. (4.26) and (4.13) predict a phase 

transition in the system of frustrations. With K, =— 1/2 In (2x — 1) 

we have: 

i) 1>x>x, = Kj git (~ .7072). The probability to find 
two frustrations separated by r decays like exp(—r/é) with é 

being the correlation length of the Ising model at temperature K*. 

ii) x = x,. é diverges, so that one obtains ‘pair dissociation’ 

of frustrations. 

iii) XxX <x). In this case there is a finite probability to find 

a single frustrated plaquette — thus necessarily an infinite ‘ladder’ 

of AFM bonds in the system (see Fig. 1c) (Schuster 1979). 

Notice that FM order is already destroyed at x < x* = .91 

(Vannimenus and Toulouse 1977) by the possibility of having 

infinite strings of frustrated plaquettes—at x,, however, new 

types of ‘domain walls’ (defects of infinite length on the spin 

system) associated with the ‘ladders’ of AFM bonds appear. Thus 

the ground state seems to be qualitatively changed as we go 

through x,. Although there is no finite temperature phase 

transition for this system, i.e., it remains paramagnetic down 

to T = 0, the singularities introduced into the quenched average 

for the free energy, via the probabilities P{¢, } persist at all 

temperatures! This was essentially foreseen by Schuster (1979), 

and it also has its generalization to the arbitrary -q Potts model. 
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APPENDIX 

Here I present the duality transformation for the Potts model 

in the presence of quenched randomness. (A different treatment 

has been given by Jauslin and Swendsen (1981).) 

Consider the partition function 

Z4¢p}= lim > y exp(K & sit Wj sj) 
p a 1 

"exp LK, = op (Tr u ¥—-1)/(q—1)] 
(1) 

A slightly more condensed notation has been used that in Section 3, 

which should be self explanatory. The bond labels have been 

dropped from the gauge variables appearing in products around 

plaquettes, as in Il y. The frustration function ¢, is defined via 
Dp 

Eq. (3.11). Extracting a constant factor from the sum, and defining 

K, = 4K/(q-1), 
we have 

Z + dp t= lim | exp (— NK, /q) Pet a exp (K & sii ij 8) ) 

P 
(2) 

- exp [K, = (Tr 1 y)/q] 
p p 

Define 

u=—eK—] 

vee r-—1 ‘ @) 

Then 

exp(K s,i 4; 85) = (sit vj $;) ut 
(4) 

exp(K, Tr Ii ¥/q)=(Tr ly)v/qtl. 
Pp p 

Now setting all ¢, = 1, and going over to the Whitney polynomial 

representation, we have for finite K,, 

Z1i¢dp = 1 IK = exp (—NK,/q). 

1 {s} oct dpeg 9 Yj $4 peg, (Tr D vy) v/q (5) 
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The energies of diagram and satellite lines are very close; so 

the energy corrections can be disregarded. The n,(L,), nj (L,;) 
and nj’ (L,) results have been obtained from ref. [1]; values 
of shake-off probabilities are from ref. [2] and Coster-Kronig 

parameters are from ref. [3, 4]. 

We can conclude that it seems impossible to observe a pure 

line (true diagram line); the diagram lines so observed are 

always contaminated by hidden satellites. 

Table 1 shows that satellite lines due to L, ionization are not 

negligible as it should be if they were only due to Coster-Kronig 

transitions. 
From tables 2 and 3 we can see that the total values of the 

ratio (I,,);/1q increase with the atomic number; thus for high 

values of Z there is a strong contamination of the diagram lines 

due to hidden satellites. 
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