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ABSTRACT —A general discussion is given of the effects of the a- particle 

D-state in (d, a) and (a, d) reactions. The dependence of the cross section 

and of the tensor analysing powers Ty on the asymptotic D- to S-state 

ratio p in the a@ particle and on the spectroscopic amplitudes of two-nucleon 

cluster transfer is discussed using a plane wave peripheral model. It is shown 

that the Ty in (d, a) reactions contain specific information on the a- particle 

D-state and also on the coherence properties of the two-nucleon states 

populated, 

1 — INTRODUCTION 

It is well known that the polarization observables of transfer 

reactions can be used to investigate the internal structure of 

composite particles. This property has been extensively applied to 

study the two and three body bound systems via the (d, p ) [1, 2], 

(d,t) and (d, *He) [8, 4] reactions. Recently it was suggested 

by Santos et al. [5] that the tensor analysing powers of (d,a) 

reactions display the effect of a relative D-state motion of two 

deuteron clusters in the a particle. This low energy (d,a) data 

is primarily sensitive to the parameter D, [1-6] which is closely 

related to the asymptotic D to S-state ratio op. 

The calculations of ref. [5] used a very simplified reaction 

model based in the plane wave approximation and did not take 

into account the effect of L mixing in the transition amplitude to 

unnatural parity states. More recently full finite range DWBA 

calculations [7] have shown that the tensor analysing powers 
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of (d,a) reactions are specially sensitive to the L mixing in 

unnatural parity transitions. This effect can be used to study the 

coherence properties of the states populated and to determine 

the spectroscopic amplitudes corresponding to each L value. 

Furthermore it was realized [7, 8] that the interference between L 

mixing and D-state effects in the presently available (ad ,a) tensor 

analysing power data makes it difficult to extract D, from the data. 

The cross section of (a,d) and (d,qa) reactions is also 

sensitive to the a-particle D-state. Nagarajan and Satchler [9] have 

shown that the D-state effects have a J-dependence which is 

qualitatively in agreement with the J-dependence observed in the 

cross section of ®°*Pb (a,d) reactions [10]. This was previously 

interpreted as resulting from multistep processes [10]. To compare 

these two types of J-dependence we need a more complete 

understanding of the D-state effects in (d,a@) reactions and in 

particular a realistic estimate of D.. 

Here we develop the DWBA theory of (a,d) and (d,a) 

reactions including both the S and D-state components of the 

a-particle. In section 2 the decomposition of the transition 

amplitude for two nucleon transfer reactions is performed. These 

results are then applied to the particular case of (a,d) and 

(d,a) reactions in section 3. In section 4 using a perturbative 

approach to generate the D-state component of the a-particle we 

calculate D, using gaussian wave functions and realistic tensor 

interactions. Finally in section 5 the special sensitivity of the 

tensor analysing powers to the L mixing and D-state effects is 

studied using a peripheral model for the transfer. 

2— TWO NUCLEON TRANSITION AMPLITUDE 

We consider a transfer reaction A(a,b) B where a = b+ x 

and x is the transferred cluster. The transition amplitude for the 

reaction, scattering from momentum k, to momentum k,, is 

T = <BJgMpg,bS8,0,;k,p|T!AJ, My, aS, 0,3 ky > (1) 

where J,, S,, Jp, S, are the spins of A, a, B, b. Performing 
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an expansion into terms with definite angular momentum trans- 

fer [11] we can write 

T= = (J,M,JMz/|JpMg) (1Aso|JM;) 
sJl 

(-1)°>"°® (s, 04, -oy|8 7) BY = 
where (J, M, J M;|J, Mg) is the usual Clebsch-Gordan coeffi- 
cient [12]. 

The amplitudes B!\ contain the reaction dynamics and 

transform under rotations like the conjugate of the spherical 

harmonic io It is important to notice that the expansion (2) 

in the angular momentum transfer representation is model inde- 

pendent since it is based only on the transformation properties 

under rotations of states with definite angular momentum. There- 

fore it does not assume any approximations regarding, for instance, 

spin dependent forces in the entrance and exit channels, the 

internal structure of the nuclei involved in the reaction and the 

one-step or sequential transfer nature of the reaction mechanism. 

We shall now particularize eq. (2) to two-nucleon transfer. 

