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ABSTRACT — We study degenerate four-wave mixing (DFWM) in a 

ruby crystal, theoretically and experimentally, in isotropic and anisotropic 

configurations. We show that thermal DFWM is negligible when compared 

with resonant DFWM and this one is not affected by self-focusing. Finally 

we present phase conjugate reconstruction of a microscopic object as an 

application of DFWM. 

1 —FOUR-WAVE MIXING (FWM) 

FWM refers to the interaction of four waves in a non-linear 

medium. The term “Degenerate Four-Wave Mixing’ (DFWM) is 

used when the waves have all the same frequency. The geometrical 

configuration for the interaction, where two counter-propagating 

pump waves are used with a probe beam at some angle ¢, is 

sometimes called “backward DFWM” interaction (see Fig. 1). In 
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Fig. 1— Relative positions of the pump beams 1,2 and the probe beam 3. 

The angle ¢ is the angle between 1 and 3, inside the crystal, The z-axis 

has the same direction as beam 1. M, is the mirror where beam 1 is 

reflected to generate beam 2. 
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this way, the process can be distinguished from the forward 

DFWM [1], where only one pump with a probe generate a forward 

phase conjugate signal. This interaction corresponds to 3-wave 

mixing; but, as the pump acts as if it is formed by two forward 

pumps (or equivalently, two pump photons take part in the 

reaction), it can be considered a FWM process. We use ‘DFWM” 

instead of ‘backward DFWM” for simplicity during the exposition, 

since this is the only configuration we consider in this paper. 

The non-linear nature of DFWM implies that the response of 

the optical medium to the light fields is not linear, i.e. the 

polarization P (r,t) of the medium has terms which are non-linear 

functions of the electric field E(r,t). Because four waves are 

involved, the first important term of the non-linear polarization, 

when expanded in powers of E(r,t), is of third order [2] 

PM (r,t) =X : EEE (1) 

where x” is the third order tensor susceptibility and 

E = 3; E; (#) (j = 1,2,3,4) (2) 

is the field. 

For isotropic media and when only the polarization of fre- 

quency » is considered, the condensed expression (1) reduces [3] to 

PNU = a (E-E*) E+ y (E-E) E* (3) 

The first term leads to the holographic analogy [4, 5], where each 

pump acts as the reading beam, generating the phase conjugate 

beam. The second term describes the oscillation at frequency 

2. of the non-linear index of refraction which scatters one of 

the waves to generate the fourth [6] (parametric interaction). The 

coefficients a and y can be made large by choosing the right 

non-linear medium: one-photon resonant medium for large a, 

two-photon resonant medium for large y. Ruby behaves like a 

one-photon resonant medium and therefore a larger a is expected. 

If multi-photon processes are important, odd terms of the 

polarization higher than the third power of E have to be 

considered, since their coefficients cannot be neglected. 

The above considerations and general expressions for PN 

are valid for any non-linear medium. The expressions for the 
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susceptibility y and for the parameters a and y, however, result 

from the particular non-linear mechanism involved. In our medium, 

ruby, the mechanism is resonant absorption and the expressions 

that will be obtained are valid in general for those media. Therefore, 

although the theory in this paper refers specifically to a ruby 

crystal, it can be applied to any resonant absorber, after evaluating 

the corrections caused by different valued parameters. 

2—RUBY CRYSTAL DESCRIPTION 

A ruby crystal is a crystal of sapphire (Al,O;) where a 

certain percentage of Al®+ ions has been replaced by chromium 

ions Cr?+, which cause the pink color of the otherwise colorless 

sapphire crystal. The Cr.O, doping percentage in our crystal is 

0.05 wt.%, i.e. the concentration of Cr*+ ions is 1.58 x 10% 

ions. cm. 

