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ABSTRACT — The description of the surface of a crystal in terms of 

terraces, ledges and kinks (TLK) is discussed , and equations are derived 

that determine the TLK content of the surface for any choice of terraces and 

ledges. The surface energy can be obtained as a sum of contributions of 

terraces, ledges and kinks. The form of the lattice sums that give these 

contributions in terms of a pairwise interaction potential is derived. 

The accuracy of the TLK decomposition of surface energy is assessed 

by comparing the TLK energies with those calculated directly. Calculations 

were done for a f.c.c. crystal using three Mye potentials (6|9, 6|12 and 

9|12) and limiting the choice of terraces and ledges to the more closely 

packed planes and directions, respectively. A very accurate method for 

calculating the lattice sums was developed, with which terrace, ledge and 

kink energies were determined. From these results it is concluded that the 

accuracy of the TLK decomposition of energy decreases as the range of the 

potential increases, but is never worse than one percent for the poten- 

tials used. 

The analogy of the TLK description with the coincidence site lattice 

model of interfaces is emphasized. 

1 — INTRODUCTION 

At the atomic level, the simplest solid surfaces are those 

obtained in a monoatomic crystal by a cut parallel to a lattice 

plane, followed by removal of the atoms in one side of the cut. 

The atomic distribution of the atoms is then periodic in each of 

the planes parallel to the cut, even if relaxation of the atomic 
positions is taken into account. The surface atoms may be defined 
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as those with potential energies, « (in the field of the other atoms), 

exceeding a specified value, for example |«| < 0.99 «,, where «, 

is the cohesive energy. If the plane of the surface is a low index, 

high atomic density plane, the surface atoms will be, if the 

interaction is of short enough range, only those in the topmost 

plane. In this case, there is only one type of surface site (see 

example in Fig. 1a). However, for high index surfaces (Fig. 1b), 

the surface atoms will belong to a number of planes parallel to 

the topmost plane, although the thickness of the surface region 

should be comparable in both cases. For a high index surface, the 

properties (e. g. the energy) of the atoms vary slightly from plane 

to plane, in the surface region, so that, strictly, there are as many 

types of surface sites as parallel planes in the surface region. 

However, the change in energy from plane to plane is not in 

general uniform (broken bond model!), and it is formally con- 

venient to group the atoms with similar properties in the same 

class. This then leads to the terrace-ledge-kink (TLK) description 

of the surface [1], which essentially recognizes only three types 

of surface atom sites (marked 1, 2 and 3 in Fig. 2a). The terraces 

are low energy, high atomic density planes. The ledges (or steps) 

are parallel to close packed directions and uniformly spaced; they 

can be regarded as monoatomic steps from one terrace to the 

next. The kinks are arranged in a planar lattice (that of the 

surface plane) and can be described as steps in the ledges. The 

energy of the surface atoms increases in the order terrace sites, 

ledge sites, kink sites. 

This is the essence of the TLK model of a crystal surface, 

which has proved very useful in discussing properties such as 

surface and evaporation energies [2-4] and phenomena such as 

adsorption, surface diffusion and crystal growth [5]. Real surfaces 

do contain ledges and kinks, but not regularly distributed, and in 

general other types of atom sites will be found in them. In this 

paper, we shall consider only regular ideal surfaces obtained by 

a cut through a lattice plane, for which the TLK decomposition 

is periodic. 

Formally, the TLK description can be applied to any orienta- 

tion of the surface and to any choice of the plane of the terraces 
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Fig. 1 — Different orientations of the surface ‘‘plane’’ P in a two-dimensional 

crystal: (a) low index, high atomic density; (b) high index, low atomic 

density. The interplanar spacings are indicated. 

  

  

  

  

  

Fig. 2— An arbitrary surface orientation (p) showing a TLK decomposition. 