In this case a=b+2 and B=A-+ 2. To proceed with the 

analysis of the transition amplitude we consider a double-parentage 

decomposition of the state Jp, Mp [13] 

|B Jp Mp> = & 83(9)|nIMy>|A’ Jy My > nA’IM., (3) 

(J,,-M,,J M;|Jp Mz) 

where 5;(7) is the spectroscopic amplitude for the 7, J 

configuration of the two nucleons with total angular momentum J 
relative to the state J,4, My,. The state |y J M; > results from 
coupling two single particle states with angular momenta j,, jp 

which are abbreviated by the parameter 7. By transforming from 

j-j to L-s coupling we can write 

\n Citig) IMs > = (4) 

uu Sis s(n) |LL,LM>|s,0,>(LMs,o,|JM;). 
Ss ¢ x 

Here $,, ;(7) are the usual symmetrized [13] Ls - jj recoupling 
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coefficients and |s, o, > is a spin-only wave function for the 
two nucleons with total spin s,. The dependence on the position 

coordinates r,; and r, of the two nucleons relative to A (Fig. 1) is 
contained in |l, l., LM>. 

  
Fig. 1— Coordinate vectors fora A(a,d)B_ reaction. 

It is now assumed that there is no exchange of nucleons 

between particles in the entrance and exit channels, no excitation 

of the target and no reorientation of the target spin through 

spin-dependent forces. With this assumption the integration over 

the target internal coordinates selects from eq. (3) the term A’ = A 

in which the target is in its ground state. Putting eqs. (3) and (4) 

into eq. (1), performing the integration over the internal coordinates 
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of A and writing the resulting expression in the form of eq. (2) 

we find that 

= | LL’ Ir 
BY = = S3(0) Le y(n) + Aisis Bun. 

ns,L x L x x (5) 

The coefficients Aj:*’ are the same as in ref. [14] and are 
x 

given by 

LL’ a 6 J-s-l-L/ 

Ags =Sai(-1) | W(Lsxls;JL’) (6) 
x 

while 

gn =k’ & (1) (LM LYM’ |) (-1)® > 
5 LL SaS %x % %D 

oMWM™’ 
(S, o_Sp-op| So) (L’ M's, o,| So ) (7) 

< bS,0,38,0,31,1,.LM;k,|T] as,o,;k,>. 

Here (2s + 1)1/? is abbreviated by s. We notice that the total 
orbital angular momentum transfer in the reaction, |, is composed 

of a part L and a part L’ which in turn results from the decom- 

position of the spin transfer s into a spin part s, and an orbital 

part L’. 

In the microscopic approach to two-nucleon transfer reactions 

the amplitudes g\,,,, are calculated from states |l, 1, LM > 

constructed from shell model wave functions in the nucleon 

coordinates r, and r.. However to obtain the projectile form factor 

it is convenient to transform from the coordinates r, and r. to 

he =m—r and R =(r,+ Fr.) /2. These vectors are represented 

schematically in Fig. 1. Using a basis of normalized wave 

functions ¢,; we can perform the expansion 

<nnl/LLLM> = os tk Cnt NA (7) [ nt (tis ) ® gna(R) jt 
x 

(8) 

where n and N are quantum numbers that specify the number of 

nodes of the wave functions ¢. In the particular case of harmonic 

oscillator wave functions the c,; jy, are the well known Moshinsky 
x 

coefficients [15]. 
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We now assume that the reaction is a one-step process and 

take V,, for the transfer interaction. It is then straightforward 

to conclude that the T amplitude in eq. (7) depends on the 

internal structure of the projectile through the matrix element 

< bs, o, ; nj, m,|Vp,|as,o, >. Here j, =|, +s, is the total 

angular momentum of the transferred two-nucleon cluster. 

To proceed with the analysis of the transition matrix 

elements we use the DWBA theory. No spin dependent interactions 

either in the entrance or the exit channel are considered in order 

to simplify the discussion. With this assumption the DWBA 

amplitude in eq. (7) is [14] 

< bs, 6,38, 0,31,1,LM;k,|T|as,o,;k, > = 

> Co wa(7) (yA, AE| LM) (1, Ax Sx ox | Jx My) 
nNA¢ x 

1a 4 

ao FOR far 4” Ck, ey) by, (R) YE*CR) 

(9) 

<bs,o,; x (nl,s,) j<M | V px| 2S ge e> eee CKys ra) . 

Here X, and %, are distorted waves and r is the displacement 
vector between the centers of mass of the two-nucleon clusters 

x and b. 

