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ABSTRACT —A variational approach to the dynamics of many-fermion 

systems appropriate to physical situations requiring a description in terms of 

mixed states has been developed. The formalism presented here leads in a 

straightforward way to a mean field theory for mixed states. In this framework, 

the well-known Hartree-Fock and RPA results for pure states are generalized 

to the case of mixtures. 

1 — INTRODUCTION 

D. Brink has suggested in 1955 that one could build collective 

excitations on top of any stationary state of the nucleus, not neces- 

sarily its ground state [1]. 

In this vein, one may consider collective excitations, which 

have as “ground state” a mixture of pure states, chosen such as 

to make the energy of the system stationary. This conjecture has 

received strong support in 1981, with the experimental discovery 

at Berkeley of resonances in heavy ion collisions, which could be 

explained in terms of a dipole displacement of protons against 

neutrons in compound nuclei [2]. Indeed, y-ray spectra from 

deexcitation of compound nuclei with excitation energies of 

~ 50 MeV, have been measured and could be fitted by a bump 

superimposed on a statistical background. The same research 

group has been able to study the spectra of y-rays associated 

with products of deep-inelastic reactions, concluding that the giant 

dipole resonance strength function is temperature dependent [3]. 

The experiment indicates that the collective frequency decreases 
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with the increase of excitation energy, while the resonance width 
becomes larger. 

Such studies have added a new dimension to our knowledge 
of nuclear structure. It is then important to know how the 
theoretical nuclear response function can be formulated for excited 
systems, and how does it compare with experimental results. 

These calculations, which begun only recently, are expected 
to provide a guide for future observations in the field [4, 5, 6]. 
For example it is not excluded that other resonance multipolarities 
may be found in hot nuclei, although the techniques involved 
should be more sophisticated. In this context one may recall that 
the experimental discovery of the normal giant dipole mode 
preceded by 25 years the detection of the quadrupole resonance. 

Within the range of theoretical methods available to tackle 
the problem of nuclear collective motion at zero excitation, the 
variational approaches distinguish themselves because of their 
wide flexibility [7]. They provide an unified frame for a lot of 
approximation schemes, which are established according to the 

intuitive view one may have of the physical situation. 
In this paper we present a variational approach to collective 

excitations in hot nuclei, putting the emphasis on the derivation 
of mean-field theories appropriate to that kind of situations. 

As we have already presented the method in another publi- 
cation [8] — where we have also applied it to a schematic two-level 
model — we limit ourselves here to present in detail the calculations 

which lead, in the independent-particle approximation, to the 

self-consistent mean field picture of stationary and quasi-stationary 
states. 

The Hartree-Fock mean-field so obtained differs from the 
result with pure states (Slater determinants) through the intro- 
duction of occupation numbers of the single-particle levels. We 
call special attention to the fact that this occupation parameters 
must not be prescribed by the usual assumptions of the grand 

canonical ensemble. We stress this point, because it is not sure 

that there is always complete thermalization of the nuclear systems 
occuring in heavy ion reactions. This is in contrast with the case 
of matter inside massive stars, where statistical equilibrium is 

reached during its late evolutive stage. 

Small oscillation of the mean-field due to an external per- 

turbation are accounted for, leading to the response function of 
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the excited system (Random Phase Approximation (RPA) for 

mixed states). 

Specializing the results to mixed states corresponding to 

thermal equilibrium, the occupation numbers are given by the 

Fermi-Dirac distribution and the thermal Hartree-Fock and RPA 

formulae are readily obtained. 

The paper is organized as follows. In section 2 we sketch 

the method. This is based on the density matrix formalism, which 

is the natural tool to deal with mixed states. In section 3 the 

response function for mixed states is discussed. In section 4 the 

features of thermal equilibrium are presented. In section 5 we 

introduce the notation needed within the independent particle 

approximation. The static Hartree-Fock theory for mixed states 

is derived in section 6, while the corresponding RPA is derived 

in section 7. The conclusions, which are formulated in section 8, 

contain some perspectives of further work in the field. 

2— GENERAL FORMALISM 

Let H denote the hamiltonian of a general N particle system. 

