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ABSTRACT — Using a corrected version of the method first developed 

by Shuttleworth, very precise calculations of surface energies for a large 

number of orientations of the surface in a monoatomic f.c.c. crystal have 

been undertaken. The effect of the exponent of the repulsive and attractive 

terms in the Mye-type potential function was studied; the exponents used 

were combinations of 12, 9 and 6. The surface energies were corrected for 

the relaxation of the more exposed surface atoms to their equilibrium 

positions, using a method based on the TLK decomposition of the surface. 

The corrections never exceed 1%. These calculations also allow the deter- 

mination of (relaxed) evaporation energies of surface atoms, particularly 

atoms in surface terraces, ledges and kink sites and of ad-atoms. The energies 

(measured in terms of the cohesive energy) are little affected by the potentials 

studied. 

1 -- INTRODUCTION 

In this paper we report on results of computer calculations 

of surface energies and evaporation energies, with emphasis on 

the anisotropy of these quantities and on the effect of the 

interatomic potential. The surface energies are calculated by the 

method first used by Shuttleworth [1], with a correction in 

the determination of the rests of the lattice sums, for a wide range 

of orientations of the surface. A pairwise interaction between 

the atoms is assumed, with a potential energy «(9 ). The actual 

calculations were made for f.c.c. crystals with Mye potentials 

6|9, 6|12, and 9| 12. All surface and evaporation energies were 

corrected for the relaxation of the more exposed surface atoms. 
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Similar calculations of surface energies for a wide range of 

orientations were undertaken by Nicholas [2] using Mye and Morse 

potentials, but he did not consider the correction due to relaxation. 

Nicholas’ calculations extend previous work [3] on the anisotropy 

of the surface energy of cubic crystals, based on the broken-bond 

model. Although the results of Nicholas [2] were obtained for 

various potentials, no general conclusions were drawn on the 

effects of the potential range on the anisotropy of surface energy. 

These effects were considered by Drechsler and Nicholas [4] in 

relation to the equilibrium shapes of crystals, but again with no 

correction for surface relaxation. 

The use of pairwise potentials for calculating the energies of 

surfaces and other crystal defects can of course be criticized 

(e. g. [5]), in special because of the difficulty of developing good 

potentials (particularly for metals, e.g. [6]), but is still the more 

efficient method of studying the structure and properties of crystal 

defects. Linford and Mitchell [7] introduced interplanar potentials, , 

instead of pairwise interatomic potentials, to calculate surface 

energies, but their method is of restricted application. Finally, a 

few attempts have been made to calculate surface free energies 

(e. g. [8], [9]) and predict the effect of temperature on the surface | 

tension. 

2—LATTICE SUMS FOR SURFACE ENERGY 

Consider a crystal with one atom per lattice point, in which 

the atoms interact by a pairwise potential «(9.), where p is the 

distance between the two atoms. A suitable vector basis ( e: e» e: ) 
is chosen in the crystal. The relative positions of the atoms are 

defined by vectors of the type 

n= > ni ej (1) 

The permissible sets n; have to be identified beforehand, for 

example, by relating the e, to a lattice basis (if the e; are a 

lattice vector basis, the n,; can take all integral values). The plane 

of the surface is defined by the Miller indices (p) = (pi P2 Ds) 

relative to the vector basis chosen. The (unrelaxed) surface 
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energy y(p) is calculated from the potential energy, E, of inter- 

action between two half-crystals, C and C’, separated by a 

plane (p), per unit area of this plane (Fig. 1). When relaxation 

3 -0-- -0-—-0- —-0- —-0-+~+0-+~+9- +-0-=+ 
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Fig. 1—A crystal is divided into two half-crystals, C and C’, by a plane 

(Pp, P,P, ) of unit normal P and interplanar spacing d. When C and C’ are 

separated, two (identical) surfaces are created. 

of the atomic positions is neglected, the surface energy is simply 

given by 

y=-E/2 (2) 

This follows directly from an energy balance and from the defini- 

tion of surface energy as an excess energy, per unit area, relative 

to the perfect crystal. 
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Fig. 2— The topmost plane relaxes to a distance (1+ ))d. The dashed 

region is treated as a continuum for calculating the rest of the sums D, 

(see Appendix). 
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The atoms in the surface region will relax to new equilibrium 

positions, and this reduces the surface energy calculated from 

eq. (2). Consider first the relaxation of the atoms in the topmost 

plane (Fig. 2). We assume that this relaxation occurs exclusively 

along the normal to the plane. The corresponding correction to 

the surface energy is obtained as follows (cf. ref. [1]). Let E* (A) 

be the potential energy, per unit area of the topmost plane, in 

the field of the other planes, 1 being a measure of the relaxation 

of that plane (\ = 0 for zero relaxation ). The atoms are assumed 

to keep the same positions as in the perfect crystal, except, of 

course, for the change in the distance of the top plane to the 

following plane. The value, », of » that minimizes E* is 

calculated. If EX is the corresponding energy and E* is the 

energy for \ = 0, the corrected surface energy y, is 

Ye = y+ E*—E* (3) 

The energies per atom will be indicated by e«’s and the energy 

correction per atom by Ag (Ae = e* - e* ). 