3—(a,d) AND (d,a) REACTIONS 

Our present interest is to consider the particular case of 

(a,d) reactions. The range of n,l,,s, values to be considered 

in eqs. (5), (7) and (9) depends on the assumptions that are made 

regarding the wave functions of the a- particle and residual 

nucleus. Conservation of isospin implies that the transferred 

two-nucleon cluster has T= 0. Thus it must be either an even 

parity state with s, = 1 or an odd parity state with s, = 0. The 

contribution from the latter type of state is believed to be small 

since it can only arise from the overlap with odd parity components 

in the variable r,. in the a particle. 

It is therefore usually assumed that the transferred two-nucleon 

cluster has even parity and only the 1, = 0 state is taken into 
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account in DWBA calculations. Furthermore it is frequently 

supposed that the two nucleons are in a relative S state with 

no nodes (n — 0). However we note that the l, = 2 states have 

a non-vanishing overlap with parts of the « particle wave function 

and in particular with its D-state component. 

With 1, = 0 we conclude that j, = 1 and the Vax matrix 

element of eq (9) can be expanded as [7] 

<dl og; x(n0l) 1 ox | Vax|a > = 

1/23 CL)" (LM To Loa) Vane (1) YEH CFD ad 
seit 

The vector r represented in Fig. 1 is the separation between 

the centers of mass of the clusters; r= (rs2 + ra) /2 with 

rij = —rj. As before we denote by 1,2 the transferred nucleons 

and by 1,3 and 2,4 the identical particles in the a particle. 

Conservation of parity implies that L’ can only be 0 and 2. The 

L’=0 and L’=2 terms on the right hand side of eq. (10) 

correspond to two different spin configurations in the a particle 

in which the spins of the two spin one clusters are antiparallel 

and parallel, respectively. When substituting eqs. (9) and (10) into 

eq. (7) and performing the summations over magnetic quantum 

numbers it is found that the orbital angular momentum L’ in 

eq. (10) is in fact the same as L’ in eq. (7). This gives 

= RIA 
WL = CroNL (7) Boxuy > (11) 

with 

Ba = V3/2 % (-1)+™ (LML’=M’|1X) 
MM’ 

fa@R far 1" (kara) dR) YE CR) (a2) 

Vane (1) YE (Cr) 4 (Kas ta) 

Using eqs. (5) and (11) we can write 

B= ay, Gunus a Any Bou - (13) 
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Here the information on the nuclear structure of the A + 2 nucleus 

is as much as possible concentrated in the amplitude 

Ganus = > S$3(7) Suis(7) Cnonn (7) . (14) 

On the other hand the information on the a particle is contained 

in the sum over L’. 

The differential cross section for the A(a,d)B reaction 

is an incoherent sum over I and J 

do/do x & (2Jg +1) / (21+ 1) |B |? (15) 
= 3 (gt 1) /(U+1) 1S Gans & AGH BiNux |? - 

With the inclusion of the «a- particle D-state the total orbital 
angular momentum transfer | may not be equal to L. Furthermore 
we notice that the L’ = 2 contribution introduces a J dependence 
into the cross section through the Ak coefficients. 

Here we are particularly interested in the analysing powers 

of the inverse reaction B(d, a) A. From invariance under time 

reversal the analysing powers Tq Of the B(d, a)A reaction 

are related with the polarization tensors t,, of the A(a, d) B 
reaction by [11] 

Tq = (-1)* tig (16) 

when using the same coordinate system on both sides of eq. (16). 

The polarization tensors tq are given by 

tyq = Trace (T' »,,(1) T) / Trace (T'T) (17) 

where T is the transition amplitude for the (a, d) reaction 

and 7,,(1) are the usual spin one operators [16]. Using 

eqs. (2), (16) and (17) we obtain 

Tea = —V3 (3 (21+ 1)-7| BR |2)> 
IN . (8) 

XS (-1)¥+9t+4 W111; Jk) (1-A ‘VN’ |kq) BA, BUD’. 
STAY 

Unlike the cross section the T,, involve a coherent sum over 

Bi. amplitudes with different 1. 
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4— THE ASYMPTOTIC D- to S-STATE RATIO 

IN THE a PARTICLE 

A full finite range DWBA calculation for B Ca ,a)A 

reactions requires the knowledge of the radial wave functions 

Var’ (r), defined in eq. (10). We consider only the V4, matrix 

element for n=O because the dominant component of the 

expansion (8) in the internal variable r.2 of the transferred cluster 

is an S state with no nodes [17]. In the following it is therefore 

assumed that n = 0 and all dependence on n is dropped. However 

we note that at least in the L’ = 0 part of the transition amplitude 

the contributions from S state cluster states with n+ 0 are not 

negligible for some cases [18]. 