According to the principles of quantum mechanics, an arbitrary 

mixed state of the system is described by a density matrix D 

whose trace is unity 

Tr D=1. (2.1) 

The density matrix D, describing a stationary mixed state 

satisfies the condition 

[H, DJ]=0. (2.2) 

This condition may be formulated variationally. For this purpose 

we consider the set of all density matrices having a fixed spectrum 
of eigenvalues given a priori. If D, belongs to that set, so does 

the matrix 

D=UD,U' =e 'p, e®, (2.3) 

where F is an arbitrary hermitean operator. The stationarity 
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condition for the energy, which is necessary to assure minimum 
energy, 

8 Tr (DH) =8 Tr(e ' D, eW H) =0 (2.4) 

leads to 

Tr ([D., 8F] H) = Tr ([H, D.] 8F) =0 (2.5) 

Since this equation must hold for all variations 85F one obtains 
finally eq. (2.2). 

We will discuss now the time evolution of D. According to 
the rules of quantum-dynamics the operator D should satisfy the 
Liouville-von Neumann equation 

D=i[D, H] (2.6) 

which is equivalent to 

D(t)=e po) et. (2.7) 

We see that the eigenvalue spectrum of D remains unchanged 
with the time. Our aim is to obtain a variational formulation 

of (2.6) which could be used as a source of reliable approximation 

schemes to the exact dynamical equation. We begin with writing 

the time-dependent density matrix in terms of the stationary 

density matrix which satisfies eq. (2.2): 

D(t)=U(t) D, U(t), (2.8) 

where U(t) is a variational unitary operator (the unitarity 
of U assures the time-invariance of the eigenvalue spectrum of D). 

Let us consider the action integral 

t, 

l= iy de; 2.9 I, (2.9) 
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where the lagrangian is given by 

. ~+ + 
L=iTr(UD,U )+Tr(UDU H). (2.10) 

The least action principle 81 = 0 with L given by (2.10) does lead 

to the correct equation of motion (2.6) as we shall prove in the 

following. 

We denote now by S6F an infinitesimal hermitean time-depen- 

dent operator which satisfies 

U+a—u ee, (2.11) 
We have therefore 

sU = -iU SF, (2:12) 

U" sU =—38U U=—isF. (2.13) 

The following boundary condition may be imposed on $F: 

Tr [D, ’F(t:) ] = Tr [D, dF (t.)] =0. (2.14) 

The variation of the action integral may be written 

t, 

al = f dt [iTr(sUD,U + UD, 8U~) + 
€ 1 

t, 

+Tr(sUD,U H+ UD,8U'H)]=iTr(D,sU'U)|* + 
t 

1 

t, 

+f attr sUU [i(UD,U’ + UD,U") + 
t, 

+ (UD, U’ H—HUD,U")]$ 

t 
t, ; 

= —Tr(8FD,) "+i f dtTrj UsFU (—iD-—[D, H]) } 
t 

t   1 

t, 

=f dt Tr} UsFU (D-i[D,H])$=0, | (2.15) 
t. 1 
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where use has been made of (2.13) and of the boundary condition 

(2.14). Since the variation 5F is arbitrary for t, < t < t, one gains 

indeed the Liouville-von Neumann equation (2.6) from the action 

principle. 

3 — THE LINEAR RESPONSE FUNCTION 

FOR MIXED STATES 

If a quantal system stays in a stationary state described by 

the time-independent density matrix D, and at some later occasion 
is slightly perturbed, the density matrix of the perturbed system 

may be written 

D(t) =e Ft) p, ef (3.1) 

where F(t) is a hermitean infinitesimal operator. Since F is 

infinitesimal the lagrangian (2.10) may be replaced by its leading 

order terms. The following quadratic lagrangian is obtained (the 

linear terms give no contribution): 

L°) = (~i/2) Tr(D, [F,F]) + 1/2 Tr(D.[F,[H,F]]). (3.2) 

The principle of least action will then lead to linear equations of 

motion which are the small amplitude limit of the Liouville-von 

Neumann equation. From the variation 

5 { L) at = 0 (3.3) 

we obtain 

i Tr(D,[8F,F])-—Tr(D,[8F,[H,F]]) =0, (3.4) 

so that 

iTr{sF({F,D.]+i([H,F],D.]) }=0, (3.5) 

or, since $F is arbitrary, 

[F,D.]=—ifH, [F, D]] (3.6) 
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Here the Jacobi identity for double commutators has been used 

together with the equilibrium condition (2.2). 

