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ABSTRACT — Based on the local equilibrium assumption and taking 

as wave function a Slater determinant, the equations of motion and boundary 

conditions for the first sound are obtained from a variational derivation 

based on the quantum mechanical lagrangian, Assuming density dependent 5 

forces, it is shown that in the classical limit the equilibrium density is 

Po (r) = pp (0) @(R-r), where p,(0) is the nuclear matter equilibrium 

density. 

1 — INTRODUCTION 

Giant resonances in atomic nuclei are highly excited states 

in which an appreciable fraction of the nucleons of a nucleus 

move in a coherent manner. 

On the microscopic level the random phase approximation 

provides a very detailed description of collective vibrations. It 

requires, however, a considerable numerical effort, which might 

obscure the simple physical relations pertinent to strongly 

collective excitations. Fluid dynamical methods in application to 

giant multipole resonances [2-11] aim at understanding salient 

features of these collective modes, without entering into the 

complexity of detailed numerical descriptions. 

In order to reach a deeper understanding of the physical 

processes associated with the behaviour of atomic nuclei, it is 

desirable to separate detailed aspects of nuclear properties, which 

often appear due to shell effects, from gross properties depending 

(*) Presented at ‘‘3.* Conferéncia Nacional de Fisica’’, Coimbra, Por- 

tugal (June 16 - June 18, 1982). 
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smoothly on the mass number A. This suggests, therefore, an 

explanation on the basis of fluid dynamical approximations, which 

may be formulated in terms of such quantities as matter and 

current densities, denoted respectively by p and j, pressure 

tensor P,;, etc. 

In this note, we will restrict the discussion to hydrodyna- 

mics [1-3], which is the simplest example of such an approximation. 

In the hydrodynamical case, the main assumption is the use of 

the Thomas-Fermi approximation or, equivalently, that the spheri- 

city of the Fermi surface in momentum space is preserved during 

the nuclear motion. 

Our purpose is to derive the macroscopic equations of motion, 

which characterize first sound, starting from a microscopic basis. 

As wave function we consider the following Slater determinant 

|¢>=exp(iQh-')|¢>  , (1) 

where |¢; > is, among the Slater determinants leading to the 
density p, the one which minimizes the expectation value of the 

energy. Therefore the distribution function, associated to | ¢; >, 
may be written as follows 

f,=O(pi(r)—pP*) (2) 

assuming the value 1 when p} (r) > p? and zero otherwise. In 

this way the Pauli principle is obviously taken into account. 

In order to have an appropriate description of the time 

evolution of the system, we must allow the distribution function 

to acquire time odd components, which is done with the help of 

the time even generator Q. In this note Q is just a local field 

A A 
Q= 3 X(n.t) . (3) 

Since we are interested in the classical limit of nuclear 

dynamics, we restrict our discussion to the leading orders of 

appropriate Wigner-Kirkwood expansions. To avoid cumbersome 

notations, we find it most often convenient to denote by the same 

symbol an operator and its Wigner transform. The density 

matrix ¢ is the only exception. In this case, we denote the 

distribution by f(r,p,t). in order to avoid confusion with the 
density o (r,t). 
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2— THE STATIC PROBLEM 

The equilibrium distribution function f, is obtained by 

minimizing the energy density functional W[f ] 

wif]=f[ ar,f(1) pi/(2m) + (1/2!) fdr dr.f(1) £2) ve 

4 

+ (1/3!) fff arcar. dr, £ (1) £(2) £03) ves chs ” 

and by taking into account the subsidiary condition 

A=farf , (5) 

where the quantities v,., Vio;,..., stand, respectively, for the two- 

body, three-body, ... interactions. A is the particle number and dr 

is given by the following expression 

dr =g dr d’p (27h)? . (6) 

The distribution function describing a system instantaneously 

at rest is given by (2). Since the only quantity on which f, depends 

is p?(r), it is clear that W[f,] may be written as a functional 

of the density p, associated to f,, 

p= {dp (Qrh) he, (7) 

Wif,]=Elpl= dr F(p.) (8) 

where the domain D is the region where p;(r) is positive. 

A simplified hamiltonian with two-body and three-body 5 

forces is considered, 

Vie = to 8 (rn- te) ’ (9) 

Viez = ts S(rn-re) 8 (te- 4s) . (10) 
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For such an hamiltonian F (, ) is 

F (o¢) = (3/10m ) p, pi + a, p; + a, p% (11) 

We choose the following Skyrme parameters: a. — — 408.4 

MeV fm* and a; = 1079.4 MeV fm*. This choice is made in order 

to enable comparision with the results obtained in ref. [3] for a 

calculation of first sound in finite droplets of nuclear matter with 

smooth surface and therefore related to an energy functional 

which includes, besides the volume terms appearing in (11), also 

other terms involving derivatives of the density. 

We now proceed to a general variation of the energy functional 

E taking into account as a subsidiary condition that the particle 

number A remains constant 

8(E-\A) =f d’r 39 (dF/dp —r) 

+ J. dy (8R-n) (F(p)—d 0). (12) 

5R denotes the displacement of the boundary & of the domain 
D and n is the outwards normal. The equilibrium density p, is the 

solution of the following set of equations 

(dF/dp),—p,= A + (13) 

(F(p) oP ron =O (14) 

where R is the radius of the spherical nucleus. 