The overlap between the « particle wave function and the 

two spin-one clusters has an expansion analogous to eq. (10) [5, 7] 

< $99 (3,4) $5* (1,2) | 4 > = (19) 

i/a 0 (-1)%4 (LM! lox|1-g) Uy (7) YE Cr). 

This function satisfies the equation 

—(B,—By—B, + T,) < $44(3,4) 63% (1,2) | ¢.> (20) 

= < o99(3,4) 3% (12) | Vax | a > 

where on the right hand side the matrix element is the same 

as in eq. (10). B,, By, B, are binding energies and T, is the 

kinetic energy in r. Combining eqs. (10), (19) and (20) we 

conclude that the radial wave functions ux, and v;, are related by 

v(t) YM (r) =—(#2/2M) (a? -V?) u(r) YM (r), = 21) 

where « — [2M(B,—Ba—Bx) /#?]*” is the wave number of 

the relative motion between clusters in the a particle. Eq. (21) 

shows that asymptotically, for large r, 

uy (r) > Ur) i’ hy, (ier), (22) 
r>oo 
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neglecting the Coulomb interaction between clusters. The 
asymptotic D- to S-state ratio in the « particle is [5] 

C=H2/ Uo . (23) 

In low energy (d,a) reactions the DWBA calculations are 
not very sensitive to the precise and presently unknown short 
range behaviour of the functions u,,(r) [7,8]. The calculated 
tensor analyzing powers depend to a good approximation upon 
u, and u, only through the parameter D, defined by [1] 

D.= fou (r) ride /15 fu, (r) x dr (24) 

An alternative expression 

D, = (2M / fe? ) [i ve(ry rear / fu (x) x ar (25) 

is obtained using eq. (21) to relate the coefficients of the k? term 
in a power series expansion of u, and v, in momentum space. 
The substitution of the asymptotic forms (22) into eq. (24) gives 
the well known relation [1, 19] 

D,.= ¢ fx. (26) 

However the reliability of this approximate relation is expected 
to be much smaller in (d,a) reactions than in (d,p) reactions 
because of the large a particle binding energy. 

A non-vanishing D, can only be obtained through the 
nucleon-nucleon tensor interaction in the four body bound system. 
To obtain an estimate of D, we assume, in analogy with what is 
presently known about the three body bound system [3], that 
uy and u, are primarily determined, respectively, by the overlaps 
< $4(3,4) $, (1,2) | dug > and < $4(3,4) 4, (1,2) | ¢yp > with 

the S and D state components of the a particle wave function 

oa = das - dud - (27) 

It is important to emphasize that this is an approximation. For 

instance it is easily verified that the S state component ¢, gives 
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contributions to u, through the D-states in the spin one clusters. 

These contributions are probably small because they arise from 

low probability components in ¢,, that result from coupling 

states with non-zero orbital angular momenta in the coordinates 

rie, ts1,r to a total LY = 0. 

A model to generate ¢,p is required in order to calculate D, . 

Using a perturbative treatment [5] we can write, to first order in 

the tensor interaction, 

(T+ 3 VeCisj) + Ba) ld >=— 3 Vrij) a>. (28) 

Here V.(i,j) and 

Vr(i,j) = Vr (rij) Sie (i,j) (29) 

are the central and tensor parts of the nucleon-nucleon interaction. 

The overlap of eq. (28) with the spin one clusters satisfies the 

equation 

(B,—Ba—-B, + T,) < ¢99(3,4) $9*(1,2) | dp > = 
(30) 

— < b4a% B14) ox8(1,2)] % Va Csi) | bas > 

if the central interactions between clusters are neglected. This 

approximation is based on the fact that the effect of V, is reduced 

by the centrifugal barrier associated with the D-state in r. 

On the right hand side of eq. (30) there are no contributions 

from V,(1,3) and V,(2,4) since the nucleon pairs 1,3 and 2,4 

are in singlet states. Furthermore the tensor interactions Vy (1,2 ) 

and V, (3,4) do not generate a relative D-state motion of the 

cluster if we consider only the dominant component of dys 

exclusively with S states in r.,1rs,,r- Thus combining eqs. (10), 

(21) and (30) yields 

< $92(3,4) 69%(1,2) | V_(2,3) + Vo (1,4) | dug > = 

1/2 (-1) 7 (2M’lo,|1-0g) v.(r) YM (tr). (31) 
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Using eqs. (19), (25) and (31) it is now straightforward to 
calculate the parameter D,. This calculation is considerably 
simplified by the use of gaussian wave functions to represent 
the bound states 

dags= E(A) exp[—A(ri,+r,+2r) /4]%,(1,3)% (2,4), (32) 

oat (3,4) o3*(1,2) = F*(v) exp[-v (12, + 7,) /2] i 
(3 

X24(3,4)X9x(1,2). 