We consider now the eigenmode solutions of (3.6). We insert 

the appropriate ansatz 

jot + iw t 
F.(t)=e "06, +e ®, (3.7) 

and obtain 

+ + 
O, [ ,, D, | =[H, [9, » DJ] 

(3.8) 
— o, [ @,, D,] =[H, [9,, DoJ] 

where we can consider w, > 0. The following normalization con- 

dition for the operators @, and @*; may be imposed: 

+ 

Tr (D, [©,, ®, J) = 5, 

(3.9) 
+ + 

Tr (D, [0,, ®]) = Tr (D, [9 , ®, ]) =9- 

The general solution of eq. (3.6) can be written as 

=} * i 

F(t)=%(f,e “0, +f, e* @,). (3.10) 

The normalization (3.9) leads to the following expression for the 

mixed state transition amplitudes 

f.=Tr (D, [o,, F ¢0)]) 

(3.11) 

f'=Tr(D, [F (0), ©, ]) . 

The energy-weighted sum-rule for these transition amplitudes 

may now be derived. Indeed from eq. (3.4) with F instead of 5F 

we conclude that 

iTr(D,[F, F])=Tr(D, [F,[H F]]) (3.12) 
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It may be easily checked that iTr(D,[F,F]) =2 » o,/f,|?. 
Therefore . 

xo, |f,? =1/2 Tr(D, [F, [H, F]]) -  ©.13) 

We emphasize that this sum-rule is exact and not restricted to 

the RPA, in which log D, and F are one-body operators. 

Since the operators H and D, commute they may be simul- 

taneously diagonalized. Denoting by {|m >} a set of common 
eigenvalues 

H|m>=E,|m> 

(3.14) 
D,|m >=P,,|m> 

the solutions of the equations of motion (3.8) are given by 

or = B= Be 

(3.15) 
+ —1/2 

®, = (P,—Pu) [Im ><n| 
FE 

with E,, > E, and P, > P,,. The index r labels the pair (m,n). 

4— THERMAL EQUILIBRIUM 

The stationarity condition (2.2) should not be confused with 

the condition for statistical equilibrium. 

It is well-known that thermal equilibrium occurs when the 

entropy 

S =—Tr (D log D) (4.1) 

is maximal for a given value of the energy E=Tr(DH). In 

order to determine the states of thermal equilibrium the function 

W =86 Tr (DH) +Tr (D log D) (4.2) 
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should, therefore, be minimized with respect to variations of D 

satisfying the normalization condition (2.1). The parameter f is a 

Lagrange multiplier which fixes the energy and should be 

interpreted as the inverse of the temperature. The function W is 

proportional to the well-known Helmholtz function. 

The minimization of (4.2) may be viewed as consisting of 

two steps: 

i) Minimization with respect to D for a fixed eigenvalue 

spectrum. This stage is identical to the time-independent variational 

procedure formulated in section 2 because the entropy is not 

affected by canonical transformations. We determine, within the 

class of all density matrices with a given spectrum, the density 

matrix D, which minimizes the energy and commutes with the 

hamiltonian H, so that it may be simultaneously diagonalized 

with H (see eqs. (3.14) ). In this first stage we obtain the 

eigenvectors |m > of H and D, and the corresponding eigen- 

energies E,, . 
ii) Minimization with respect to the eigenvalues of D, the 

set of eigenvectors being kept fixed. We determine the eigenvalues 

P,, of D, which are suitable to describe thermal equilibrium. The 
function (4.2) may be written 

W=f8>P,, E, + P,, log P, (4.3) 

and the normalization condition (2.1) reads as 

= r,= 1 (4.4) 

Minimization of W with respect to the eigenvalue spectrum P,,, is 

now easily performed leading to 

P = gt @ FE m ; Z _ ~BE,, (4.5) e 

3
M
 

Finally we arrive at the following inequality 

+ , BE —log (Ye ° ™) < 8 Tr (DH) + Tr (D log D) 
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which is precisely the well known Peierls variational principle 

for the free energy. 

We observe that the equilibrium condition (2.2) is a necessary 
but not sufficient condition for statistical equilibrium. That con- 
dition may be interpreted as indicating short-term equilibrium 
around which the system may oscillate due to a small external 

perturbation. On the other hand thermal equilibrium should be 

understood as long-term equilibrium. The composition of the mixed 

state is in this case specified by (4.5). 

5 — INDEPENDENT PARTICLE APPROXIMATION 

FOR MIXED STATES : NOTATION 

In the independent particle approximation we assume that 

the density-matrix has the following form 

K 

D=Ce ; (5.1) 

here K is a one-body hermitean operator and C is a normalization 

constant. 