In the free Cr atom (Z = 24), the shells from ls through 

3p are completely filled; shell 3d has five electrons (3d°) and 

shell 4s has one electron ( 4s‘ ). When the Cr atoms are introduced 

into the host crystal of sapphire, they share, in the bonding, three 

electrons with O2-, becoming Cr*+. One of those electrons comes 

from the 4s shell and the other two from the 3d shell. The 3d 

shell, which can be occupied with 10 electrons, is then only 

partially filled with two electrons. The possible arrangements of 

these two electrons in the 3d shell leads to the energy levels 

of the Cr?+ ions in the Al,O; host crystal [7]. When those ions 

form a solid like the ruby crystal, the energy levels for the crystal 

will be much more complicated than the ones for an isolated 

Cr*+ ion. 

In Fig. 2 we show a detailed energy level diagram of ruby [8] 

that has been obtained experimentally. For the optical frequency 

we used (the blue/green light of the Ar laser), the diagram of 

Fig. 2 can be simplified for that of Fig. 3. The Ar laser light excites 

the ions from ground state 1 to the excited level 3. From level 3 

they decay non radiatively and very fast (<1ns) [9] to level 2. 

The decay time from level 2 to level 1 is comparatively 

slow, 7~3 ms at 300 K and 4.3 ms at 77 K [10]. Absorption 

coefficients for ruby when it is in the excited level 2 have been 

measured [11]. Those results show that transitions from level 2 to 
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higher levels (dashed lines in Fig. 2) may take place. However 

the effect of the excited states’ absorption is usually sma!l [9]. 

Nevertheless, we will consider its effect in the latter calculations 

of the induced polarization. 
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Fig. 2— Energy level diagram of ruby [8]. 

The ruby crystal geometry is shown in Fig. 4. Its nonpclished 

5 < 11 mm? surfaces make a 60° angle with the c-axis. Both pairs 

76 Porigal. Phys. — Vol. 16, fasc. 1-2, pp. 73-98, 1985



Luis M. BERNARDO — Resonant degenerate four-wave mixing in a ruby crystal 

of polished surfaces 5 < 11 mm? and 5 X 5 mm? can be used for 

the entrance of the beams. 
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Fig. 3—Energy level diagram of ruby used for calculations on induced 

polarization. 

The position of the c-axis has been determined by analysis 

of bi-refringence patterns caused by a convergent beam, incident 

on the crystal and observed through a polarizer [12]. Figs. 5 and 6 

show those patterns for two different orientations of the crystal. 
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Fig. 5 refers to the transversal orientation, where the laser beam 

is incident on 5 X 11 mm? polished surfaces. Fig. 6 refers to the 
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Fig. 4— Ruby crystal geometry. The c-axis makes a 60° angle with the 

non-polished surface 5 X 11mm? and it is parallel to the polished surfaces 

5 < 11 mm?2, 

  

Fig. 5— Birefringence pattern for the transversal orientation of the crystal. 

longitudinal orientation where the beam is incident on the 

5 X 5 mm? polished faces of the crystal. 
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Fig. 6 — Biefringence pattern for the longitudinal orientation of the crystal. 

3 — SEMICLASSICAL THEORY OF RESONANT DFWM 

In this paper we study the case where the system in Fig. 3 

can be decomposed in two independent subsystems 1, 2,3 and 2, 4; 

the transition 3— 2 is nonradiative and the exciting field is in 

resonance only with the transitions 1—3 and 2— 4. 

This approach implies that pumping from level 2 to level 4 is 

negligible for the calculations carried on the subsystem 1, 2, 3. 

In other words, the absorption from the excited level 2 is small 

enough not to change significantly the population of level 2. 

We study first the subsystem 1, 2,3 and then the subsystem 

2,4 as a particular case of it. Finally we get the expressions for 
the whole system. 