In eq. (33) we made the usual assumption of describing 
x by a deuteron wave function. E(\) = 2-%2(A/-7 )*/* and 

F(v)=(»/7)* are normalization constants and %, (i, j) and 

%7(i,j) are singlet and triplet spin wave functions. The 

parameters \ and v are related to the a- particle and deuteron rms 
radius by 

> 1/2 a 

<0" > « paciae = 3/(2V24), (34) 

1/2 

<r> deuteron = 1/2 V3/2» . (35) 

With the wave functions (32) and (33), the radial function u, is 
a gaussian function 

Uo (r) =4 (28-3 (4-2 dP vo 1/4 eA r/2 (36) 

where 5 = v+/2. To calculate v.(r) from eq. (31) it is 
convenient to write 

%,(1,3)% (2,4) = 
(37) 

1/2[%(1,4)% (3,2) +3 (-1)1+m ¥m(1,4)%7™(3,2)] 

since we are interested in the tensor force in the nucleon pairs 
1,4 and 2,3. Using the relation 

S.(F)W=4V2% X (lo 2M[ 10) YM(F) x" 38) 
oo” M 
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and eqs. (32) and (33) we obtain 

v2(r) = 27(A8/7)**(v/8) >? exp[—(v +r) 1? ] 

* (39) 
fi ie(2i8rx) exp(—8x*) Va(x) x dx. 

Finally doing the integrations over r in eq. (25) gives 

D, = (8/15) (B,—2Bg)71(A8/7)*?27[8/(v +A) ]” 
(40) 

J, Vo (x) exp [-A8 x? /2(v+ A) ]xtdx 

Using the one-pion-exchange tensor potentital (OPEP) 

Vo(t) =—Cy h,(iur) (41) 

with C, = 10463 MeV and »=0.7 fm [20] we obtain 
D, = —0.153 fm? for deuteron and a particle rms radius of 

1.96 fm and 1.42 fm [21], respectively. The introduction of a 

cutoff factor [22], 1-exp(-Ar?) where A = 0.735 fm~?, in the 

OPEP tensor potential increases D, to—0.117 fm’. This change 

of 23 % indicates that the parameter D, depends on the behaviour 

of the tensor interaction at distances smaller than 2 fm. The 

sensitivity of D, to the tensor interaction at short distances is 

much stronger in (d,a) than in (d,p), (d,t) or (d,*He) 

reactions. The values of D, become slightly larger when either 

the rms radius of the deuteron or the rms radius of the a particle 

are increased. For instance D, = — 0.124 fm? for deuteron and a 

particle rms radii of 2.10 fm and 1.70 fm, respectively. 

Although the model used to calculate D, is probably realistic 

the bound state wave functions are not adequate. In fact D, is 

very sensitive to the asymptotic region of large r. Thus we can 

expect that the calculated values of D, are overestimated because 

they were obtained with gaussian functions. The same problem of 

overestimated values of D., was also found in calculations of 

D, for *H when using wave functions with incorrect asymptotic 
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behaviour [23]. Calculations based on the very simplified model 
for p developed in ref. [5] give —0.35 < D, < —0.15 fm? [24]. This 
model has the unrealistic feature that the tensor interaction 
between clusters depends only on the coordinate r but, on the 
other hand, the calculations were performed with wave functions 
uo (r) with correct asymptotic behaviour. 

5 — PERIPHERAL MODEL OF (d,a) AND (a,d) REACTIONS 

To study the dependence of the cross section and of the 
analysing powers on the amplitudes Gy;,; and also on the 
asymptotic D- to S-state ratio p we use the peripheral model 
developed in refs. [5,25]. The bound state wave functions of the 
transferred two nucleon cluster in the « particle and in the 
nucleus B are represented by their asymptotic forms for large r 

uy, (r) = Uy, iL’ hy (ier), (42) 

oni (tT) =Uyn it hy (ifr). (43) 

Here @ is the wave number corresponding to the binding energy 
of the cluster x in B and %,,;, are asymptotic normalization 

constants. For small recoil effects the BY, ,, amplitudes can be 
approximated by 

BR = ¥3/2 Slr (LML -M’|1)) 

faer [ avr “> (ka, (m,/m,) R) dnui(|R-arl) (44) 

