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ABSTRACT — We present some results of a study of the propagation 

of nonlinear wavepackets in a plasma strip-line system, which can be de- 

scribed as a nonlinear dispersive transmission line. 

I— INTRODUCTION 

In the last few years much attention has been given to the 

propagation of solitons in physical systems. In particular, it is now 

well-known that a plasma can propagate envelope solitons with 

central frequency nearly equal to the electron plasma frequency. 

This effect has been studied in uniform [1] and _ slightly 

nonuniform [2] semi-infinite plasmas. However, from the experi- 

mental point of view it is perhaps more suitable to study a 

configuration in which the transverse dimension of the plasma is 

finite. This is the reason why in this paper we discuss the 

propagation of envelope solitons in a plasma strip-line system. 

Such a system can be understood as a nonlinear transmission line, 

where the nonlinearity is associated to the plasma motion. 

In Section II we study the plasma strip-line element with 

which we can construct a transmission line. We will study its 

properties in the linear approximation, assuming that the plasma 

electrons are at rest in the absence of an external perturbation. 

In Section Ili we take into account the existence of a finite 

electron temperature. In Section IV we show how a nonlinear 

transmission line equivalent to a long plasma strip-line can be 

constructed. In Section V we discuss the equation of propagation 

along this line. In the linear approximation we obtain the dispersion 
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relation equivalent to that of the line. In the nonlinear regime 

we show that the equation of propagation for the envelope of a 

wavetrain can be reduced to the nonlinear Schrodinger equation, 

if the carrier frequency of the wavetrain is nearly equal to the 

electron plasma frequency. The soliton solution of the nonlinear 

Schrodinger equation is then of the Langmuir type. However, the 

associated electric field in the plasma is perpendicular and not 

paralell to the direction of propagation, as it is the case in 

the usual Langmuir solitons. The conclusions are stated in 

Section VI. 

Ii COLD PLASMA CONDENSER 

We consider a plasma slab of uniform density and thickness 

a placed between two infinite plane plates P, and P, (see Figure 1). 

The distance between plates is | and we apply a potential 
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Fig. 1 — Model of the plasma strip-line system. 

V(t) =V,exp(—iwt) to the plates. The electron motion is 

described with the aid of hydrodynamic equations which include 

a k’netic pressure term. The ions are assumed fixed. The electron 

density n and velocity v are then described by: 

on/ott+o(nv)/ax=0 
1 

(d/dttdv/ax%)v=—(e/m)E-y,v—(Si/n)on/dx ” 
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where E is the electric field inside the plasma, », is the electron 

collision frequency and S2 = 3K T,/m, where T, is the electron 

temperature. The electric field E also obeys the Poisson equation, 

if electromagnetic corrections are neglected: 

dE/dx =(e/e,) (n,—n) Q) 

where n, is the mean electron density. On the other hand, the 

parameters describing the exterior properties of the plasma 

strip-line system are the current density J and the Rotener! Vv 

between plates, which are determined by: 

J=2e,0E/dt—env=e dE, /ot 

+a/2 

V=E,(I-a) +f, E dx (3) 

where E, is the electric field outside the plasma, in the vacuum 

region laying between the plasma and each plate. 

Let us now take the cold plasma approximation (T, = S, =0). 

In that case we assume homogeneity along x and, after time 

Fourier analysis of equations (1) - (3) we find, for each com- 

ponent » of the Fourier spectrum, 

J=—iowg, E, = —ioe,e(o) E 

(4) 
V=[(l-a) e(o) ta] E 

where «(w) is the cold plasma dielectric constant: 

e(o) =1—(o,/o)? (l1+iy/o) (5) 

where o,—(e?n,/2e,m)’” is the electron plasma frequency. 
From equation (4) we get then the impedance of the plasma 

strip-line, per unit area, 

Z=V/J=([Cl—a) + aeCo)="]/(—102,) (6) 

