β^+ / EC DECAY OF ¹⁸¹Au : γ - RAY IDENTIFICATION

F. BRAGANÇA GIL (¹), C. BOURGEOIS, P. KILCHER, G. PAROT, M. G. PORQUET (²), B. ROUSSIÈRE, J. SAUVAGE-LETESSIER and the ISOCELE Collaboration

Institut de Physique Nucléaire, 91406 Orsay, France

(Received 30 November 1983)

ABTRACT — The β +/EC decay of ¹⁸¹Au has been studied with mass separated sources from the ISOCELE facility. Main γ -rays which belong to the ¹⁸¹Au \rightarrow ¹⁸¹Pt decay have been identified from X- γ coincidence measurements. A rotational band built on the 1/2– [521] Nilsson state has been developed up to the 7/2– state in ¹⁸¹Pt.

1 — INTRODUCTION

The nuclei of platinum have been studied extensively [1-8] and a shape transition has been found for A = 186. ¹⁸⁵Pt corresponds indeed to a prolate-shaped nucleus, whereas ¹⁸⁷Pt seems to correspond to an oblate-shaped one. However some phenomena observed in this transitional region are not yet well understood: the existence of highly converted transitions in ¹⁸⁷Pt [8], ¹⁸⁷Au [9], ¹⁸⁵Au [10, 11], ^{193, 195, 197}Hg [12, 13] for example. So we have extended the study of the platinum nuclei down to the very neutron-deficient isotopes. The present work is the first step of the study of the β^+ / EC decay of ¹⁸¹Au. Gold isotopes were produced by Pt (p,xn) Au reactions, then mass-separated using the ISOCELE II facility at Orsay. X - γ coincidence measure-

⁽¹⁾ Centro de Física Nuclear, 1699 Lisboa, Portugal.

⁽²⁾ Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, 91406 Orsay, France.

ments allowed us to clearly attribute twenty four γ - rays to the $^{181}Au \rightarrow ^{181}Pt$ decay.

Such results can also be very useful to identify the ¹⁸¹Au or ¹⁸¹Pt nuclei produced by (HI,xn) reactions.

Portgal. Phys. - Vol. 15, fasc. 1-2, pp. 59-64, 1984

2 — EXPERIMENTAL PROCEDURE

A thick target of molten $Pt - \beta$ alloy was bombarded by a 200 MeV proton beam from the Orsay synchrocyclotron in order to produce gold nuclei via Pt(p,xn) Au reactions.

The proton beam intensity was 2.5 μ A. The target was placed inside the high-temperature ion source [14] of the ISOCELE II isotope separator [15]. The mass-separated gold ions were collected on a mylar / aluminium tape and then carried to the counting station using a fast mechanical tape-transport system.

Singles gamma - rays were measured with a planar Ge (HP) X - ray detector (0.6 keV FWHM resolution at 122 keV) and a 12 % efficiency coaxial Ge (HP) detector (2 keV FWHM resolution at 1.33 MeV). The energy ranges were from 4 keV to 400 keV and from 30 keV to 1500 keV respectively. The X - γ - t coincidence data were simultaneously recorded event by event on magnetic tapes. The experimental data were analysed off-line on the Orsay IBM 138-370 computer. The coincidence events have been treated in order to get prompt coincidence bidimensional matrix. The coincidence spectra shown in Fig. 1 were obtained by setting 2 keV gates on K_a X - rays e.g. from 60 to 70 keV. Collecting and counting times were 5 s per source and the data were accumulated for ten hours.

3 — EXPERIMENTAL RESULTS AND DISCUSSION

Energies and intensities of γ -rays deduced from the γ and X spectra are listed in table 1 together with the coincidence results. Twenty three γ -rays can be clearly ascribed to the ¹⁸¹Au \rightarrow ¹⁸¹Pt decay.

In spite of lack of intensity for the 159.4 keV γ - line observed in coincidence with $K_{\alpha} X$ - rays of Pt (see Fig. 1), we can attribute this transition to the ¹⁸¹Au \rightarrow ¹⁸¹Pt decay because the 40.5 keV γ - line has been observed in coincidence with the 118.9 keV γ - line and the sum 40.5 + 118.9 corresponds to 159.4 keV. This fact suggests a rather long lifetime for the state which decays by both the 159.4 keV transition and the 40.5 - 118.9 keV cascade.

Portgal. Phys. - Vol. 15, fasc. 1-2, pp. 59-64, 1984

Energy (keV)	Iy relative	Main coincidences		Energy	Iγ	Main coincidences	
		K _α X-rays	γ ^{-rays}	(keV)	relative	K _α X-rays	γ-rays
40.5	15	Pt	118.9	402.7	15	Pt	
49.9	23	Pt	120.6	431.0	45	Pt	
			431.0	481.0	74	Pt	
72.6	~ 15	Pt	120.6	491.8	23		
79.4	84	Pt	198.6	534.3	42	Ir	
87.7	10			542.3	24		
89,8	13	Pt		556.4	20		
94.0	56	Pt		591.4	14		
112.3	23	Ir	230.2	611.0	41		
118.9	23	Pt	40.5	615.2	27		
120.6	43	Pt	49.9	629.3	58		
148.6	10			644.3	40	Pt	
159.4	55	(Pt)		651.0	44	Pt	
170.6	38	Pt		656.8	48	(Pt)	
184.4	19	Pt	94.0	663.1	72	Pt	
198.6	100	Pt	79.4	671.0	84	Pt	
206.9	26	Pt		679.0	29		
230.2	36	Ir	112.3	689.7	72		
243.5	24	Ir		710.1	29		
289.4	35			721.0	20		
310.2	23	Ir		730.1	23	Pt	
328.9	4			750.6	29		
332.3	6			756.4	15		
336.0	6	Ir		767.6	26		
348.5	8	Ir		774.7	61	Pt	
358.5	13	Pt		783.5	48	Pt	

TABLE 1—Gamma-ray data for the decay of 181 Au (collecting and counting times, for 181 Au sources, were 5 s): energy error ≤ 0.3 keV; intensity error $\sim 10\%$.

