A COMPENDIUM ON DIRECTED AND 3-D UNDIRECTED LATTICE DATA

J. A. M. S. DUARTE

Departamento de Física - Faculdade de Ciências do Porto, 4000 Porto, Portugal

(Received 30 July 1984)

ABSTRACT — Lattice data on configurational histograms are given for three dimensional undirected bond (site) clusters according to cycle discriminations and for directed lattice animals with both perimeter and cycle discriminations.

INTRODUCTION

Configurational studies have remained one of the foundations of critical phenomena, ever since their study began, despite strong competition from transfer-matrix methods and all the various types of calculations spawned by the renormalization group theory. In this presentation we are concerned with the statistics of connected clusters relevant to the percolation and animal problems, as covered in a previous compendium of data [1]. The present summary lists results pertaining to both the normal (i.e. undirected) and directed problems, and aims to complete the previous illustration in the light of both the current knowledge and the significant theoretical advances that have occurred in the intervening three years. In the domain of normal percolation and normal lattice animals these are non-existent (but see [5]). However, for directed percolation and the relevant animals exact results now include the dominant and sub-dominant singularities for dimensions 2 and 3, their connection in all dimensions to the value of the Yang-Lee edge singularity [2], [3], as well as some multiplicities for the most significant lattices in 2 and 3 dimensions [3].

In this paper, the normal models are only listed in 3 dimensions and we have run as close a parallel as possible with the earlier

Portgal. Phys. - Vol. 15, fasc. 3-4, pp. 119-138, 1984

presentation. The data are therefore divided into 4 groups: cyclomatic number distributions (in normal percolation), fixed size cycle groupings (normal animals), fixed size directed percolation groupings and cyclomatic number distributions (directed animals). The notation conforms to the one applied throughout the previous paper, so that

- s denotes the number of cluster sites
- b denotes the number of cluster bonds
- c = b s + 1 denotes the cyclomatic number of a connected cluster
- e denotes the external bond ("energy") perimeter
- t denotes the perimeter in the percolation sense

A — Cyclomatic number distributions in percolation

In 3 dimensions the weighting of configurations by its cyclomatic number continues to be of interest. In normal percolation the weighted Euler's law acts as a sum rule for configuration derivations that include the three indices b, s, and t. In fact from the expansions of the moments of the cluster size distribution for bond

$$\langle s^{k} \rangle = \sum_{s, b, t} s^{k} g_{sbt} p^{b} (1-p)^{t}$$
 A1

and site percolation

$$\langle b^{k} \rangle = \sum_{s, b, t} b^{k} g_{sbt} p^{s} (1-p)^{t}$$
 A2

one has for k = 1

$$< s^{1} > = 1 - (1 - p)^{z}$$
 A3

and

$$\langle b \rangle = 1/2 z p^2$$
 A4

with z the coordination number of the lattice.

Our results are for the sets of histograms Σ_b b g_{sbt} for the simple cubic, body-centred cubic and face-centred cubic site animals, and for Σ_s s g_{sbt} on the diamond, simple cubic, and face-centred

cubic lattices. For the first set we have managed to complete valence discriminations on all three lattices (a particularly lengthy task for the face-centred cubic lattice). From these the number of bonds in a cluster follows through the laws

$$\sum_{v} s_{v} = s$$

$$\sum_{v} v s_{v} = 2 b$$
A5

where s_v is the number of sites with alence v and the summations run from 1 to z. Rather than pursue the same line for bond percolation we have partitioned the data in [4] according to the number of sites in each cluster and weighted them accordingly. Equation A3 provides, as usual, a consistency check on such manipulations. The task is very easy. On the lower coordination number side it can be supplemented, if required, with analyses of those few space types whose contribution to the added perimeter through the yield factor technique stretches long enough to involve an overlap with the contribution of strongly embedded clusters of the following cyclomatic number. The cardinal rules of this derivation are stated in [1], section D.

B — Fixed size energy groupings (normal animals)

The most relevant result applicable is ref. [5], which throws light on the structure of the dominant singularities for fixed cycle animals. We complete the simple cubic results of ref. [5] with the rest of the possible cycle values and add the diamond site results for animals.

Since our previous comments in [1] were written in the light of the then current ideas, that basically relied on a logmultiplicity for the histogram that would ultimately be linear in the cluster size, it is now clear from [5] that only the prefactor and the exponent can make the shape of these histograms evolve (the multiplicity associated with each cycle value is constant and equal to the tree multiplicity). As could be expected, the diamond lattice gives no more than a rather faint support to this rule.