In the calculation of E we use a generalized version of the 

method of Shuttleworth, with corrections in his procedure for 

calculating the lattice sums. In this method, the number of pairs 

of interacting atomic planes (p), one in half-crystal C, the other 

in C’, is the relevant quantity. 

Taking for origin an atom position 0% in the plane of order 

0’ of C’, adjacent to the surface (Fig. 1), the positions of the 

atoms of crystal C are defined by all n such that 

= (n-P)=m>1 (4) 

where d is the interplanar spacing and P is the unit normal to 

the surface plane. The number m is a (positive) integer that 

gives the order of the plane of C where the atom n_ is located 

(Fig. 1). For each n, the number of pairs of planes, one in C the 

other in C’, with a spacing equal to md, is precisely m. The 

potential energy of C’ in the field of C, per atom in the plane 

(p), can then be calculated from the potential energy «(n) of 
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an atom in the plane 0’, provided this energy is multiplied by m 

and then summed for all n_ satisfying eq. (4). Finally, if v is the 

volume per atom, the area per atom in the plane (p) is v/d and 
the unrelaxed surface energy is 

1 

2vV n d 

which can be written as 

: 6 VCP) == 5 win: PD e(n); n-P>0 (6) 

This form of y(P) was first presented by Herring [10] and used 

by Nicholas [2] in his calculations. 

3 — CORRECTION TO SURFACE ENERGY 

We now turn to the correcting terms E* due to relaxation 

of the top plane from its unrelaxed position at a distance d from 

the following plane (Fig. 2). The relaxed distance is (1+.)d, 

equivalent to a vector displacement (—AdP). The potential 

energy of the top plane, per unit area, is 

E*(P;a) = Sy e(|n+AdP]) = Sm ORY 5 n-P>0. (7) 
Vn Vv 

The values E¥(A = 0) and E*¥(.,) at the minimum have to be 

determined to evaluate the correction to the surface energy (eq. 3) 

due to relaxation of the atoms in the top plane. 

Except for the lower index planes, the relaxation of the atoms 

in planes following the topmost plane may give a non-negligible 

contribution to the correction. The method that we shall use to 

determine the correction to the surface energy in these cases is 

based on a description [11] of the surface in terms of terraces, 

ledges and kinks (TLK ), such that the terraces and ledges are 

atomically compact, and the distances between ledges and between 

kinks are large compared to the interatomic spacing, as in the 

low atomic density surface of the two-dimensional crystal of Fig. 3. 
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In the companion paper we derive an equation (eq. 8 in 

ref. 11) for y in terms of the contributions of terraces, ledges and 

kinks. From this equation we obtain for the correction Ay to the 

  

Fig. 3—A two-dimensional crystal surface of orientation corresponding to 

the dashed line, showing terraces and ledges. 

surface energy of a plane, with a particular decomposition TLK, 

the following result: 

ip :' ; 
sin Op COS Oy, + y Aex sin Op sin Oy, 

(8) 

  dp 
Ay = Aep — COS Og + 7 

. e Vv iz, dy 

where Aey, Ac, and Acgx, respectively, are the corrections, per 

atom, for atoms in terraces, ledges and kink sites; dy is the 

interplanar spacing of terraces, i, the identity distance along 

ledges and v the volume per atom; ©, is the angle between the 

surface plane and the terraces and 6, the angle between the 
intersection of these planes with the direction of the ledges. 

The total correction is then calculated by summing the cor- 

rections due to atoms in terraces, in ledges and in kinks. The 

latter is calculated from the correction for the topmost plane 

under consideration. The correction due to the terraces is directly 

obtained from the calculated «* — «* for the plane of the terraces. 

Finally, the correction due to the ledges is obtained from that for 

a vicinal surface plane containing the same terraces and Jedges 

(but no kinks) as the plane under consideration. In this method 

for obtaining the correction to the surface energy it is assumed 

that all atoms in terraces (e. g. atoms 2-5 in Fig. 3) and all atoms 

in ledges are equivalent. This is not strictly true: for example, 

the atoms in terraces near a ledge (e. g. atoms 2 or 5 in Fig. 3) are 
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not in positions equivalent to those in terraces far from ledges 

(atoms 3 and 4). The error in the calculated corrections should 

then decrease as the width of terraces and the inter-kink distance 

increases. 