Y™" (Rar) v,,(r) YM (#) UY (k,, RB) - 

The value of the parameter a depends on the particular assumptions 

made in the derivation of eq. (44). For instance if we choose R as 

the average of the arguments of the two distorted waves [26] 

then a = 3/4. In the usual form of the non-recoil approximation [27] 

for heavy ion transfer reactions a = 1. 
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With the bound state wave functions (42) and (43) the r 

integration in eq. (44) can be performed analytically. In fact the 

formula A. 46 of ref. [14] gives 

farrit hy, (iB) R-r|) YE (Ror) Cv? a? DY hy, (iar) YE (1) 

=V47L’(L’010|LO) (-1)’+™ (LML’-M’|1)) (45) 

(BY / a1) th, (iBR) ¥) (R). 

Therefore using eqs. (42), (43) and (45) we obtain 

S (-1)4*!(LML’-M’|1A)- 
MM’ 

fate dxn(R-ar|) YM*(Riar) v(r) YE (r)= (46) 
2 eh a L’/ * x 

"a t,, Vex Lf (1010|L0) (*) ih, (iBR) ¥?) (R) 
2 Ma a 

The neglect of the recoil induced by the transfer implies that only 

normal parity values of 1 are allowed 

1+ L+L’ = even. (47) 

The substitution of eq. (46) into eq. (44) and the use of plane 

waves to represent the scattering states gives 

BR =1.(Q) YP (Q) L'(L010|L0) (ab /a)™ Wry, My, (48) 

Here 

QO = k,—(m,/ Mg) kg , (49) 

is the momentum transfer in the reaction and 

1(Q) =2V3 mr (A? /Ma) (-1)*fh, (i) (QR) RAR. 
(50) 
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Finally the combination of eqs. (13) and (48) yield 

* A 

By = UY} (Q) , (51) 

with 

Us =1,(Q) % Sus L’ (L010 L0) ARS Ur (aB/a)’. (52) 

The information on the A + 2 nucleus is now entirely contained 

in the spectroscopic amplitude 

Sur = a Guus Myr = = 83 (7) Spis (7) Conn (7) Mun - (53) 

Using eqs. (15) and (51) it is easily concluded that the cross 

section is an incoherent sum of the square of the amplitudes 

U,; over I and J 

do /do « (2g +1)/4m ¥ Ujy . (54) 

It is also straightforward to obtain an expression for the 

analysing powers T,,, as a function of U;;. Since the dependence 

on the magnetic quantum number in Bi is now given by the 

spherical harmonic Y} the summation over \ and 2’ in eq. (18) 

gives rise to a Clebsch-Gordan coefficient (10 1’0|k0) and implies 

that the T,, are proportional to Y; ( Q). Furthermore there is 
a restriction in the values of k. In a given transition the allowed 

values of L have all the same parity and L’ is even. Therefore 

the selection rule (47) implies that all values of the total orbital 

angular momentum transfer | have the same parity. In conclusion 

the analyzing powers ‘with k odd vanish in the peripheral model. 

This is a general property of plane wave approximations [28]. 

For k = 2 eqs. (18) and (51) yield 

Tog = —(87/5)27AY,(Q), (55) 

with 

A= (3/2) (3 Ujs)~* 2 17 (1010 | 20) W (111/1;52) Uy Uys 

(56) 
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Eq. (55) shows that in the peripheral model the angular 

dependence of the tensor analyzing powers is essentially determined 

by the spherical harmonics Y5 ( Q). In the Madison convention 

coordinate system [16] where the z axis is along kg and the y 

axis is along kg X kp 

To = —(1/¥2) A(3cos?y—1), (57a) 

T. = V3Asinycosy, (57b) 

Tor = —( 3/2) Asin? y. (57c) 

The angle 

y = are tg{ sino [coso—(m,/m,)(k,/k,)]-'} (58) 

is the angle between Q and kg and © is the scattering angle. 