C — Fixed size directed percolation groupings

Directed lattice animals have greatly benefited from the attention of Deepak Dhar and his collaborators [2], [3], and K. De'Bell has derived unpublished 3 and 2 dimensional perimeter polynomials as a basis for his calculations of the usual critical exponents in directed percolation [6], [7]. In this section we list results on the simple quadratic, triangular, simple cubic and hypercubic 4-dimensional lattices (site problem). These typically add two to three more terms to the susceptibility-like exponent series, although further efforts are necessary for a significant refining of the p_c estimates and the γ values in refs. [6] and [7].

These susceptibility series provide consistency checks on the present data, while for the total number of clusters [2] and [3] furnish further numbers, on the totals of lattice animals with a given size.

Ref. [3] is particularly interesting, since a good alternative derivation relies on the use of compact source clusters. Although a recursion relation with the generality of that in ref. [3] valid for the total number of clusters has not been proposed, the two index discriminations required for the perimeter polynomials can be written through inspection. Putting $g_{s,t}^{(i)}$ as the total number of animals from a compact source cluster with length *i*, and using the simple quadratic lattice

$$g_{st} = 2 g_{s-1, t-1} + g_{st}^{(2)}$$
 C1

$$g_{s\,t}^{(2)} = 3 g_{s-3, t-2} + g_{s+1, t-1}^{(3)} + g_{s\,t}^{(3)} + 2 g_{s-2, t-1}$$
C2

$$\sum_{s,t}^{S} g_{st}^{(i)} p^{s} (1-p)^{t} = p^{\sum_{1}^{i} m} C3$$

This last equation is very useful. For i = 1, it is no more than the sum rule for the primary species in directed percolation. For higher values of *i* additional sets of perimeter polynomials can be used to either check or substitute the lengthier complete polynomials. The configurational work is therefore lessened while

parallel series for the moments of the cluster size distribution can be obtained by the formula

$$< s^{k} > = \sum_{s,t} s^{k} g^{(i)}_{st} p^{s} (1-p)^{t}$$
 C4

where equation C3 is implicity contained for k=0, k=1 leads to susceptibility series (for the exponent γ) and the sum rule C3 provides further coefficients.

D — Cyclomatic number distributions (directed animals)

There is no available information on cycle discrimination for directed lattice animals and critical properties have only one significant point of reference: the result on the correlation exponent for two-dimensional trees obtained by Nadal et al. [8], by the transfer-matrix technique to a high degree of precision. For our studies on the cyclomatic structure of directed animals we have combined straightforward counting, compact source generation and valence discrimination. Note that unlike the undirected models, in the present instance, the bond expectancy rule for site percolation and the site expectancy rule for bond percolation cannot be used. There are no closure sum rules that conveniently test the overall consistency of the discriminations. Unlike earlier valence studies there are 3 possible options in directed models: incoming valence, outgoing valence and total valence. We have made extensive studies - not listed here - on outgoing valence and in terms of these the linkage rule for cyclomatic number calculations is

$$\sum_{v=0}^{z/2} v s_v = b \qquad \qquad D1$$

We have used outgoing valence studies on all the simple quadratic site problem histograms. For the simple cubic site problem only the last two terms have not been checked in this way. The data are here presented in a combination of the various references presented: thus, the generation of complete bond

Portgal. Phys. - Vol. 15, fasc. 3-4, pp. 119-138, 1984

discriminations from compact sources of length 2 on the simple quadratic lattice is obtained by the law

$$g_{sb} = g_{sb}^{(2)} + 2 g_{s-1,b-1}$$
 D2

and other linkage rules can be related in a similar manner (for example, on the simple cubic, they will involve the embedding of compact sources $g_{s\,b}^{(2)}$, expanding three-dimensionally, and of $g_{s\,b}^{(3)}$).

This research was funded at various stages by the Royal Society, Academia das Ciencias and INIC (Portugal). The author is indebted to N. Rivier for discussions, Prof. J. M. Araújo for help with the manuscript and the École Normale Supérieure Group for hospitality during part of the writing.