As this approximation is most conveniently discussed for a 

variable number of particles in the formalism of second quan- 

tization we represent the hamiltonian as 

H=T+V 

by (5.2) 
+ 

V= 1/2 3% v aa aa 
uyps Bh eo Evps 

where a;*, a; are respectively creation and annihilation fermion 

operators corresponding to an orthonormal set of single particle 

states. 
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If the number of particles is kept fixed we can write 

(5.3) 

where the operators t, and v,; act respectively on functions of 

the coordinates of the particle i and of the particles i and j. The 

symbols t and v denote therefore, respectively, the restriction 

of T and V to one-body and two-body Hilbert spaces. 

The expectation values of T and V in the mixed state described 

by an independent-particle density matrix D may be written 

<T> = Tr (DT) = %»,,t,, = tr (pt) 
pv 

(5.4) 

A 

<V>=Tr (DV) = 1/2 p,, p = 1/2 tr, tr, (pi pe Viz) Vv 
uvpo po vo, up 

where Py» are the elements of the one-body density matrix 

+ 

Puy = <plp|v> = Tr (Da, a.) 

(5.5) 

and v4 is the antisymmetrized interaction defined through 

A 
V =v —v (5.6) 

LY, po KY, po Kv, op 

We should call attention to the distinction between ‘Tr’ and 

“tr’, “Tr”? denotes trace in the Hilbert space of state vectors 

corresponding to an arbitrary number of particles (which is the 

direct sum of Hilbert spaces of state vectors corresponding to 

definite numbers of particles). On the other hand “tr” means 

trace in the Hilbert space of single-particle state vectors. 
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The relationship between D and p indicated by (5.5) can be 
made more explicit. If k is the restriction of K to the one-body 
Hilbert space then 

p=e/(lte) (5.7) 

The average number of particles, which must be kept fixed 
in all the calculations, is 

N = Tr (DX a, a,) = trp (5.8) 
bX 

6 — HARTREE-FOCK APPROXIMATION 

FOR MIXED STATES 

The Hartree-Fock approximation for mixed states requires 

that the variational space in (2.4) only includes independent- 

particle density matrices. Therefore log D, should be a one-body 

hermitian operator while F is an arbitrary hermitian one-body 

operator. 

The variational equation (2.5) with 8F a one-body operator 

determines the independent-particle density matrix D, which 

commutes as nearly as possible with H. Let us start with 

Tr (D, [H, F]) = 0 (6.1) 

which can be obtained from (2.5) using the cyclic property of the 

trace and replacing 8F by F. For fixed N the hamiltonian is given 

by (5.3) and we have 

1 (6.2) 

Then elementary algebraic manipulations lead to 

N N 

[H, F] = %[t,, f]+1/2 x [v,,f+£] ©) 
i= iAj=1 
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so that 

Tr (D, [H, F]) =tr, ( Pos [t,, £,]) + 

(6.4) 
A 

+ 1/2 tr, tr, ( po,1 Po,2 [v., f, + f,]) =0 

where p, is related to D, as in (5.5). From (6.4) we obtain further 

Tr (D, [H, F] = tr, (f, [poi bh J) =0 (6.5) 

where 

A, = t + ty (vis Po,2 ) (6.6) 

Since f, is arbitrary (6.5) implies finally 

[h, a] = 0 (6.7) 

These are the Hartree-Fock equations for mixed states. Let us 

consider now a representation in which h and p, are simultaneously 
diagonal: 

hle> =e,|~> 
(6.8) 

ple > = 1, |p> 

Then the Hartree-Fock equations may be written in the matri- 
cial form 

A 

ty SM Vuk, rk = 8p Oy (6.9) 

The occupation numbers n, are easily determined in the case 

of statistical equilibrium through the minimization of the function 

W’ = BE-S—B, N (6.10) 

The last term appears because a constraint in the mean number 

of particles must be included when using a formalism with a 
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variable number of particles. The function (6.10) is clearly 

proportional to the grand canonical potential. Following the 

arguments given at section 4 and using (5.1) and (5.7) it is 

straightforward to arrive at 

n= [1+e% 6%" #)j-1 (6.11) 

which is just the Fermi-Dirac distribution function. Our general 

mixed-state formalism provides a rigorous justification to the 

introduction of Fermi-Dirac occupation numbers in the Hartree- 

Fock equations (6.9), which are then called thermal Hartree-Fock 

equations. We emphasize however that the occupation numbers 

which appear in (6.9) may be given by some other prescription 

when situations of non-thermal equilibrium are under con- 

sideration. The occupation numbers no 1, 7 N and 1 = 0, 

v >N, correspond to the T = 0 situation. 