The relations (57) acquire a particularly simple form when the 

tensor analyzing powers are expressed in a cartesian representation 

A,, = —(1/V2) (T,,-V6T,,) = (A/2) (3cos2y—1), (59a) 

Bing = —(1/V2) (T,, + V6T., ) = BA, | (59b) 

Aun = —(Agy + Ayy) = —(A/2) (3 cos 2y +1). (59¢c) 

The most significant aspect of eq. (59) is that A,, is, to a 

good approximation, independent of ©. This property of A,, is 

common to other reactions [25] and has a simple physical inter- 
pretation. The difference between the unpolarized cross section 

and a cross section for a spin orientation perpendicular to the 

reaction plane is insensitive to the scattering angle because the 

correlation between spin and deformation implies that the wave 

function of relative motion between clusters has spherical symmetry 

in the reaction plane. This spherical symmetry is broken for other 

spin orientations and as a result the tensor analyzing powers 

become dependent on ©. For instance the analyzing power A,, 

has a minimum of -2A at © = arc cos (m,kyg/mgk,) and is 

equal to A at 6 = 0° and 180°. 
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5.1 — Natural parity transitions 

In natural parity transitions L = J. From eqs. (6) and (52) 
and with the help of tables of angular momentum coupling 
coefficients [12] we obtain 

Urs = 845 (Uo /V 3) 1, S55[1 + (p/V2) (aB/a)?]. (60) 

The differential cross section in a transition with a given J is 

(do / dQ); « (%o? / 127) 41,S,,[1 + (p/V2) (aB/a)?] 7 

The fact that p is negative implies that the D-state of the a particle 
decreases the cross section of (d,a) and (a,d) natural parity 
transitions. This effect is particularly noticeable in transitions 
with large f~. 

For the tensor analyzing powers the substitution of eq. (60) 
into eq. (56) gives A = —1/2 and therefore 

A, = — 1/2. (62) 

This simple result is interesting to understand. Ayy is equal to 
the polarization component [16] 

Pyy = <3s2-2> (63) 

of the outgoing deuteron beam in a (a ,d) reaction. In a peripheral 
reaction the vector L is perpendicular to the reaction plane and 
therefore either paralle) or antiparallel to the y axis. For L = J 
and because J = L + s,, the spin s, is either parallel or antiparallel 
to the z axis. This is also true for the outgoing deuteron because 

of the spin correlation between the spin one clusters in the a 

particle. Thus in natural parity transitions the (a,d) reaction 

acts as a spin filter supressing the m, = 0 states. In a polarization 

state where m,= +1, < si > = 1/2 and therefore from eq. (63) 

Pyy = Ayy = —1/2. 
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5.2 — Unnatural parity transitions 

In unnatural parity transitions for a fixed J the orbital angular 

momentum of the transferred cluster can be L=J-—1 and 

L=J+1. Again from eqs. (6) and (52) we obtain [12] for 

L=J-1 

Us—ag = (Mo/ V3) I3_4 183-13 + (p/V2) (25 +1)-*(aB/a)? 

(3[J(34+1) JP? Ss4145-(J-1) S5-15) ] (64) 

and for L=J+1 

Users = (U0o/V3) Tyga 0 Ss4a5 + (p/V2) (23 +1)-*(aB/a)? 

(3[J(J +1) 7? Sy-15-(J +2) Ss415)]- (65) 

Given J, the differential cross section is 

(do / dQ); « (1/47) (U5_y5 + Ufsis)- (66) 

Notice that for p —0 

(do / dO); « (02/127) (Wh, S§-a5 + W541 S54i5) (67) 

is insentitive to the sign of the spectroscopic amplitures S,,;. 

Eqs. (64-66) show that, because p is negative, the D-state of 

the a particle has generally the effect of increasing the cross 

section of unnatural parity transitions. This is the case, for 

instance, of a pure L=J—1 transition and also of a pure 

L—=J-+t 1 transition. The opposite effect of the D-state in natural 

and unnatural parity transitions introduces in the cross section a 

J-dependence which qualitatively is in agreement with that 

observed in the 2°°Pb (a,d) 2*°Bi reaction feeding members of the 

{h,,., 8/2 | multiplet [10]. 

We now consider the tensor analysing powers in unnatural 

parity transitions. Eqs. (56) and (59b) give 

(J+2)x-6[J(J+1)}?@x+J-1 
= A= 68 

Ayy = A 2(23 +1)(1+x*) (68) 
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with 

X = Usiis/Us_1,5 . (69) 

Thus A,, varies from a minimum value of — 1/2 for x = [J/(J+1)]}'” 
to a maximum value of 1 for x = —[(J+1)/J]}'”. 