APPENDIX

CYCLOMATIC NUMBER DISTRIBUTION IN PERCOLATION

A — Simple cubic site problem

	s = 2	$\Sigma_{\rm b}$ bg _{sbt}	25	240
10		3	26	15
	s = 3		s =	7
13		24	18	6
14		6	21	480
	s = 4		22	4500
15		24	23	16440
16		156	24	31488
17		72	25	39816
18		9	26	34404
	s = 5		27	15408
17		48	28	3240
18		420	29	360
19		936	30	18
20		624	$\mathbf{s} =$	8
21		144	21	96
22		12	22	42
	s = 6		23	2304
18		30	24	17196
20		1536	25	65904
21		3864	26	154050
22		5808	27	245040
23		4824	28	284028
24		1620	29	245676

30	129660	37	672
31	36816	38	24
32	5712	s ==	10
22	504	25	2352
24	21	26	8181
34	0	27	58224
s =	9	28	352020
23	400	29	1232616
24	852	30	3303642
25	12144	31	6821196
26	71448	32	11207616
27	283704	33	14634960
28	706248	34	15332598
29	1332984	35	12894384
30	1902468	36	8024256
31	2069100	37	3284916
32	1770576	38	842694
. 33	1033824	30	136176
24	262904	33	13032
34	302904	40	864
35	74520	41	004
36	9216	42	21

A — Body-centred cubic site problem

	s = 2	$\Sigma_{\rm b}$ bg _{sbt}	31	144
14		4	32	16
-	s = 3		s = 6	
17	-	24	24	288
19		24	25	120
20		8	26	3736
20	s = 4		27	1200
20	-	132	28	11544
22		240	29	7144
23		96	30	14436
24		108	31	13128
25		72	32	10684
26		12	33	10104
20	s = 5		34	5220
21	5	24	35	2400
23		680	36	1080
24		120	37	240
25		1752	38	20
26		752	s = 7	,
27		1560	25	72
28		1344	26	96
29		576	27	2472
30		432	28	1080
00				

Portgal. Phys. - Vol. 15, fasc. 3-4, pp. 119-138, 1984

J. A. M. S. DUARTE — A	compendium on directed and 3-L) undirected lattice data
--------------------------	--------------------------------	---------------------------

29	22608	45	129048
30	14664	46	47460
31	70968	47	15792
32	58032	48	3780
33	119376	49	504
34	115872	50	28
35	129744	s =	= 9
36	127224	26	- 8
37	90912	29	504
38	67320	31	14280
39	40560	32	15400
40	16920	33	163152
41	6888	34	191016
42	2160	35	909392
43	360	36	1058856
44	24	37	3093864
	s = 8	38	3628232
26	56	39	6992304
28	924	40	8188248
29	864	41	11147440
30	21288	42	12390048
31	17328	43	12844488
32	139260	44	12532480
33	129960	45	10577016
34	457020	46	8330232
35	455128	47	5920960
36	926712	48	3536496
37	997656	49	1925496
38	1259788	50	930536
39	1303104	51	354264
40	1183764	52	113568
41	1049648	53	31296
42	757584	54	6048
43	472896	55	672
44	282244	56	32

A — Face-centred cubic site problem

	s = 2	$\Sigma_{\rm b}$ bg _{sbt}	27	192
18		6	28	360
	s = 3		29	432
22		24	30	474
23		24	s = 5	
24		60	28	192
	s = 4		29	48
24		12	30	888
26		132	31	1560

. A. M. S. DUARTE - A	compendium on directed	and 3-D	undirected	lattice data
-----------------------	------------------------	---------	------------	--------------

32	2340	39 48504
33	3840	40 139044
34	5352	41 227424
35	4848	42 523392
36	3384	43 894624
	s = 6	44 1529868
30	66	45 2518632
31	264	46 3795504
32	1452	47 5293128
33	1512	48 7015092
34	7938	49 8158740
35	10152	50 8553690
36	19608	51 8040408
37	33792	52 5828280
38	44460	53 3198216
39	58896	54 1049538
40	60828	s = 9
41	45840	37 120
42	23310	38 3096
	s = 7	39 9624
33	504	40 30264
34	1056	41 117120
35	3696	42 238488
36	14448	43 585000
37	21672	44 1324284
38	56400	45 2472480
39	99312	46 4922808
40	173712	47 8433096
41	264216	48 14548080
42	427296	49 23360916
43	567432	50 35586816
44	658944	51 51293712
45	732672	52 68905152
46	619608	53 86741136
47	394200	54 101184072
48	157092	55 105531120
	s = 8	56 99223488
35	408	57 81340632
36	1008	58 51984224
37	9192	59 24993376
38	16560	60 6972840