The unit vectors normal to the surface plane (P) and to the terraces (T) are 

shown. L is a unit vector along the ledges and I a unit vector parallel to 

the intersection of planes P and T. Atoms 1, 2 and 3 are respectively at 

terrace, ledge and kink sites. Diagrams (b) and (c) are sections of (a) through 

planes perpendicular to I and T, respectively. Diagram (d) shows the vectors 

used in the text; U, L, T define a triorthogonal direct reference system. 
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and of the direction of the ledges. The spacing between ledges and 
that between kinks is then determined to give the specified orienta- 
tion of the surface plane. However, as the orientation of the 
surface deviates more and more from that of the chosen terraces, 
the density of ledges and kinks increases so that their interaction 
becomes strong [6] and their individuality may become ques- 
tionable. On the other hand, if the terraces are taken as high 
index planes, it is no longer legitimate to consider only one type 
of surface sites in the terraces. These limitations to the applicability 
of the TLK model will have a repercussion when one attempts to 
calculate overall surface properties, e.g. the surface energy, in 

terms of contributions due to terraces, ledges and kinks. 

The present paper concentrates on this topic and contains a 
detailed study of the surface energy decomposition in terms of 
TLK, from which conclusions on the applicability of the TLK 
model can be drawn. We first write down the equations that give 

the TLK content of an arbitrary surface and for arbitrary orienta- 
tions of the terraces and ledges. We then derive the lattice sums 

that give the contributions to the surface energy of ledges and 

kinks, assuming a pairwise interaction between the atoms. The 

properties of the sums are discussed and their actual calculation 

is done for a f.c.c. crystal using three potentials of the Lennard- 
Jones type (Mye potentials). The results are used to calculate 

surface energies of various planes from their TLK content. These 

surface energies are then compared with those obtained by a direct 

method [7], in order to assess the range of applicability of the TLK 

decomposition from the point of view of surface energy. No cor- 

rections associated with relaxation of the atoms to their equi- 

librium positions have been included in our calculations. As shown 

in the preceding paper, these corrections are always very small for 

the potentials that will be used here. A recent example of cal- 

culations of relaxed ledge energies in ionic crystals can be found 
in ref. 8. 

The problems that we discuss are formally similar to those 

found in the coincidence site lattice (c.s.1.) model of grain 

boundaries [e.g. 9, 10]. In this model, the concept of special (or 

favoured) c.s.]. boundaries is the equivalent to low index sur- 

faces, and the grain boundary dislocations are the equivalent to sur- 

face ledges and kinks, which can, in fact, be regarded as surface 
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defects. On the other hand, the range of applicability of the c.s. 1. 

model is limited by similar questions and can be assessed in 

similar grounds. 

2—DETERMINATION OF THE TLK DECOMPOSITION 

Consider a surface in a crystal with one atom per lattice 

point, parallel to an arbitrary crystallographic plane with Miller 

indices (p) =(p:P2Ps) referred to a vector basis e1 e2 es (not 

necessarily a lattice basis). The unit normal to the plane is P and 

the interplanar spacing is d (Figs. 1 and 2). 

The plane of the terraces is (t) =(tit.t,) with unit nor- 

mal T. The ledges are parallel to the crystal direction [1] = [Uhl] 

with unit vector L. The height h,, of the ledges is the interplanar 

spacing d> of (t) 

hy = dy (1) 

and the height h, of the kinks is the distance between adjacent 

rows [1] in the plane (t). Let i; be the repeat distance along 

the ledges and v the volume per lattice point (atom). Then 

Vv 
  hy =~ 

“dy ip 
(2) 

The angle 0,(0 <0, < 7/2) between the plane of the sur- 

face (p) and the plane of the terraces (t) is given by 

cos. 6,, = P.-T (3) 

The intersection of these two planes is a crystal direction [i] of 

unit. vector | at an angle 6, with the direction of the ledges 

(0 <0, < 2/2): 

cose; =1-L; 1-P=I1-T=0 (4) 