It is easy to see that this impedance is composed by a series 

of two capacities C, and Cw , such that: 

C, = 2e,/(l—a) , Ce = o (wo) /a (7) 
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Replacing (5) in the equation for C,, we obtain circuit elements 

which do not depend on the frequency ». In fact, the imped- 
ance Z,, associated to C,, can be writen as: 

Z, =i/(oC, ) =(R,—ioL,) /(1—o® L, C,-ieR, C,) 
(8) 

where the resistance R,, the inductance L, and the capacity C 
are defined by: ° 

Ry = ave/ (e903) 5 Ly=a/(e 08) , Cyp=e/a 9) 

Thus Z, is a parallel RLC circuit and the plasma condenser 

is equivalent to such circuit in series with C,. 
A resonance (Z = 0) occurs for 

w = op V1—(a/1) (10) 

as can be seen from equation (6) if the damping terms are 

neglected; and an anti-resonance (Z— oo) for «0, which, 

in the collisionless limit, leads to o = o,. 

III— HOT PLASMA CONDENSER 

We consider now the situation where T,=- 0. In this case 
we can no longer neglect the spatial perturbation in the x direction. 

Making a Fourier transform in time, we get from equation (1) 

the following expressions for the electron density and velocity 

perturbations: 

fi=n,/(io) -dv/dx 
' “4 : (11) 

v=(1/ie) (1+in/o) (eE/m+S./n,- df /ax) 

where i=n—n,. 
Using equation (2) and after eliminating v and n, we obtain 

the following equation for the electric field: 

[e?/oxXt+k dE/dx =0 (12) 

where 

k= [o? (1+ix/o)—03)]/S3 . (13) 
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The general solution of this equation is of the form: 

E=E,+A cos kx+ B sin kx (14) 

Assuming now that the velocity at the plasma boundary 

(x = +a/2) is equal to zero, we get from the Fourier transform 

of equation (3a) the following result: 

B=0 , E,+A cos (ka/2) =E, (15) 

This means that the field (14) reduces to a purely time 

varying field E, plus a space dependent field of cosinus form. 

Returning to equation (11) we get: 

fi=(e, k/e) A sin kx 

v=(e/m) (l/io) (I tiy/o). (16) 

- [E, + (1 + k? S2/2,) A cos kx] 

Using once more the assumption that the velocity is zero 

at x = +a/2 we get from equations (15b) and (16b): 

A =—(o,/kKS,)? E, sec (ka/2) 
(17) 

E, = E, (1 + of /k’ SQ) 

We can now express the external potential drift V as a 

function of E,. Using (17) in the Fourier transform of equation (3) 

we get: 

V=E, [1+ ao /(k?S3) —203/(k*S3) tan (ka/2)] (18) 

The plasma condenser impedance can be easily obtained, if 

we use J = —iowe,E,: 

Z =—i/(we,) . 02/(K? S2) [-1k? S2/o2—ka + 2 tan (ka/2)] (19) 

This equation as well as equation (6), are well known in the 

literature [3], but here we have used a more straightforward 

calculation. The anti-resonances of the system (Z— » ) are now 

given by the condition cos(ka/2) =0, which leads to: 

oy = op [1+ (2N41)? x? AB/a?]” (20) 
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where N = 0, 1, 2,... and A} = S23/ 2. The resonances (Z—> 0) 
are obtained by solving the equation (cf. [3]): 

tan (ka /2) =(ka/2) +1/2 1 k® a4 (21) 

When » < , the wavenumber becomes imaginary (cf. eq. (13)); 
putting z = —ika/2 we can rewrite eq. (21) in the form: 

tanh z—z+ z* 41 A/a =0 (22) 

When | ka | << 1 an expansion of eq. (21) or (22) leads to: 

o = wp [1—10 AB /a? + 120 1A4/a®] 1” (23) 

In the general case (21) has solutions ky (N = 1, 2,...) such 
that 

ky a/2=xXy't by (24) 

where Xy is the Nth non-zero root of tan x = x and 8y>0 
when Ap <<a (Xy + Sy>(2N+1)27/2 when rAp>>a). An 
additional solution exists, given by (21) or (22) as 413, / a is 
larger or smaller than 1/3, respectively; when Ap<<a then 
Z—>a>/(412}%). 