A — Diamond bond problem

	b = 1	$\Sigma_{s} sg_{sbt}$	b = 3	
6		4	10	88
	b=2		b = 4	
8		18	12	455

Portgal. Phys. - Vol. 15, fasc. 3-4, pp. 119-138, 1984

	b = 5		19	10380
13		72	20	99780
14		2376	21	22528
	b = 6		22	416196
12		12	23	4152720
15	all.	1008	24	9489062
16		12474	b	= 11
	b = 7		17	120
14		168	18	1020
17		9984	20	10560
18		65488	21	130152
	b = 8		22	683232
16		1656	23	319968
18		1728	24	4187592
19		82080	25	27118656
20		343701	26	49936536
20	$\mathbf{b} = 0$	545751	b =	= 12
17	0 - 9	5.40	16	10
17		540	19	2112
18		13572	20	12606
19		1280	22	148608
20		33180	23	1309032
21		605040	24	4556844
22		1805440	25	3828032
	b = 10		26	36671700
16		54	27	170927328
18		600	28	263195972

A - Simple cubic bond problem

	b = 1	$\Sigma_{s} sg_{sbt}$	b =	= 6
10		6	23	756
	b = 2		24	2976
14		45	27	2800
	b = 3		28	39900
17		48	29	123312
18		332	30	131236
	h = 4	002	b =	7
16	D — 4	10	22	108
10		12	26	1848
21		960	27	18732
22		2430	28	30576
	b = 5		29	3072
20		240	31	128832
24		1620	32	591216
25		11952	33	1166976
26		17802	34	973800

	b = 8	27	1696
25	504	29	23136
26	2646	30	38832
28	3264	32	88128
30	86112	33	226908
31	278256	34	1815912
32	288216	35	3330288
33	82944	00	0000200
34	263520	30	2928828
35	2695248	37	1677600
36	7069032	38	9708450
37	10558944	39	39865920
38	7266429	40	76089120
	b = 9	41	92969640
24	56	42	54472030

A — Face-centred cubic bond problem

	b = 1	$\Sigma_{\rm s} {\rm sg}_{\rm sbt}$	57	103536
22		12	58	215280
	b=2		59	286704
31		72	60	393300
32		126	61	321840
	b = 3		62	145404
30		24	b = 6	
39		128	36	8
40		768	46	4080
41		1488	47	3240
42		1304	48	2520
	b = 4		54	4440
38		120	55	62928
39		480	56	150480
40		492	57	255600
48		6150	58	261216
49		9480	59	201210
50		20880	60	105000
51		22920	62	103888
52		13695	63	94192
	b = 5		64	237720
37		48	65	1172304
38		96	66	2373616
47		7320	67	3740352
48		8640	68	5592804
49		13080	69	6170472
50		7560	70	6544944
55		2304	71	4284000
56		37008	72	1557962

Portgal. Phys. - Vol. 15, fasc. 3-4, pp. 119-138, 1984

b =	= 7	68	5663280
45	1200	69	4138092
46	480	70	1406328
53	4464	71	1619520
54	54288	72	3240960
55	106416	73	13946112
56	138528	74	27036480
57	94752	75	52254336
58	46620	76	75166848
62	227976	77	100550400
63	523824	78	119089344
64	2284800	79	116656896
65	4064928	80	100660752
66	5450424	81	55223040
67	6644232	82	16817664

FIXED SIZE ENERGY GROUPINGS (NORMAL ANIMALS)

	b = 1	g _{sb}	b =	7
2		3	6	18
	b=2		7	7308
3		15	8	357987
	b = 3		Ŭ	00.001
4		95	b =	: 8
	b = 4		7	450
4		3	8	81981
5		678	9	3104013
	b = 5			
5		48	b =	= 9
6		5229	7	8
	b = 6		8	7958
6		622	9	895536
7		42464	10	27511300

B — Simple cubic bond animals

B — Diamond lattice site animals

	s = 1	g _{sb}	s = 5	
0		1	4	91
	s = 2		s = 6	
1		2	5	396
	s = 3		6	2
2		6	s = 7	
	s = 4		6	1782
3		22	7	24

	s = 8	12	1
7	8186	s =	11
8	207	10	862642
0	s = 9	11	62112
8	38199	12	1146
9	1508	13	16
10	6	s =	12
	s = 10	11	4161378
9	180544	12	371001
10	9978	13	10434
11	102	14	198