We use the semiclassical theory of interaction in the electric 
dipole approximation [13], with the Hermitian density opera- 
tor p [14]. After neglecting thermal excitation, the equations of 
motion (Bloch equations) for the density matrix elements p can 
be written, introducing relaxation terms [15] as 

Py, a —Cish ) Vs, Psy Pas Vv.) + Psy Toy 7 bs, / Tey (4a) 

Poo ~~ Poo / T 34 at Ps / T 30 (4b) 

Pos =~ ( i / h ) ( in Pas — Pay Vv.) ~ P33 ( 1 / Tah + 1 / 730 ) (4c) 

Pi a —ie,, Pag (1 / h ) Va (P,, —P1) —pi,/T (4d) 

where V;; is the matrix element of the energy of interaction 
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V=-—wy,-€E with » as the electric dipole operator and 
E=3n(Amn/2) exp[i(ot—k,-r)]+ cc. is the exciting elec- 
tric field; 7;; is the lifetime of the excited level i before decaying 
to level j; T is the transverse relaxation time and o,, is the 
frequency associated to the energy difference of levels i and j. 

From eq. (4d) it is seen that nondriven (E = 0) behaviour 
of p,, is given by 

Pig = Pig (0) exp [—(io,, + 1/T) t]= r,,(t) exp (io, t) 

(5) 

where A(t) = p,,(0) exp(—t/T) is a time varying slow 

function, T= << 031 = — O13 [16]. 

When terms in exp(+ 2iot) are ignored and after using 

the probability conservation equation, we can write eq. 4, in the 
steady state regime, as: 

Pir 1 Poa F Pyg = 1 (6a) 

Poo = Cr ./ Ty) P55 (6b) 

ho* (1 + 8°) | a5 P Pig Bay) x 1/2 A, Ay, 
im (6c) 

exp [—i(k,—k,) -r]—p,, (75° + 75°) = 0 

d= — G43) G88) yy (0, 0g) 8 1/2 A, exp (—ik, 1) 
" (6d) 

where §=(o-—o,,) T is the normalized detuning of the field 

from the line center. The solutions of eq 6 are: 

py = (1 +el/1)/C+ 81/1) (7a) 

Pas = C1/Tyup) / C1 + BI/ 1) (7b) 
Ps, = Cael/T)/(1 + 61/1.) (7c) 

Py =p, POU 8) Cla) (1+ 6) 1 
+ 1/2 A,, exp [i(ot—k,-r)] 

-1 
sat) 

(7d) 

where a@=7,,/7,, » B=2at) ’ Q= (1 +7,,/7,,)7 

Igan = 2? (1+ 8?) / (| mus? T721Q) , 

1=1/2 % A,- Ate SW? 4 oe, 
1m 
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The magnitude of the induced real polarization is 

P=N<p>=N (ap, p,, + Hyg Py) (8) 

where N is the number density of the absorption centers 

(Cr** ions ). The real polarization associated with the subsystem 

1, 2,3 is then: 

a ~ An [6 cos (ot —k,- 1) — sin (ot —k,,-r) ] 

k( 1+ 8?) 1+ BI/Igar 
  P=— 

(9) 

where «, is the permittivity; k=|k,,| the wave vector and 

a =(o/h) N |u,,|?T the line-center (5 = 0) small signal field 

attenuation coefficient. 

Using eq. 7b we can get similarly the polarization associated 

with the subsystem 2, 4 and write: 

fy Ay. T/Igar 

k(1+8'*) 1+ BI/ Iya 

= An [ 8’ cos ( ot —Ik,,- 1) — sin (ot —k,,-r)] 

  P= 

  

1+T/ ar 
(10) 

where «ef = (o/h) N |y.,/?T’, 8 =(o-o,,) TY and 

Igar = 2? (1 + 8’?) / (| mosl? T’ vr 24) 

The total polarization P, of the whole system is then 

P le % Am [8 (1 + £(1)) cos (ot —ky-r) = ———. fA cos (ot —k,,-r)— 
k(1+8*) 'm . (11) 

(1+ g(1))sin (ot —k,-r)] $(1 4+ BI/Igap)7 

where 

6 U) = @i/e,) Or 8) Ct 8) gee CL T/T ea) * (12) 

f(1) = (8/8) g(1) (13) 
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From the following relation 

P. = & % Am [x’ C08 (ot — km) — x” Sin (ot —km-r) J (14) 

where x = x’ + ix’’ is the susceptibility, we get using eq. (11) 
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Fig. 7— Plot of xp (1,) for different values of the parameter Tear i Ioan? 