In the absence of D-state effects p = 0 and 

xX = Ky Syyi3/ Sy-15 (70) 

where K; = I;,,/I;_, is a positive quantity due to the form of 
the integrals (50). Eqs. (55) and (68) show that the Ty, have a 

strong dependence on the spectroscopic amplitudes S,,;. Unlike 

the cross section they depend on the relative sign of S;_,; and 

Ss41,3- Fig. 2 shows the values of 

(Ayy 5 = (J-1) /[2(23 +1) ] (71) 

for a pure L = J—1 transition (x = 0) and 

(Ayy Js = (J +2)/[2(23 +1) ] (72) 

for a pure L= J+ 1 transition (x = »). Since K; >0, x>0 

when S;,,5 and S;_,; have the same sign and x <0 when 

Ss41,3 and S;_,, have opposite signs. The quantity x is a double 

valued function of A,,,. x <0 for (A,,); > (J + 2) / [2(2J + 1)], 

x > 0 for (A,,)3 <<(J—1)/[2(2J +1) ] and x is either positive 

or negative for (J —1)/[2(2J + 1)] < (Ay,)3; < (JJ + 2)/[2(23 + 1)] 

as shown in Fig. 2. 

In the presence of D-state effects p = 0 and for a pure 
L = J—1 transition 

K, 33+1—pb(J+2) 
3pb—Ss[J(J +1) ]* 
  

where b=(afa)?/V2. Ina pure L= J+ 1 transition 

[J(Jt1)}” 
=3pb . (74) *= Seb Ky oT 1_pb(J_1) 
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In both cases x <0. Therefore the effect of the D-state is to 

increase A,, relative to the values given by eqs. (71) and (72). 

The substitution of eqs. (73) and (74) into eq. (68) shows that 

the a particle D-state effect is relatively larger in L = J—1 than 

in L= J + 1 transitions. This result is important to select transi- 

tions where the extraction of p from T,, experimental data is 

favoured. 

  

  

      

1.0 

X<0 

X=- 00 

0.5 4 
X= + 00 

@ 
e 6 . 

O a ° 

X-0 . 

Avy O + + 

X>0 

~0.5 { l | i 

] 2 3 4 5 

Fig, 2— The tensor analyzing power By of (d, a) reactions to unnatural 

parity states as a function of the total angular momentum transfer J. The 

open and full points correspond to pure L=J-—1 and pure L=J-+1 tran- 

sitions, respectively. For each J, Ay, is given by eq. (68) and varies with x 

from -1/2 to 1. For J=1 we have represented in a loop the values taken 

by A,, as function of x. 
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In an unnatural parity transition with only one pair of values 
for J,L the measurement of the Tzq yields a unique value for x 
that can be used to estimate ». Knowing ¢ it becomes possible 
to determine the amplitudes S;,,, and S;-1,3 in transitions with 
L mixing. These amplitudes can then be compared with those 

obtained from shell model calculations. 

6 — CONCLUSIONS 

A general discussion of the angular momentum structure of 
the transition amplitude in (a,d) and (d,a) reactions is pre- 
sented. Particular emphasis is given to the analysis of contributions 
from the D-state components of the a particle wave function. The 
parameter D, is estimated using a perturbative treatment to first 
order in the tensor interaction and gaussian wave functions to 

represent the deuteron and a- particle bound state wave functions. 
These calculations show that D, in (d,a) reactions is sensitive 

to the form of the nucleon-nucleon tensor interaction at distances 

smaller than 2 fm. Further calculations of D, using more realistic 

wave functions with correct asymptotic behaviour are required. 

The dependence of the cross section and of the tensor 

analysing powers on the asymptotic D- to S-state ratio p and on 

the spectroscopic amplitudes S,, is discussed using a plane wave 

peripheral model. The tensor analyzing power Ayy is particularly 

interesting because it is independent of angle and its value is a 

simple function of p and S,,. The present analysis indicates 

that the determination of p from T,, data is specially favoured 
in unnatural parity transitions involving only the orbital angular 

momentum L = J—1. These occur in (d,a@) reactions on closed 

shell target nuclei leading to outstretched nuclear configurations 

with J=L+1. 

With the peripheral model it is possible to identify the main 

features of nuclear structure and D-state effects in the cross 
section and T,,. However the model cannot be applied to the 
description of iT,, and furthermore it cannot be used in a quantita- 

tive analysis of the data. For instance the experimental A,, 

angular distributions oscillate around a certain mean value [5] 

that varies from transition to transition. This mean value can be 
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interpreted with the peripheral model but to reproduce the oscilla- 

tory behaviour it is necessary to perform a DWBA calculation 

including a spin-orbit interaction in the deuteron channel [7, 8]. 

An analysis of recent T,, data in (d a) reactions with full 

finite range DWBA calculations is in progress and shall be pre- 

sented elsewhere. 
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