FIXED SIZE DIRECTED PERCOLATION GROUPINGS

C — Simple quadratic site problem

	s = 1	g _{st}	s = 9	
2		1	5	2
-	s = 2		6	45
3	5 1	2	7	259
U.	s = 3		8	707
3	0 0	1	9	854
4		4	10	256
-	s = 4		s = 10	
4	5-1	5	5	1
5		8	6	28
0	s — 5	0	7	267
4	3 - 0	2	8	1023
5		17	9	2163
6		16	10	2052
0	e = 6	10	11	512
4	3 - 0	1	s = 11	
5		13	6	20
6		50	7	218
7		32	8	1269
'	s = 7	02	9	3681
5	5 - 1	10	10	6264
6		58	11	4827
7		135	12	1024
8		64	s = 12	2
0	c — 8	01	6	10
5	3 - 0	5	7	181
6		57	8	1278
7		214	9	5291
0		346	10	12360
0		128	11	17383
9		120		

12		11170	12	242203
13		2048	13	352343
	s = 13		14	311262
6		5	15	128726
7		131	16	16384
8		1219	s ==	16
9		6290	7	36
10		20136	8	681
11		39329	9	6428
12		46661	10	37451
13		25498	11	148186
14		4096	12	411505
	s = 14		13	784420
6		2	14	1005138
7		90	15	779932
8		1069	16	285572
9		6805	17	32768
10		27455	s =	17
11		71686	7	20
12		119848	8	508
13		121873	9	5741
14		57564	10	39233
15		8192	- 11	183464
	s = 15		12	610686
6		1	13	1462141
7		56	14	2452215
8		881	15	2794187
9		6837	16	1922948
10		33337	17	629100
11		109887	18	65536

C — Triangular site problem

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S =	$=1$ B_{st}	8	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1	9	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S	=2	s = 5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	2	6	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	1	7	31
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S	= 3	8	51
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	5	9	29
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	4	10	8
s = 4 $s = 65 1 66 12 7$	7	1	11	1
5 1 6 6 12 7	S	=4	s = 6	
6 12 7 5	5	1	6	2
	6	12	7	22
7 15 8 9	7	15	8	93

9	162	14	23596
10	125	15	18901
11	47	16	10084
12	10	17	3663
13	1	18	921
	s = 7	19	159
7	15	20	18
8	77	21	1
9	293	s = 1	1
10	523	8	6
11	485	9	142
12	241	10	925
13	69	11	4370
14	12	12	14317
15	1	13	35970
	s = 8	14	66029
7	5	15	84536
8	65	16	74390
9	291	17	45287
10	934	18	. 19350
11	1725	19	5891
12	1800	20	1285
13	1098	21	197
14	407	22	20
15	95	23	1
16	14	s = 1	2
17	1	8	2
	s = 9	9	75
7	1	10	761
8	40	11	4144
9	265	12	17096
10	1078	13	52340
11	3086	14	125301
12	5739	15	228005
13	6555	16	302428
14	4659	17	286950
15	2114	18	194685
16	631	19	95281
17	125	20	34057
18	16	21	8960
19	1	22	1731
	s = 10	23	239
8	20	24	22
9	199	25	1
10	1094	s = 1	3
11	3925	9	40
12	10452	10	522
13	19345	11	3736

Portgal. Phys. - Vol. 15, fasc. 3-4, pp. 119-138, 1984

12	17850	11	2990
13	66212	12	17429
14	191545	13	74526
15	441060	14	255149
16	794995	15	701740
17	1083076	16	1565490
18	1091816	17	2796170
19	810484	18	3886667
20	444953	19	4116618
21	182225	20	3294610
22	56161	21	1994447
23	13048	22	918464
24	2267	23	324019
25	285	24	88006
26	24	25	18349
27	1	26	2901
	s = 14	27	335
9	15	28	26
10	348	29	1

C — Simple cubic site problem

		g		11	100
	s = 1	ost		11	168
3		1		12	571
	s = 2			13	1512
5		3		14	2334
	s = 3			15	729
6		3		s = s	8
7		9		10	12
	s = 4			11	36
6		1		12	394
8		24	1	13	1554
9		27		14	4131
	s = 5			15	8598
8		9		16	9099
9		21		17	2187
10		126		s = s	9
11		81		10	3
	s = 6			11	3
9		15		12	198
10		69		13	798
11		219		14	4062
12		567		15	12285
13		243		16	26619
	s = 7			17	43605
9	1.070-0.000-0.07	3		18	34113
10		22		19	6561

	s = 10	18	265065
10	1	19	548817
12	45	20	846369
13	426	21	905424
14	2400	22	443484
15	10122	23	59049
16	34907	s =	12
17	86118	13	48
18	155874	14	477
19	204408	15	3156
20	124262	16	17535
20	124302	17	82128
21	19683	18	274809
	s = 11	19	809265
12	13	20	1832232
13	153	21	3250473
14	1029	22	4323981
15	6852	23	3838500
16	27480	24	1554633
17	98232	25	177147