4—LATTICE SUMS FOR EVAPORATION ENERGIES 

The evaporation energy is the absolute value of the potential 

energy of a surface atom in the field of all other atoms. For an 

atom in the topmost plane, the (corrected) evaporation energy is 

given by 

ay = - Ce ee) (9) 

where e% is the contribution of planes below the top plane and «F 
is the potential energy due to the other atoms in the top 

plane. «* is calculated as described above (eq. 7) and «5 is 
obtained from 

ep =Se(n)in-P=O0;n#0 (10) 

Evaporation energies of atoms in the second and following planes 

may de comparable to «,, in the case of high index planes. By 

considering a TLK description of the surface, the evaporation 

energies of other surface atoms (in terraces and in ledges) can 

be obtained; the evaporation energy for the topmost plane cor- 

responds to the kink site atoms (ledge atoms, if the surface has 

no kink sites). 

5-- APPLICATION TO F.C. C. CRYSTALS 

We take three orthonormal vectors (e, e. e; ) along the edges 

of the cube cell (!e,|;= 1). If a is the lattice parameter, the 
general form of n is 

n= Xn, e, with + n,; = even (11) 
i 

a 
aa | 

the n; being integers such that their sum is even. The Miller 
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indices (pp. ps) Will be taken as all odd (and coprime) or all 

even (g.c.d. = 2); then 

a 

d=— >; pPHtp;: P= = Pi ej (12) 
p i 

1 

p 

The interatomic distance in the crystal is r, = a/\/2 and the volume 

per atom is a*/4. The e|e’ Mye potential (namely 6! 9, 6| 12 and 

9| 12, see Fig. 4) will be used 

/o\¢ e- coeuf (Qh Gy free on 
where «, and o are constants that can be related respectively to 

the cohesive energy per atom, «,, and to the equilibrium separa- 

tion, r,, in the crystal, by imposing that the potential energy of 

an atom is a minimum at the equilibrium separation. Table 1 gives 

Se 
c 

0.10 fF 

0.0   

Vis     

T -0.10 

  

  
Fig. 4— Plot of the potential functions ¢(p) used in the calculations, The 
energy is in ¢, units (cohesive energy in the crystal) and the distance in r, 

units (equilibrium Ist neighbour distance in the crystal). The distances to 

2nd, 3rd, etc., neighbours are indicated. 
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values of o/r, and «,/e,, obtained from very precise calculations 

of the lattice sums involved (cf. ref. [12]). Also indicated in Table 1 

are the values of the equilibrium separation p,, and energy «,, for 

an isolated pair of atoms. The fact that r,/p,, is smaller than 

unity indicates that the near-neighbour interaction is repulsive for 

all potentials. This is in fact valid for any Mye potential [13]. 

TABLE 1— Potential constants 

  

| 6|9 Potential 6|12 Potential 9|12 Potential 
    

o/t, 0.91710 0.91729 0.91747 

£,/€, 0.69769 0.46456 1.39026 

TDs 0.95255 0.97123 0.99024 

—€n/ Eo 0.10336 0.11614 0.14663         
For the f. c. c. crystal with a potential e | e’, eq. 6 becomes 

y(P; ele’) =—— (ote Cy —o*? C,) (14) 

where ‘ 

o* = 2 a/To (15) 

and 

Cc, = x m’/ ne (16a) 

with 

m= 5 = my p> 05 ¥ mj = even; = = (16b) 

The energy E*(.) per unit area of the topmost plane, when 

its separation from the following plane is (1 + \) d, is obtained 

from eq. 7 noting that the displacement of the top plane is 

— Xap” (3 Pi @;): 

2 Eo , 

(i) = = Dye Dy) (17) 
0 
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where 

BetAy == Cr (18a) 
n 

with 

1 
ae n; pj > 0; 2 n= even; n® = 5 n?; nj = ny + 2p p 

1 1 1 

(18b) 

Finally, the potential energy of an atom in a plane (p) due 

to the other atoms in the plane is given by 

e* = e, (0% P,,—a** P,) (19) 

where 

P, = > me (20a) 
n}#0 

with 

Sn, pj = 0; & n,; = even; n®? = & ni (20b) 
1 

6— RESULTS AND DISCUSSION 

All lattice sums, C,, D, and P, were calculated by the 

methods described in the Appendix, with M = 10. The number of 

terms (atoms) in the direct sums was approximately 1000 for the 

series C and D. The rest of the sum C, for (002) is 2.3% of 

the value obtained in the direct sum. This figure is 0.35 % for D, 

(with 4 =0). The figures for C, and D, are respectively 

3.7 x 10° % and 1.2 X 10° % and for C,, and D,, they are about 

5.10-* %. The precision in the values of y is quite good. For example, 

the value of y for the (002) plane obtained with M = 20 is between 

(0.3-5) < 10° different from the value for M = 10 for the three 

potentials. All calculated values will be written with at most 

four or five digits, according to the cases. 