Comparing the results with those obtained in the previous 

section we see that the influence of the temperature is to replace 

the anti-resonance » = o, by an infinite number of anti-resonances 

© = wy (eq. (20)), Which when \y << a (corresponding to the usual 
situation in laboratory experiments) lie close to ®p- On the other 

hand the resonance »,[1—(a/l)]'” is also replaced by an 
infinite number of resonances. Since, from (13), 

o=op[1+(2rdp/a)? (k a/2)? }? (25) 

it is easy to see that, for \p><< a, such resonances (eq. (24)) 

lie close to »,, but the ‘additional solution” lies close to 

@é,tl—Ca/t) ]*. 
If the nonlinear terms of equations (1) - (3) are now taken 

into account we get an expression for the impedance Z which is 

formally analogous to equation (19) but where o, is replaced by 
an effective plasma frequency which depends on the square 

amplitude of the potential: 

were = op (1—a@|V!*) (26) 
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The perturbative nonlinear analysis is quite lengthy and will 

not be presented here. We just quote the approximate value for 

the parameter a [4]: 

aaa { 1-1/3 (op / kS, )* [1+ (kS, /o,)? ? 

[1/2 +2 (o/o)? (1+ (KS,/o,)?)]} (27) 

with « = «,/(2n,T, a’) 

This nonlinear parameters can be justified in a rather simple 

way. If we take the equation of motion in the x direction and 

average over a time scale of the order of 1 /o,, we get for the 

mean velocity the following equation 

d<v>/dt=—(e/m) -0/d0X(e|E|?/en,) (28) 

This equation shows that there exists an effective potential 

Vere acting on the electrons and making them move (in a time 

scale much larger than 1 / o, ): 

Vere = 0 |E|? / (en, ) (29) 

Assuming that the electrons reach thermodynamic equilibrium 

in this potential [1], we get for the mean density: 

<n> =n, exp (—€Vere / KTo) (30) 

Assuming now that eV.+-;<< KT, , the mean electron density 
will be given by: 

<n> =n, (1—-€V eg / KT.) (31) 

Using (29) and considering that |E|? is proportional to | V |? 

we can see that this nonlinear correction to the mean electron 

density is of the form —a|V|*, as stated above. 

IV — EQUIVALENT TRANSMISSION LINE 

We are now able to define the nonlinear transmission line, 

which is an electric analog of the strip-line plasma system. This 
line can be viewed as an infinite series of condenser elements, 
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each of which is described by the equations deduced in the 

previous section. In order to have a complete description of the 

line we must add an inductance L,, and a resistance R, has to 
be retained when we consider the propagation along z. We 

can easily obtain the equivalent circuit of fig. 2, where the 

cold plasma limit was considered. The plasma inductance L, ( V’ ) 

is given by equation (9) where w;, was replaced by wi. In 
the expression of R, we neglect the nonlinear corrections to 

the plasma frequency, because R, is already a small quantity. In 

this work we will be interested only on the complete case of a 

transmission line without losses (R,;=R,=0). We will also 
take 1 = a in the configuration of figure 1, which means C, = ~. 
It can be shown [4] that in the most general case the nonlinear 

solutions are quite similar to those obtained here. In the assumed 

WW DT —   

    

  

R, d5Z —_l_ L, 6Z + ose 

hi ‘of Lp(v?)/52 V 

oy ai 

7 Rp/5zZ 

e —o     
Fig. 2 — Equivalent electric circuit to the transmission line. 

approximation we can see from figure 2 that the current flowing 

in the circuit elements is given by: 

di/at=(1/L,)dV/0z (32) 