Equation (13) implies that p, is independent of r. Com- 

bining (13) and (14) it follows that the value of po is obtained 

by minimizing the total energy AF(9)/p, 

(d[p"F()]/dp),-,, = 0. (15) 

This means that p, is the equilibrium density of nuclear matter. 

From now on we will be considering the equilibrium density 

Po(r) = p(0) O(R-r) > (16) 

where the radius R is fixed by p.(0) and A. 
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3 — TIME EVOLUTION 

The distribution function corresponding to the Slater determi- 

nant (1) is 

f=f,+48,,%$ 4+ (1/2)4U, 4h then. (17) 

Assuming that the field 7 is small, we have that the density and 

the current are 

p=g {dp (2rh)f=% , (18) 

j=g [ d’p(27hk)~ f p/m ~(p,/m) vz. (19) 

From the quantum mechanical lagrangian 

L=i#s<¢|s>—<4/H|o> . (20) 

we obtain in the classical limit the following lagrangian for the 

fields % and 9, 

L= fi dir 4 —Zp,—(,/2m) (V%)*—F(,) f , (21) 

where 

<¢|H]de>= fdr FO). (22) 

When we minimize the action integral, we take into account 

the conservation of the particle number by introducing an appro- 

priate Lagrange multiplier \, 

sfdt(L+ad)=faty [ar 3% po, + (1/m) V-(p,¥%) J 

+ [der 89,[-%—(1/2m) (V%)*—dF/do, +] oR; 

+ fy dy 9%, m-(R—(1/m) Vz) 

Mu
 + fy dx (8R-A) [—Zoe—Cpp/2m) (VX)?—F (pp) + Ap]. 
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By considering arbitrary variations of the fields % and »,, the 
following equations of motion are obtained 

o +(1/m)V-(p,V%Z)=0 , (24) 

Z+(1/2m) (V%)? + dF/dp,-r’=0 . (25) 

Equation (24) is obviously the continuity equation and equa- 

tion (25) leads to the ‘Euler type’ equation 

d, §=—(p,/m) V(dF/de,) . (26) 

The two following boundary conditions are obtained 

pp + (p,/2m) (VX)? +F(p,)—Apel pep =O, (27) 

pp (R—(1/m) VX) -njp =0. (28) 

The equations (25) and (27) imply the boundary condition (15) 

at the surface. This means that at the surface p, is equal to p, and 
therefore we recover the well known first sound [1-3] boundary 

condition 

(Plew =O, (29) 
where pf" = ¢,— 6, . 

From equations (24) and (25) we obtain the first sound 

equation for 9, 

0p = (1/m)V-(p,V(dF/dp,)) . (30) 

If we linearize this equation we obtain in the interior of the 

nucleus 

— oy = Ci A es» > (31) 

with the first sound velocity 

c,=(Pp/m) V(I+F,)/3 (32) 
and where the Landau parameter F, is 

F,= (3m/pi) Xa, o(o—1) 9-4, (33) 
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The solutions p(? have the following analytical form inside the 
nucleus 

eo) « j(kr) Ym; (34) 

where j, is a spherical Bessel function and k = o/c,. 

The energies of the first compressive mode according to the 

present formalism are shown, for different values of 1, in the 

following table, for a nucleus with A = 208 and compared with 

the corresponding energies obtained by solving eq. (30) for a 

nucleus with a smooth surface [3] based on a more sophisticated 

formalism, allowing for quantum corrections through the inclusion 

of the so called surface terms. 

TABLE — First sound eigenfrequencies (in MeV ) for the first compressional 

mode for a nucleus with A = 208. The energies in the first line are taken 

from ref. [3], those in the second line are obtained according to the square 

well model density. 

  

  

1=0 =1 1=2 1=3 

18.4 25.3 30.9 35.5 

18.5 26.4 33.9 41.1 

  

4 — CONCLUSION 

In this note we have derived the first sound equations of 

motion and respective boundary conditions, starting from a 

microscopic point of view, where determinants are taken as trial 

wave functions and local equilibrium is assumed. 

Actually the local equilibrium assumption is not realistic for 

atomic nuclei at very low temperatures, because then the mean 

free path \ of the nucleons in nuclei is of the order of the typical 

wavelength R (nuclear radius) and therefore the basic physical 

condition for first sound modes (namely \1<<R) is generally 

not met. It is well known that nuclear giant resonances may 

be obtained in a fluid dynamical picture by means of the generalized 

scaling approach [3-10]. However in order to obtain a description 
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of low lying modes in a fluid dynamical approach, one has to 

go beyond the generalized scaling approach. One possible way 

of obtaining low lying modes is to allow for the interplay between 

first sound and the generalized scaling approach [2, 11]. 

APPENDIX 

In eq. (23) we had to perform a partial integration with 

respect to time leading to a surface term and to a volume term. In 

order to understand how the surface contribution appears, we 
i, 

consider the integral { dt I, d'r G(r,t) such that 

8 [d'rG(r,t) = 8 fdrG(r,t:) =0 (A.1) 
D D 

Then, we have 

fas ferent =. {fara + fae chm) GCr.t) =0 

(A.2) 

and, in particular, if G = 8% », we will have 

ty 4 Py] f° . i % f at} far (aie + 0% 9) + Fax (Rm) 5% 9h —o (A.3) 
t D > 

so that 

f at | Parr ai of — f) at} > farraxe + fash) oof aw 
1 D 1 D s 
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