The determination of the equilibrium relaxation X, of the top 

plane was found by calculating E* (A) with increments of 0.001 

in A, starting at \ = 0. 

We shall consider separately the results for surface energies 

and for evaporation energies. 
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6a — SURFACE ENERGIES 

Unrelaxed surface energies, y, were calculated for a large 

number of planes and for the three potentials used (6|9, 6| 12 
and 9|12). In Table 2 are shown the values of y for the more 

closely packed planes up to (135) and for a selected number of 

TABLE 2— Surface energies, y (e,/r2 units). 

  

  

    

Potential 

Plane 

6|9 6 | 12 9|12 

111 0.4831 0.4315 0.3283 

002 0.4938 0.4480 0.3564 

022 0.5137 0.4690 0.3798 

113 0.5172 0.4717 0.3805 

133 0.5181 0.4709 0.3763 

024 0.5238 0.4811 0.3955 

224 0.5172 0.4693 0.3735 

115 0.5176 0.4717 0.3799 

135 0.5259 0.4817 0.3933 

100 100 102 0.4848 0.4333 0.3301 

50 52 54 0.4890 0.4377 0.3350 

500 502 520 0.4863 0.4348 0.3318 

2 2 100 0.4980 0.4520 0.3601 

2 100 100 0.5147 0.4699 0.3801 

2 500 500 0.5139 0.4693 0.3798 

0 2 40 0.5016 0.4559 0.3644 

0 2 100 0.4971 0.4513 0.3597 

0 30 38 0.5226 0.4784 0.3901 

2 20 400 0.5017 0.4560 0.3645 

1 15 19 0.5238 0.4794 0.3907 

1 75 95 0.5229 0.4787 0.3903       
  

Portgal. Phys. — Vol. 16, fasc. 3-4, pp. 137-160, 1985 147



‘
7
1
1
6
-
0
 

‘21|9- 
A 

‘6|9- 
O 

:sfenUs}0d 
103 

sfoquids 
‘ouoz 

[211] 
(9 

‘euoz 
[ort] 

(4 

:auoz 
[00Z] 

(8 
:souoz 

o
1
y
d
e
r
Z
o
]
]
[
e
I
S
A
I
O
 

s
n
o
l
e
A
 

S
u
o
j
e
 

s
o
i
s
i
o
u
a
 

sdvjJins 
p
a
y
o
o
1
s
0
o
U
N
 

Jo 
u
O
T
e
I
e
A
 

—
¢
 

‘“SIy 

 
 (2) 

(saasBap) 
''!'g 

006 
os? 

A) 

(
h
a
n
)
 

(
e
s
t
)
 

(
@
7
0
)
 

(
r
e
y
)
 

t
i
s
)
 

(
o
z
z
)
 

; 
‘
e
e
 

g Re ® a 

o o
o
 a 

° 
° 

° 
° 

is) 
° 

®, 
° 

° 
2 
P
o
g
0
°
 

P0q00P 
0
0
 

0 
0 0 

a 
a 

sal 

a 
a 

A 
e
s
 

a
,
 

r 
a 

M
n
.
 

a 
Ban 

nad 
A
h
a
 

o 

o 
o 

0 
o 

o 
i) 

a, 
fe) 

o 
is} 

ia 
[
o
o
 

 
 

  
O
b
s
 

9/9 

(q) 
(e) 

(seasBap) 
(2009 

(saauBap) 
o0lg 

(ee) 
 
 

9 
a
p
 9 

 
 

2) 

  
  
 



J. B. CorrEIA et al. — Surface and evaporation energies of monoatomic crystals 

high index planes, most of which are vicinal to one of the lower 
index planes. From these data it is possible to calculate the con- 
tribution to the surface energy of edges and kinks in close packed 
planes. This will be discussed in detail in the companion paper. 
The y values are expressed in units of ¢,/r?, where e, is the 
cohesive energy per atom and r, is the interatomic distance. The 
values for the 6| 12 potential are in excelent agreement with those 
that can be found in the work of Nicholas [2], but differ from 
those of Shuttleworth [1]. The 6|9 values are about 10 % larger 
than the 6| 12 values and these are ~25 % larger than the 9| 12 
values, for the same surface planes. The data is conveniently 
displayed in y-plots for individual zones, as shown in Figs. 5a-c 
respectively for the <100>, <110> and <112> zones. The 
cusps at the lower index planes are clearly seen. 

The fact that the relative values of y for the three potentials 
are fairly independent of the surface orientation, suggests that if 
the y values are expressed in another unit, characteristic of each 
potential, it might be possible to obtain values of y fairly inde- 
pendent of the potential. Various attempts were made in this 
direction, using the data of Table 1, but without success. The 
energy depends on the interaction of a large number of atoms and 
it is not possible to write simple relations between the surface 
energy and properties of the interatomic potential. 