On the other hand we also have: 

Si=(di/oz) &Z=i +i (33) 
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where the currents i, and i, are given by: 

i= O, 62-9 at’, i, = (82/L,)| Vat (34) 

From these equations we can easily get the equation of the 

potential perturbation along the line: 

o°V /9t—(1/C,L,) 02V/a2+V/(CyLy) =0 (35) 

V— ENVELOPE SOLITONS 

Let us consider now a potential of the form: 

V(z,t) = Vizit) e™ (36) 

where V(z,t) is a slowly varying amplitude, in the sense that: 

laV/at| << |V| (37) 

Replacing (36) in (35) and taking (37) into account we get 

an equation of propagation for the envelope in the form: 

—2iedV/dt—oe V—(1/C,L,)0V/d2+V/(C,L,) =0 

(38) 

If we use now the nonlinear expression for the plasma 

inductance L, we get: 

1/(C,L,) = 03 (1—a|V|?) (39) 

Assuming that the wave frequency » is nearly equal to the 

electron plasma frequency, equation (38) reduces to: 

Zio dV/dttoalVi? V+ (1/C,L,)0°V/9z2=0 (40) 

Using now space and time adimensional variables: 

r=(e/2)t , w=Zze (CLL): 22 (b/g): 4) 
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where L* is the linearised plasma inductance we finally obtain: 

idV/dtt+0V/d #@+a/Vi(2>V=0 (42) 

This is the well known nonlinear Schrodinger equation which, 

for V tending to zero at infinity (V0 for zo) has the 

following soliton solution [5]: 

V=A(2/a)? expii[(B/2) »—(B?/4—A?) 7] 
sech [A(»—Br) ] (43) 

where A and B are two constants of integration. The first 

constant A defines the amplitude of the soliton perturbation and 

the second one B defines the velocity at which this perturbation 

moves along the line. We can then specify B, because it has to 

be equal to the usual group velocity v, in the coordinates » and. 
In order to determine v, we return to equation of propagation (35). 

After linearization and using V = V, exp i(kz—wt) we get the 

linear dispersion relation of the line which describes the evolution 

of each Fourier component of the soliton spectrum. 

o? = 0% +k? /(CyLy) (44) 

The phase and group velocities along the line (in the coordi- 

nates z and t) are given by: 

Vo=o/k =o, [1/K?+1/(C,L,03) J” 

(45) 
Ve = 1/(C,L; ve) 

We can then state the explicit form of the constant B: 

B=2 [1+63,C,L,/k]-*” (46) 

This equation completely specifies the soliton solution of (43). 

VI — CONCLUSIONS 

We have shown in this work that a long plasma strip-line 

system can be described by an equivalent transmission line. This 

line has nonlinear properties, which are associated with the 
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nonlinear motion of the plasma particles induced by the potential 

applied to the transmission line. We have determined the linear 

dispersion relation of the line and as our main result, we have 

shown that such a line can propagate envelope solitons, which are 

similar to the well known Langmuir solitons. However the nonlinear 

eauation of propagation along the line differs slightly from the 

Zakharov equation which describes the Langmuir solitons in an 

unbounded plasma. The main difference is that our solitons are 

sclitons in the strict sense, as defined by Scott et al. [6], and 

the usually called one dimensional Langmuir solitons are solitary 

waves which are not solitons in this sense [7]. In the case of a 

line with a finite resistance R, we can also get soliton solutions 
propagating along the line with a slight damping [8]. 

This work remains valid only in the limit of low electronic 

temperatures. In the case of finite temperatures we have to compare 

the spectral width of the soliton solution with the distance between 

two neighbouring resonances in order to conclude about the 

validity of the previous results. However it is quite obvious that 

in the general case the nonlinear equation of propagation cannot 

be written in the simple form used here. The general features of 

soliton propagation using a consistent theory for a finite tempe- 

rature plasma will be discussed elsewhere. 
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