Curves a, b, c, d, e correspond to Tear / War = 10-3, 10-2, 10-1, 1, 10; we 

have taken 8 =a/a,= 8 =s=1. 

In Figs. 7 and 8 we show plots of the susceptibility given 

by the above equation, with different quantities as parameters 

and where 

X= ky tx =—x KCL + 8&)/a, (16) 
and 

Ip = I/ Igar (17) 
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In the approximation of neglecting level 4, f(1), g(1)<<1 

and with @ = 1 the complex susceptibility is, as shown in ref. [17], 

8 +i 
Kom (a, RT ee 18 

1+ I1/ Isat os 

The non-linear nature of x and consequently of P=«, x E 

complicates the solution of the wave equation, describing the 

light wave propagation inside the medium: 

v2 E— pe, ®E/dt? = pa P/ot? (19) 

where E(r,t) is a superposition of plane waves. A similar 

equation also describes the propagation of each component E; 

coupled to the others by the polarization P. In FWM, those 

components refer to the pumps, probe and FWM signal. For E; we 

can write: 

       
    

Vv? E; —~ PEG 0” E; / ot? = po? P/ot? |; > (20) 

— Xe 

2— 

1 

4 1 

J y/o 
al ~SL_ 

0 T T ee | T . 4 L252 | T T | T T | | 

1073 1072 10! 1 10 "S$ 

Fig. 8— Plot of x, (1,) for different values of the parameter of /a,: Curves 

a, b, c, d, e correspond to at / a, = 0, 0.25, 1, 2,4; B= & =S8= 1; 

Isat / ag = 01: 
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where the last term represents the component which matches the 
phase of the first member of the equation. 

We consider A; a slowly varying function of 9; only, where »; 
is the direction of propagation of beam j. Using the adiabatic 
or Born approximation we can get from (20) a system of coupled 
differential equations for each amplitude A;. For j =4 we write: 

dA,/dZ = (a/2) (A,—A, A* A, /Igan) (21) 

where a = a (1—i8)/(1+4+ 8°). 

To write eq. 21 we have considered ¢ = 0 and only the beams 1 
and 3 interfering to form an hologram which is read by beam 2. 

In general, no analytical solutions are possible for those 
coupled differential equations. However if As,1 < Aj,, such solution 
is possible either when I < Ig, or I>Ig,.. The solution for the 
first condition is simpler to get and turns out to be a particular 
case of that of second one [12]. 

The expression for the intensity of the phase conjugate 
signal I,(0) is [12]: 

I,(0) = 2(1 + 8?) RT*°I, (0)?1, (0) e%#L 1 — e-a’Ly2 / Ioan (22) 

where, 

Igan = ho / (Qor,,) = 6.6 X 10° / (dro) (23) 

o=a'/N,, a =a/(1 +8?) (24) 

Re T are the reflectance and transmittance of the crystal 
and Q=1. 

So far we have considered the non-linear medium as isotropic. 
However, the ruby crystal is uniaxial and it seems that an 
anisotropic theory should be needed. The geometry of interaction 
(propagation direction of the beams, field polarization and c-axis 
orientation) conditions the validity of application of those theories. 

Figs. 9 and 10 show two possible orientations of the crystal, 
corresponding to propagation of ordinary waves only. However 

when the crystal is rotated around n by an angle ©, ordinary 
and extraordinary waves propagate in the crystal and the 
developed isotropic theory is no longer valid. We can apply it 
however separately to each of the waves, treating them as inde- 
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pendent of each other. As it will be shown, the relative weights 

or ordinary and extraordinary waves in the measured FWM signal 

are dependent on the angle of rotation and the characteristic 

C-AXIS 

  

  

Fig. 9—JIsotropic configuration, with the transversally oriented crystal; the 

c-axis is normal to plane y containing the direction of propagation of 

beams 1, 2 and 3; n is the normal to 5 X 11mm® surface of the crystal. 