The surface energy is least for (111) for all potentials. The 
largest » found was for the plane (3 13 25) for the 6|9 and 6| 12 
potentials and for (1 7 13) for the 9| 12 potential. These results 
on the maximum contrast with the conclusions drawn from a 
broken first-neighbour bond model [3, 4], according to which the 
maximum y occurs for (024). The anisotropy, measured by the 
ratio of the two extreme y’s, is 1.207, 1.120 and 1.091 respectively 
for the 9/12, 6|12 and 6|9 potentials, in agreement with the 
general effect of the potential range on the anisotropy of y [4]. 

Table 3 gives the equilibrium potential energy e* of an atom 
in a topmost plane, in the field of the atoms below that plane. The 
unit is «,. The values for each potential vary by a factor of ~1.6 
between the maximum and minimum; they are slightly larger for 
the 6|9 potential and smaller for the 9| 12 potential. 

The calculated relaxations, expressed in r, units, vary between 
1.2 and 2.5 % for the 6|9 potential, between 0.7 and 1.5% for 
the 6 | 12 potential and between 0.2 and 0.5 % for the 9| 12 poten- 
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tial. The smallest values are for (111), while (024) has values of 

the relaxation close to the maximum (which in fact occurs for a 

high index plane). 

The corrections to the surface energy due to relaxation of 

the top plane, i.e. the values of «*—e*, are also indicated in 

Table 3. The values are per atom, in , units. 

TABLE 3—Energy of atoms in top plane, ee? and energy 

correction, «—e%, per atom 

  

  

  

— re Ge units) es —e% (e, units) X 10? 

Plane 

6|9 6| 12 9/12 6|9 | 6| 12 9|12 

Lt 0.6490 | 0.6143 | 0.5468 0.2672 | 0.1177 | 0.0086 

002 0.7115 | 0.6940 | 0.6636 | 0.7535 | 0.3731 0.0634 

022 0.8358 | 0.8302 | 0.8247 | 0.8843 0.4201 0.0602 

113 0.8713 | 0.8607 | 0.8448 | 0.8104 | 0.3818 0.0515 

133 0.8956 | 0.8797 | 0.8523 | 0.6892 0.3197 | 0.0391 

024 0.9427 ! 0.9501 0.9722 1.1403 0.5435 0.0822 

224 0.8994 | 0.8825 | 0.8529 | 0.6417 0.2960 0.0354 

115 0.9927 | 0.8845 | 0.8533 | 0.8329 | 0.3990 0.0587 

135 0.9781 | 0.9807 | 0.9923 | 0.9872 | 0.4623 0.0634 

100 100 102 0.9014 | 0.8846 0.8531 0.2875 0.1251 0.0094 

50 52 54 0.9898 | 0.9912 | 0.9962 0.3234 0.1404 0.0115 

500 502 520 1.0030 1.0013 1.0001 0.3030 0.1311 0.0100 

2 2 100 0.9063 0.8872 | 0.8537 | 0.7756 0.3810 0.0633 

2 100 100 0.9072 | 0.8875 | 0.8536 | 0.8681 0.4128 | 0.0589 

2 500 500 0.9073 | 0.8875 | 0.8536 0.8760 0.4170 0.0599 

0 2 40 0.9697 | 0.9714 | 0.9801 | 0.8398 0.4078 | 0.0668 

0 2 100 0.9694 | 0.9713 0.9800 | 0.8072 0.3928 0.0650 

0 30 38 0.9715 |; 0.9721 0.9800 1.0140 0.4799 0.0691 

2 20 400 1.0083 1.0040 1.0007 | 0.8231 0.4051 0.0660 

1 15 19 1.0091 1.0042 1.0006 0.9870 0.4662 0.0657 

1 75 95 1.0100 1.9047 1.0007 1.0043 0.4760 0.0680               
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TABLE 4— Surface energy corrections using TLK decomposition (e,/0? units) 

  

  

  

              