7--RANDOM PHASE APPROXIMATION 

FOR MIXED STATES 

Let us consider again the lagrangian (3.2), but we are now 

going to assume that both log D, and F are one-body operators. 

For a fixed number of particles we have the following values 

for the commutators involved in L®: 

[f, f,] (7.1) [F, F] = 
i 1 M

z
 

[F,(H,FI]= 5 ff, (t, f+ 
N A 

F122 & [its Db Mee F44,)]] 
i#j=1 

(7.2) 
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so that 

L®) = (—i/2) tr, ( Po, [f,. f,])'+ 1/2 tr, ( Po1 [f; [43 f,]]) 

(7.3) 

+1/4 tr, tr, (pos pos [fit fe» [Ve> fy +fe]]) 

The condition of least action leads now to 

itr, (po, [8f., f2])—tr, (po. [8f,, [t,, f.]]) 

(7.4) 
A 

—tr, tr, (Poa Po,2 [6f., [ve, fy +f,]]) =0 

After some straightforward algebraic manipulations we obtain 

i [Bas Porl—([ lh, Eads Pan | [0% ( Pos [vie f,}). Poi] = 9 

(7.5) 

Finally in the representation in which p, and h are both diagonal 

if,, (n,—n,)— (2,—8,) Ey (M,—,)—% (n,—n,) 

(7.6) 
A 

(n —n )v f =0 
v u up, vo op 

The solutions for the normal modes are obtained Fourier- 

analysing F. The one-body approximation of (3.7) is 

f.(t)se “'g tele g (7.7) 

which inserted in (7.6) provides the following RPA equations for 
mixed states 

+ + 
@r Or 4 (M— NK) — (Ce — 27) 8, yy ()— Ny) 

(7.8) 
A + 

— > (n;—n;) (n,—ny) Vig, x C2 = 0 
ij 
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These equations can still be written in matricial form 

“(Cy )= (ea) Cy) Y, —B* — A* Y, 

with 

in Oy wy (1,0) , n,>n, 

+ 

Ye we = Oy yy (2, —2,) ; n,>n, 

A 

MY, po (2,8) 550 Sup TV uo, vo (a,~n,) » n> mn? A, on, 

A 

dons mn bo (n,—n,) ’ n,>n,, n,>n, 

In analogy with (3.9) the following normalization condition 

may be imposed: 

tr (p) [0,, 8. 1) = 8% , 
(7.10) 

+ + 
tr ( po [Ops 6, ]) = tr ( po [ 0, ? 6, 1) = 0 

The general solution of eq. (7.6) is 

f=ys(f,eo +8 e@ 6.) (7.11) 

where the mixed-state transition amplitudes are given by 

f, = tr (p, [9,, f (0)]) 
* + 

f. = tr (p, [f (0), 4, J) (7.12) 

We observe finally that the RPA preserves the energy-weighted 

sum-rule 

X o,|f, 2) = 1/2 Tr (D, [F, [H. F]]) (7.13) 

where the right-hand side can be evaluated with the aid of (7.2). 
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If py is the independent-particle mixed state determined by 

conventional equilibrium statistical mechanics then its eigenvalues 

n are the Fermi-Dirac occupation numbers (6.11) and eqs. (7.8) 
are known under the name of thermal RPA equations. 

8 — CONCLUSIONS 

We have developed a variational approach appropriate to 

physical situations requiring a description in terms of mixed 

states. The formalism presented leads in a straightforward way 

to a mean field theory for mixed states. In this framework, the 

well-known Hartree-Fock and RPA results for pure states are 

generalized to the case of mixtures. 

As extensions of this work, which are presently being 

carried out, we would like to refer the following: 

1 — The description of correlations not included in a mean-field 

by boson expansions adequate for mixed states. We can establish 

a temperature dependent Holstein-Primakoff expansion, for mag- 

netically ordered systems, which is useful in the study of the 

interaction between spin waves [9]. 

2— The translation of the quantal mean-field formulae into 

classical terms. We obtain in this way a thermal Thomas-Fermi 

theory, for the ground-state of a statistical system, and a fluid 

dynamical representation of small oscillations around it [10]. 

3—The application to heavy ion collisions, such as those 

described in the introduction. In a realistic model, a constraint on 
the angular momentum must be introduced and the singe-particle 

states must be replaced by the single quasi-particle states of the 

Hartree-Fock-Bogolyubov approach. 
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