The studies of the α decay of the mercury isotopes allowed E. Hagberg et al. [16] to propose level schemes for ^{177, 179, 181}Pt and to identify the 1/2⁻ [521] state and the 3/2⁻, 5/2⁻ rotational states built on it. Recently we have studied the β^+ /EC decay of ¹⁸⁵Au [17] and ¹⁸³Au [18], and identified the 1/2⁻ [521] rotational band built on the isomeric state of ¹⁸⁵Pt and on the

Portgal. Phys. - Vol. 15, fasc. 1-2, pp. 59-64, 1984

ground state of ¹⁸³Pt. The results obtained in the present work support the previous identification of the 5/2, 3/2, and 1/2 states of the $1/2^{-}$ [521] band in ¹⁸¹Pt and allow us to propose the additional 7/2 1/2⁻ [521] state. The systematic of the 1/2⁻ [521]

Fig. 2 — The systematic of the rotational band built on the 1/2— [521] state. Data were taken from ref. 16 (177,179,181 Pt), this work (181 Pt), ref. 18 (183 Pt), and ref. 17 (185 Pt). Dashed line indicates transition not observed experimentally. Numbers in parentheses are γ -line intensities.

rotational band through the platinum isotopes is shown in Fig. 2. The stability observed indicates clearly that all the ¹⁷⁷⁻¹⁸⁵Pt isotopes correspond to prolate-shaped nuclei contrary to the heavier platinum isotopes.

REFERENCES

- [1] M. FINGER et al., Nucl. Phys. A188 (1972), 369.
- [2] V. BERG, Thesis Orsay (1976).
- [3] M. A. DELEPLANQUE et al., Coll. de la Société Française de Physique, DIJON (1975); J. de Phys. C5 36 (1975), 97.
- [4] C. BOURGEOIS et al., 3rd Int. Conf. on nuclei far from stability, CARGESE (1976); CERN 76-13, p. 456.

Portgal. Phys. - Vol. 15, fasc. 1-2, pp. 59-64, 1984

- [5] J. KALIFA, G. BERRIER-RONSIN, G. ROTBARD, M. VERGNES, J. VERNOTTE and R. SELTZ, Phys. Rev. C22 (1980), 997.
- [6] M. PIIPARINEN, J.-C. CUNNANE, P. J. DALY, C. L. DORS, F. H. BERNTHAL, and T. L. KHOO, Phys. Rev. Lett. 34 (1975), 1110.
- [7] A. VISVANATHAN, E. F. ZGANJAR, J. L. WOOD, R. W. FINK, L. L. RIEDINGER and F. E. TURNER, *Phys. Rev.* C19 (1979), 282.
 B. E. GNADE, R. W. FINK, J. L. WOOD, *Nucl. Phys*, A406 (1983), 29.
- [8] A. BEN BRAHAM et al., Nucl. Phys. A332 (1979), 397.
- [9] E. F. ZGANJAR, J. D. COLE, J. L. WOOD and M. A. GRIMM, 4th Int. Conf. on nuclei far from stability, HELSINGOR (1981), CERN 81-09 p. 630.
- [10] C. BOURGEOIS, M. G. DESTHUILLIERS-PORQUET, P. KILCHER, B. ROUSSIÈRE, J. SAUVAGE-LETESSIER and the ISOCELE Collaboration, 4th Int. Conf. on nuclei far from stability, HELSINGOR (1981), CERN 81-09 p. 618.
- [11] C. BOURGEOIS, P. KILCHER, B. ROUSSIÈRE, J. SAUVAGE-LETESSIER, M. G. PORQUET and the ISOCELE Collaboration, Nucl. Phys. A386 (1982), 308.
- [12] G. M. Gowdy, Ph. D. thesis, School of Chemistry, Georgia Institute of Techonology (1976).
- [13] G. M. GOWDY, J. L. WOOD and R. FINK, Nucl. Phys. A312 (1978), 56.
- [14] J. C. PUTAUX et al., 10th EMIS Conf., ZINAL (1980); Nucl. Instr. 186 (1981), 321.
- [15] P. PARIS et al., 10th EMIS Conf., ZINAL (1980); Nucl. Instr. 186 (1981), 91.
- [16] E. HAGBERG, P. G. HANSEN, P. HORNSHOJ, B. JONSON, S. MATTSSON, P. TIDEMAND-PETERSSON, the ISOLDE collaboration, Nucl. Phys. A318 (1979), 29.
- [17] B. ROUSSIÈRE, C. BOURGEOIS, P. KILCHER, M. G. PORQUET, J. SAUVAGE--LETESSIER, Annuaire IPN Orsay (1983), DRE.
- [18] C. BOURGEOIS, P. KILCHER, M. I. MACIAS-MARQUES, M. G. PORQUET, B. ROUSSIÈRE, J. SAUVAGE-LETESSIER, C. SCHÜCK, Annuaire IPN Orsay (1982), DRE, E82.