‘dant ot Ay ( X 10?) 
Plane Terrace | Ledge nae . _ 

6|9 6 | 12 9|12 

111 111 —_ 0.3085 | 0.1359 | 0.0099 

002 002 — 0.7535 | 0.3731 | 0.0634 

022 022 — 0.6253 | 0.2971 | 0.0426 

113 113 — 0.4887 | 0.2302 | 0.0311 

113 002 110 1.1703 | 0.5677 | 0.0884 

113 111 110 0.7572 | 0.3485 | 0.0397 

133 022 O11 0.9248 | 0.4358 | 0.0594 

133 111 O11 0.6023 | 0.2727 | 0.0271 

024 002 200 1.1839 | 0.5768 | 0.0935 

024 022 200 1.1032 | 0.5249 | 0.0771 

224 002 110 1.1392 | 0.5463 | 0.0807 

224 111 110 0.5529 | 0.2490 | 0.0238 

115 002 110 1.0456 | 0.5126 | 0.0836 

135 111 121 0.6047 | 0.2757 | 0.0302 

135 022 211 0.9316 | 0.4403 | 0.0621 

100 100 102 111 110 0.3118 | 0.1373 | 0.0100 

50 52 54 111 121 0.3156 | 0.1390 | 0.0102 

500 502 520 111 110 100 100 102 | 0.3154 | 0.1389 | 0.0102 

2 2 100 002 110 0.7842 | 0.3882 | 0.0659 

2 100 100 022 011 0.6498 | 0.3087 | 0.0442 

2 500 500 622 O11 0.6302 | 0.2994 | 0.0429 

0 2 40 002 200 0.7945 | 0.3930 | 0.0667 

0 2 100 002 200 0.7695 | 0.3809 | 0.0647 

0 30 38 022 200 0.7886 | 0.3743 | 0.0537 

2 20 400 002 200 0 2 40] 0.8028 | 0.3970 | 0.0673 

1 15 19 022 211 1 3 5) 0.8378 | 0.3969 | 0.0564 

1 15 19 022 200 0 30 38] 0.8694 | 0.4125 | 0.0591 

1 75 95 022 200 0 30 38] 0.8051 | 0.3822 | 0.0548 
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The smallest correction per atom is for (111) and the largest 
is for (024); these corrections differ by a factor of ~4 for the 
6 |e’ potentials and by a factor of ~8 for the 9| 12 potential. The 
correction is very small for the 9|12 potential and largest for 
the 6 | 9 potential, but even for this potential does not exceed ~1 %. 

Corrected surface energies were obtained with the values 

of Table 3, using eq. 8 and an appropriate TLK description of the 

TABLE 5— Corrected surface energies, y, (TLK corrections) 

  

  

  

ve (e/2 units) 
Plane 

6|9 6|12 9| 12 

111 0.4800 0.4301 0.3282 

002 0.4863 0.4443 0.3558 

022 0.5074 0.4660 0.3794 

113 0.5096 0.4682 0.3801 

133 0.5121 0.4682 0.3760 

024 0.5128 0.4759 0.3947 

244 0.6117 0.4668 0.3733 

115 0.5071 0.4666 0.3791 

135 0.5199 0.4789 0.3930 

100 100 102 0.4817 0.4319 0.3300 

50 52 54 0.4858 0.4363 0.3349 

500 502 520 0.4831 0.4334 0.3317 

2 2 100 0.4902 0.4481 0.3594 

2 100 100 0.5082 0.4668 0.3797 

2 500 500 0.5076 0.4663 0.3794 

0 2 40 0.4937 0.4520 0.3637 

0 2 100 0.4894 0.4475 0.3591 

0 30 38 0.5147 0.4747 0.3896 

2 20 400 0.4937 0.4520 0.3638 

1 15 19 0.5151 0.4753 0.3901 

1 75 95 0.5148 0.4749 0.3898         
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surface. The terraces were chosen among (111), (002) and (022) 
and the ledges among the directions [011], [002] and [112]. For 
each decomposition, the correction to the surface energy is given 
in Table 4 in ¢, /r, units. When the plane has no kinks, 0, = 0, the 
correction Ae, is the value found in Table 3 for that plane. If there 
are kinks, Ae, is taken from Table 3 for a plane (indicated in 
Table 4) vicinal to the surface plane and with a TLK decomposition 
with no kinks; Ae, is then the correction per atom for the sur- 

face plane. 

Also included in Table 4 are the corrections to the four most 
close packed planes, calculated directly from the correction per 

atom for these planes, given in Table 3. 

The corrected energies are given in Table 5 for the planes 
listed in Table 4. For planes with two TLK decompositions in 
Table 4, the correction corresponding to the decomposition with 
more close packed terraces (or ledges, in the case of (1 15 19)) 

was used. It is apparent that the correction slightly reduces the 

anisotropy of the surface energy (reduction of 1.5% for the 
6|9 potential). It also reduces the increase of y» for a given 
deviation away from a close packed orientation. 

6b — EVAPORATION ENERGIES 

The calculated potential energies es of an atom in a crystal 
plane due to the other atoms in the plane are indicated in Table 6, 
in e, units. The values for the high index planes such as 
(2 100 100), (0 2 100) and (50 52 54) are very nearly those 
contributed by atoms in the lattice row, parallel to <001>, <002> 
and <112>, respectively, where the reference atom is located. 
This is because in these planes, the rows indicated have inter-row 
spacings much larger than the repeat distance along the row. For 
similar reasons, the atoms in planes such as (1 75 95) are so far 
apart that the potential energy ey is negligible. Combining these 
results with the «* values of Table 3, corrected evaporation 
energies from the topmost planes can be calculated (eq. 8). The 

results are shown in Table 7. 