  

  

  

    

  

Fig. 10 — Another possible configuration showing the beams 1 and 3 incident 

on surface 5 X 5mm?. This is the most efficient configuration, because of the 

largest interaction length. 
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parameters associated with those waves. In the holographic inter- 

pretation of FWM it means that we have two distinct holograms: 

one called ordinary and the other extraordinary, which do not 

interact ‘with each other. 

With the two configurations shown in Figs. 9 and 10 we can 
check experimentally the validity of this theory. At the same time 

we will show different physical behaviour for those configurations. 

Geometrically the essential difference between transversal and 

longitudinal orientation of the crystal is that, during crystal 

rotation, the c-axis remains approximately normal to the prop- 

agation direction of the beams in the first case and makes a 60° 

angle in the second one. 

The quantities appearing in eq. 22 that are different for 

ordinary and extraordinary waves are a’ and Igaq. For light 
propagating in ordinary and extraordinary modes a net absorption 

coefficient can be defined for transversal and longitudinal con- 

figurations, as function of rotation angle ©: 

ap = a, cos? 0 + a sin? @ (25) 

at, = a, (cos? 6 + cos? @ sin? ©) + a sin? B sin? oO (2) 

where @, the angle between n and c-axis, is 60°. 

Fig. 11 shows the theoretical curves given by eqs. 25 and 26 

and the experimental data for ap and a7, as functions of 0. 
In analogy with eq. 21, the differential equations for A® 

and Ag (the indices o and e stand for ‘ordinary’ and 

“extraordinary”) can be written as: 

dAi/'0z = 1/2 @4 AV—L (AG As) /Iean + 

(Aste 97 Vea We} (27a) 

BAG /0Z=1/2 we AL—[(AL: Ay) / Tear + 

Chet, YI Gel Ae (27b) 

The physical interpretation of the above equation is that the 

ordinary (extraordinary) component of beam 2 is scattered by 

both ordinary and extraordinary gratings. However this may not 
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be the case if the Bragg condition is not satisfied for both waves. 

In this case, A° (A$) will be scattered only by the ordinary 
(extraordinary) grating. The equations 27a, b will become: 

dAL/dz=1/2 a [Ac—(A.* Ac) As/Ieam] 258? 
* 

dAS /dz=1/2 %e [A:—(Al*As_) As/Igar] (78) 
  

  

      T T T T T T 
0 100 200 300 

6 (deg.) 

Fig. 11— Experimental data points and theoretical curves for a4, and af 
as a function of rotation angle 6 , for transversal (Fig. 9) and longitudinal 

(Fig, 10) orientation of the crystal. 

The expressions for the intensity I,=I°+ I¢ (with 

I= A-A*/2) which correspond to those physical situations 

are [18] 

1,(0) =1/8(|B,|? cos? +|B,|2 sin?o) 
(C, cos?6 + C, sin? )? (29) 
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from eq. 27, and 

IF (0) = 1/8(|B,|2 C2 cos’e +|B.|2 C2 sin°o) (30) 

from eq. 28, where 

B,=B(a,/2) exp (-a,L) , (31a) 

B, =B(a,/2) exp (-@,L) , (31b) 

B =A;(0) A,(0)VR, (32) 

C,=[exp (- @{L) -1]/af Isar (33a) 

C.= [exp (-a{L) -1]/ 26 Igar ; (33b) 

4-—- EXPERIMENTAL RESULTS 

The experiments have been performed in order to check the 

validity of eq. 22 for the isotropic configuration and eqs. 29 and 30 

for the anisotropic one. Fig. 12 shows the set-up used to measure 

the DFWM signal. 