C — Hypercubic 4 - dimensional site problem

	s = 1	g_{st}		s = 7	-
4		1	15		. 36
	s = 2		16		169
7		4	17		286
	s = 3		18		2100
9		6	19		5336
10		16	20		11922
	s = 4		21		16218
10		4	22		4096
12		66		s = 8	
13		64	16		28
	s = 5		17		82
10		1	18		900
13		52	19		1770
14		84	20		7244
15		474	21		25224
16		256	22		51254
	s = 6		23		93918
13		14	24		85560
15		132	25		16384
16		514		s = 9	
17		1236	16		4
18		2904	18		183
19		1024	19		686

Portgal. Phys. - Vol. 15, fasc. 3-4, pp. 119-138, 1984

20	2274	20	224
21	13746	21	4536
22	29603	22	13586
23	103320	23	53986
24	259638	24	177514
25	450758	25	439916
26	655770	26	1196838
27	433320	27	2413458
28	65536	28	3640140
	s = 10	29	4214016
18	30	30	2130912
19	216	31	262144

CYCLOMATIC NUMBER DISTRIBUTIONS (DIRECTED ANIMALS)

D — Simple quadratic cycle groupings

	s = 3	g(2)		12		105
2		1		13		18
	s = 4				s = 11	
3		2		10		1818
4		1		11		1860
	s = 5			12		1073
4		5		13		356
5		4		14		98
	s = 6	÷		15		6
5		14			s = 12	
6		10		11		4790
7		2		12	1	5307
	s = 7			13		3308
6		38		14		1277
7		26		15		368
8		11		16		63
	s = 8			17		2
7		100			s = 13	
8		77		12		12633
9		34		13		15084
10		5		14		10087
	s == 9			15		4406
8		262		16		1357
9		228	8	17		320
10		102		18		36
11		30			s = 14	
12		1		13		33364
	s = 10			14		42670
9		690		15		30638
10		653		16		14532
11		334		17		5094

18	1291	19	63146
19	250	20	19994
20	15	21	4988
s =	= 15	22	955
14	88211	23	98
15	120348	24	1
16	92290	s=	17
17	47130	16	618500
18	18293	10	0105000
19	5126	17	950692
20	1182	18	818594
21	164	19	479578
22	5	20	213949
s =	= 16	21	74466
15	233460	22	20508
16	338642	23	4476
17	275698	24	734
18	151301	25	48

D-Simple cubic site problem

	s = 1	g_{sb}	12	1
0		1	s =	= 9
	s = 2		8	74643
1		3	9	40245
	s = 3		10	11119
2		12	11	2037
	s = 4		12	108
3		49	13	15
4		3	s = 10	
	s = 5		9	336108
4		204	10	212505
5		33	11	70752
122	s = 6	1000	12	16686
5		870	13	2097
6		228	14	190
7	5	15	14	180
	s = 7		15	18
6		3787	s =	= 11
7		1344	10	1524438
8		201	11	1105692
9		7	12	427305
	s = 8		13	119091
7		16722	14	22386
8		7467	15	2740
9		1641	16	294
10		180	17	21

Portgal. Phys. - Vol. 15, fasc. 3-4, pp. 119-138, 1984

	s = 12	15	186237
11	6956214	16	32493
12	5692404	17	3927
13	2498400	18	555
14	794151	20	3

REFERENCES

- [1] DUARTE, J. A. M. S., Portgal Phys., 12, 99 (1981).
- [2] DHAR, D., PHANI, M. K., BARMA, M., J. Phys., A15, L279 (1982).
- [3] DHAR, D., Phys. Rev. Letters, 21, 853 (1983).
- [4] SYKES, M. F., GAUNT, D. S., GLEN, M., J. Phys., A14, 287 (1981).
- [5] WHITTINGTON, S. G., TORRIE, G. M., GAUNT, D. S., J. Phys., A16, 1695 (1983).
- [6] DE'BELL, K., ESSAM, J. W., J. Phys., A16, 385 (1983).
- [7] DE'BELL, K., J. Phys., A16, 3553 (1983).
- [8] NADAL, J. P., DERRIDA, B., VANNIMENUS, J., J. Physique (Paris), 43, 1561 (1982).