As expected, the evaporation energy decreases as the com- 
pactness of the surface plane decreases, for the more close packed 
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TABLE 6 — Potential energy, ep per atom due to atoms in the same plane 

  

Plane 

* . 
Ey (e, units) 

  

    

100 

50 

c
o
 
C
o
O
 

N
M
 

NM
 

O
N
 

500 

2 

1 

1 

lll 

002 

022 

113 

133 

024 

224 

115 

135 

100 102 

52 54 

2 100 

100 100 

500 500 

2 100 

30 38 

502 520 

20 400 

15 19 

75 95   

6|9 6| 12 9| 12 

0.7073 0.7737 0.9065 

0.5919 0.6193 0.6741 

0.3459 0.3479 0.3518 

0.2734 0.2861 0.3114 

0.2224 0.2470 0.2961 

0.1374 0.1107 0.5729.10-1 

0.2140 0.2409 0.2948 

0.2112 0.2390 0.2945 

0.6343.10-1 0.4784.10-1 0.1666.10-1 

0.2029 0.2333 0.2940 

0.2671.10-1 0.2040.10-1 0.7790.10-2 

0.2029 0.2333 0.2940 

0.2029 0.2333 0.2940 

0.2029 0.2333 0.2940 

0.7722.10-1 0.6523.10-1 0.4126.10-1 

0.7722.10-1 0.6523.10-1 0.4126.10-1 

0.7722.10-1 0.6523.10-1 0.4126.10-1 

0.1123.10-5 0.7491.10-6 0.1960.10-8 

0.2320.10-6 0.1547.10-6 0.1007.10-9 

0.1437.10-2 0.9812.10-8 0.6878.10-4 

0.2477.10-4 0.1658.10-4 0.1890.10-6       

planes (from (111) to (135)). The (024) plane has a slightly lower 

value, which can be attributed to the low «* for this plane. 

The evaporation energies for the following high index planes 

(from (100 100 102) to (0 30 38)) correspond to atoms which 

are located at atomic ledges separating low index terraces. The 

ledges are, depending on the cases, along <110>, <200> and 
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TABLE 7— Evaporation energies, Egy 

  

  

  

Eey (e, units) 

Plane 

6|9 6| 12 9/12 

lll 1.3563 1.3880 1.4534 

002 1.3035 1.3134 1.3377 

022 1.1818 1.1781 1.1765 

113 1.1448 1.1468 1.1563 

133 1.1181 1.1267 1.1485 

024 1.0800 1.0608 1.0295 

224 1.1134 1.1234 1.1478 

115 1.1139 1.1235 1.1479 

135 1.0415 1.0285 1.0090 

100 100 102 1.1043 1.1179 1.1471 

50 52 54 1.0166 1.0116 1.0040 

2 2 100 1.1092 1.1204 1.1476 

2 100 100 1.1101 1.1208 1.1476 

2 500 500 1.1102 1.1208 1.1476 

0 2 40 1.0470 1.0367 10213 

0 2 100 1.0467 1.0365 1.0213 

0 3 38 1.0487 1.0374 1.0213 

500 502 520 1.0030 1.0013 1.0001 

2 20 400 1.0083 1.0040 1.0007 

1 15 19 1.0105 1.0051 1.0007 

1 75 95 1.0100 1.0047 1.0007       
  

<112> directions (see Table 4). It is noticeable that the evapo- 
ration energies of such ledge atoms are fairly constant, i. e., nearly 
independent of the low index terrace associated with the ledge, and 
decrease as the atomic density in the ledge decreases. 

The evaporation energies per atom in top planes which do not 
contain close packed rows (the last four planes in Table 7) are 
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also fairly constant. They correspond to atoms at kink sites. It is 
interesting to note that the evaporation energies of such atoms 
can be as much as 1 % larger than the cohesive energy for the 
9|6 potential. 

It is apparent from the values of Table 7 that there is no 

systematic effect of the potential on the evaporation energies 

expressed in «, units. This contrasts with the marked effect on 
the y values expressed in e«,/r? units. 

Finally, it is noted that the energies «* in Table 3 for the 

low index planes are the evaporation energies for isolated ad-atoms 

sitting on these planes. Such energies increase as the atomic 

density in the plane decreases. 

APPENDIX — CALCULATION OF LATTICE SUMS 

The sums C,, D, and P, are calculated term by term up to 
a chosen value of n = |n|: 

ne =F n2 ent M? 

and the number, N, of terms in the sum, is counted. The region 

within which these atoms are located is then determined (e. g. a 

hemisphere or a circle). The rest of the series is calculated 

assuming that the remainder of crystal C is replaced by a con- 

tinuum with the appropriate atomic density. 