A~-—Isotropic configuration 

The orientation of the crystal used for testing eq. 22, is 

shown in Fig. 9. In this way, only ordinary waves propagate in 

the crystal. Since the quantity we measured was the power of 

the 4 different beams, the expression given by eq. 22 had to be 

modified. The beams have been considered to have Gaussian 

shapes and their radii have been measured or calculated. Written 

in terms of measured powers P, and P, eq. 22 becomes: 

P,=C(1+58)P, (nW, cm) (34) 

where C depends on the beams’ diameters and all the parameters 

affecting I, in eq. 22. 

Fig. 13 shows the theoretical curves for different wavelengths 

of the Ar laser, when §5=0. In Fig. 14 we show experimental 
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a parameter. The lines are the best linear fitting. 
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data for the same wavelengths and where P, = 107 Pg,» for 
A =A, and x = a,b,c,d,e. 

When we try to fit the experimental data with the theoretical 
curves we get the following conclusions [12]: 

a) 8 (unknown independently) depends on the wavelength. 

b) Curves a,b,c show a slope close to 2; however d and e 
deviate from that slope. 

c) For large P, , curve a starts deviating from linear 
behaviour. 

The behaviour of curves d and e has been attributed to the 

increase of beams’ diameters with the electric current in the laser. 

The non-linearity of curve a for large enough valumes of P, 

is due to the proximity of Pgay. 

B— Anisotropic configuration 

i) Transversal orientation for the crystal 

With the crystal orientation shown in Fig. 9, we rotate the 
crystal by an angle © around the direction of propagation k, . 

The theoretical expressions for P, derived from eqs. 29 and 30, 
after substituting for the values of the parameters in eqs. 31, 
32 and 33, are respectively: 

P,(0) « (cos? 6 + 0.34 sin’@) (cos? 6 + 0.54 sin? )? (35) 

P, (0) « cos*e + 0.1 sin* 6 (36) 

The theoretical curves and the experimental data are shown 

in Fig. 15. The full-line corresponds to eq. 35 and the dashed-line 

to eq. 36. The best fitting is obtained with eq. 35, showing that 

the ordinary and extraordinary components of reading beam 2 are 

diffracted by both ordinary and extraordinary gratings. 

ii) Longitudinal orientation for the crystal 

The crystal has been positioned as in Fig. 10 and rotated 

around k, as in i). The experimental expressions for P, derived 
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from eqs. 29 and 30 are, after substituting for the numerical values 

of the parameters, respectively: 

P,(0) «< (cos?@ + 0.7 sin? 6) (cos? 6 + 0.74 sin?e)? (37) 

P: (0) « cos’o + 0.4 sin’ o (38) 
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Fig. 15— Experimental data points and theoretical curves for FWM signal 

(P. C. Power) as a function of the rotation angle in the transversal con- 

figuration. Full line corresponds to eq. 35 and dashed line to eq. 36. The 

power units are arbitrary (a.u.). 

The theoretical curves and the experimental data are shown 

in Fig. 16. The best fitting (full-line) corresponds to eq. 38. 

From the above results we can conclude that, in the lon- 

gitudinal orientation, the ordinary (extraordinary) beam 2 does 
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not satisfy the Bragg condition for the extraordinary (ordinary) 

grating. 
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Fig. 16 —Experimental data points and theoretical curves for FWM signal 

(P. C. Power) as a function of the rotation angle in the longitudinal con- 

figuration. Full line corresponds to eq. 38 and dashed line to eq. 37. The 

power units are arbitrary (a. u.). 

5 — THERMAL DFWM 

Because of the nonradiative decay from level 3 to level 2 

(see fig. 3), a thermal grating is also formed in the crystal. 

Since the index of refraction changes with temperature 

(dn / dT = 12.6 x 10° K") a phase grating due to temperature 

will result. 