The correct assignment of the volume where the N atoms 

are located is crucial, if precise results are wanted. Shuttleworth 

assumed that this volume, in the case of the series C,, is a 
hemisphere in crystal C of radius R,a/2, centred at atom 0’, in 

the first plane 0’ of C’ (Fig. 6) and such that (27/3) R? = 2N. 

Using this criterion we have obtained incoherent results: for 

example, the surface energy for (2 500 500) is smaller than that 

for (022). Since among the N atoms there are no atoms in the 

plane through 0{, it is apparent that the volume in crystal C 

where the atoms are located is the volume of a hemisphere centred 

at 0{, minus the volume of a layer adjacent to the plane 

through 05 and of thickness d/2 = (a/2)-(1/p) (see Fig. 6). 
This is consistent with the procedure that will be adopted to 

156 Portgal. Phys. — Vol. 16, fasc. 3-4, pp. 137-160, 1985



J. B. CorrEIA et al. — Surface and evaporation energies of monoatomic crystals 

evaluate the rest of the series. Therefore the radius R,a/2 of 

the sphere is given by 

(27/3) Rj—aR, (1/p) = 2N 

The difference between the R, determined by this equation 

and by Shuttleworth’s equation tends to zero as the interplanar 

distance d— 0, but for lower index planes the differences are 

significative leading to changes of about 0.2% in the surface 

energy of (002), with the 6|12 potential. This results mostly 

from the change in C, which is the slowest convergent sum. 

° ° ° ° O Ip 0 ° ° ° 

0 === 0o- -9-—-0- —A-- o- —04-0,— walle allel d/y 
  

  

  

YUL 

AN Sn gan ANCA C 
LALLA ALLL ALLL ALLEL LLL 
  

Fig. 6—TIllustration of the method used to obtain the rest of the lattice 

sums C, (see Appendix). The half-crystal C is replaced by a continuum 

outside a hemisphere of radius R, a/2. 

The atomic planes (p) outside the hemisphere are replaced 

by continuous lamella of thickness d/2 centred in each plane 

(Fig. 6). The integration domain for the integrals that give the rest 

of the series is the difference between the following two regions: 

i) the volume below plane 0’ outside the hemisphere; ii) a lamella 

of thickness d/2 limited by that plane, outside the hemisphere. 

Shuttleworth wrongly assumed that region ii) was a lamella 

outside a cylinder of radius R,. 
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Using spherical coordinates, (9, ©, 6) and expressing all 

linear dimensions in units of a/2 (volume per atom = 2), we have 

(cf. eq. 16a) 

m’ = pcose/d 

and the integrals that have to be calculated are of the form 

ssf @ sino coso dp do d¢ 

For the integral over region (i) the integration limits are: 

¢(0, 27); O0(0, 7/2); p (Ro, ©), with the result 

  

For the integral over region (ii) the integration limits are: 

); 8 (cos a, , 7/2) with the result: $(0, 27); 9 (Ro, 
p coso op 
  

7 1 
wv? — 

° 4p (e—2) Re 
  

The series C, is then calculated from 

+ C= Cl; r= > ne < M? 
i 

In the case of the series D, the sum is calculated term by 
term up to 

= nj? < M? 

The corresponding N atoms are within a hemisphere of radius 

R, a/2 centred at 0, with (Fig. 2). 

(2n/3) R83—7R2-(2.+1)/p = 2N 

The second term in the left corresponds to a layer of thickness 

d/2 + Ad where no atom centres lie. This integration volume 
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is again the difference between: i) the half-space below 

plane 0 outside the hemisphere; ii) a lamella of thickness 

(1/2 +2») d=(1-+ 2d)/p-a/2 outside the hemisphere and adja- 

cent to plane 0. The integrals for the rest of the sum D, are 

rrp gp ® sind do do d¢ 

For the integral over region (i): ¢(0,27);0(0,7/2),9 (Ro, 0) 

with the result 

. 7 1 

Oe es RE 

For the integral over region (ii): ¢(0, 27);p(Ro, ATS 5, 
p cose 

8 (cos iain 5 =e ) with the result 
p Ro 2, 

=, Ot oe ; 1 “i 

ep Ls d) (e—2) Re 

The series D, is then calculated from 

od _ : 
D. = > ‘ne = Bs DL— Dg n”? == - ni? < Me 

Finally in the calculation of P, the direct sum is determined 

for N atoms within a circle of radius R, a/2 such that 

aR? = Np 

The atoms outside this circle are replaced by a continuum with 

atomic density (pa?/4 )-!. The rest of the sum is 

P 1 i on oe d 2r 1 1 
y= — yi-e <> 
e p Re w ® p p e—2 Re2 
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