The expression for the FWM signal intensity It(0) due to 
this effect is [12]: 

Ith (0) = RT* (4x - 107°/a)? e*WL (1 ew Ly? 120) 1, (0), (39) 

which when compared with I,(0) given by eq. 22 turns out to 

be ~ 10° smaller! This is the consequence of the high thermal 
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conductivity (’ = 0.42 W cm K-) of ruby causing the wash 

out of the thermal grating very effectively and rapidly (decay 

time ~ 10-°s). 

6 — SELF-FOCUSING 

Self-focusing gives rise to a deformation of a beam profile 

with non-uniform intensity and results from non-uniform changes 

in the optical properties of the medium, caused by the beam itself. 

Wavefront deformations of the beams used in FWM may, therefore, 

exist due to self-focusing. Such deformations can somehow affect 

the measured phase conjugate signal, as suggested in ref. 19. 

Two mechanisms can be responsible for self-focusing: non- 

uniform distribution of temperature and of energy level excitation. 

Theoretically, for the typical powers used in our experiment, 

the phase delay Aé between the center and the edge of the Gaussian 

beam are Ad, = 0.2 rad and Ad, = 0.15 rad respectively [12]. 

The radii of curvature have been calculated to be R, = 23m and 

R, = 66 m. Those values are small when compared with the intrinsic 

laser beam divergence. 

Experimentally we have used both Moiré and double exposure 

holographic interferometry techniques [12]. We did not observe 

any curvature effect with Ad >7z, the maximum sensitivity of 

the used techniques. 

Such results lead us to conclude that for the power levels 

we used in our c.w. DFWM experiments the self-focusing effects 

can be neglected. 

7—PHASE CONJUGATION — AN APPLICATION OF FWM 

Phase conjugation refers to any process in which a wave 

E.(r.t) = Re [Ai (r) eo] (40) 
is generated from an incident wave 

E.(r,t) = Re [As(r) e” ] (41) 
and the relation between their amplitudes is 

A,(r) = RAF(r), (42) 
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where R is a constant; Re stands for “real part of” and* for 

“complex conjugate’’. 

For simplicity we consider the case of ‘plane waves’. If we 
write 

ikz 
A; = wv (r) ee. (43) 

and because of the identity 

E.(r,t) =Re[Ry*(r) eikz ett = Re[Ry* (r) eikz elt ys 

(44) 

]=Re[RA(r)e “], 
—iot =Re[Ry(r) ee 

we can say that E, is the time reversal of R E;, i.e. E, is equal 

to R E; after t becomes -t. Phase conjugation and time reversal 

are therefore often used with the same meaning. The above 

discussion is also valid for non-plane waves if the superposition 

principle applies. 

The solution of eq. 21 shows that A, is proportional to A* 
i.e. the FWM signal 4 is the phase conjugate of probe 3. 

To show the phase conjugate imaging properties of FWM we 

introduce a resolution chart in our set-up as shown in Fig. 17. 

The orientation of the crystal is that shown in Fig. 10, which 
corresponds to maximum efficiency because of the larger inter- 
action length L. 

  

  

Fig. 17 — Schematic of the experimental set-up (the same as in Fig. 12) for 

the phase conjugate reconstruction of a microscopic object. 0 and 0 are the 

object and the phase conjugate object planes. MC is a microscope with a 

photographic camera. 
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The input and the phase conjugate image are shown in 

Fig. 18a,b. A speckle averaging technique has been used [20], 

to improve the image quality. It consists in moving the crystal 

4 5 
Set 

+ 

= Whee ws 
be 

Gi mg? we 
id tall  B- me on 

  

A B 

Fig. 18 — (a) Input object in plane 0 (b) phase conjugate reconstructed object 

after speckle averaging: multiple (15) exposure 15 X 1/125 sec. The spatial 

frequency of 5-1 group is ~30 line pairs/mm. 

continuously during exposure or by steps with multiple exposure. 

This can be also accomplished by phase modulation of one of the 

beams which causes in addition, by averaging the grating contrast, 

a more uniform intensity of the image. 
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