The spacing between ledges, measured in the direction perpen- 

dicular to | in the plane (p) is w = h,/sino,. The width wy of 

the terraces ( distance between ledges measured in the plane (t) ) 

can be related to h,, (Fig. 2c): 

wr = hy, cotg Op Cos 0;, (5) 
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The distance between adjacent kinks in the same ledge, Wr, is 
measured along the ledge and is given by 

Wx = hx cotg 6, (6) 

All the quantities defined above are indicated in Fig. 2. 
If P defines a lattice plane, as we are assuming, the distri- 

bution of ledges and kinks is periodic. The period corresponds 

to a unit cell in the plane (p), defined by the kink sites. The 

area of this unit cell is ww,/cos 6, . The corresponding area of 
terrace is obtained by multiplying by cos0,. The length of 

ledges in the period is wx, and there is one kink per period. 

Let y be the surface energy of (p), yp the surface energy of 

the terraces (both per unit area), ,; the ledge energy per unit 

length and cx the energy of a kink. Then 

WWx WW 
—— = ¥p ——— 008 Oy + ey, Wa + ex (7) 
cos Oy, COS Oy, 

Using eqs. 5 and 6 we finally obtain 

eK hh, Sin Or sin Or (8) 
EL 

= ym CoSO,,+ ~— sine, cose, + ¥= Yo T ly, T LU" hyuhe 

with h;, and hx given by eqs. 1 and 2, respectively. 

In this approach, ledges and kinks are treated as line and 

point features on the surface, respectively. The surface itself is 

treated as a geometric surface. The approach is macroscopic in 

this respect. For example, the specific surface energy, yp», should 

be regarded as an average surface energy of the actual terraces, 

and possibly affected by their width. The TLK decomposition of the 

energy is acceptable for those planes such that the terrace and 

ledge energy is negligibly different from that of a wide terrace 

or of a ledge with no kinks, respectively. 

We will now show how these limitations to eq. 8 can be put 

in more precise terms. This will be done by using an atomic 

approach to the surface energy, through which we are able to 

obtain the lattice sums with which terrace, ledge and kink energies 

can be calculated. 
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3 —LATTICE SUMS FOR LEDGE AND KINK ENERGIES 

The derivation of the lattice sums for y , e;, and ex is 

based on the equation for the energy of a surface of arbitrary 

orientation in terms of the pairwise interaction between the atoms. 

For a potential «( ), where ¢ is the distance between two atoms, 

the surface energy y for the orientation defined by a plane 

(P: Pp» ps ) of unit normal P, is [7] 

y= <3 (n-P) (0): n-P>O (9) 
2vV un 

where v is the volume per atom and n defines the positions of 

the atoms relative to a reference atom; the sum is for all n such 

that n-P>0. 

We define a unit vector U by the vector product 

UHLAT (10) 

L, T and U define a triorthogonal direct reference system (Fig. 2d). 

The vector P makes an angle 0, with T and its projection in the 

plane of U and L makes an angle with U which is equal to the 

angle 0;,, between | and L. Therefore 

P=T cose, + U sine, cose, + L sind, sin ©, (11) 

with both ©, and 0, in the interval (0, 7/2). Combining eqs. 9 

and 11 yields 

ye-= [cos Om %(n-T) ¢«(n)+sinO, cos Oy, X(n-U) « (n) 
Vv n n 

+ sinOp sine; X (n-L) e(n)] ; n-P>0 (12) 

The sums in eq. 12 are for all n such that n-P>0. 

When ©, and ©,;, tend to zero (the density of ledges and kinks 
tends to zero), the condition n-P > 0 is equivalent to the fol- 

lowing three alternative conditions: (i) n-T>0; (ii) n-T=0 

and n-U>0; (iii) n-T=n-U=0 and n.L>O. In this limit, 

Portgal. Phys. — Vol. 16, fasc. 3-4, pp. 161-179, 1985 167



M. A. ForTES et al.— Energies of surface ledges and kinks 

the sucessive sums in eq. 12 are calculated for the n that satisfy 

the sucessive conditions (i) to (iii). Comparing eq. 8 with eq. 12 

we obtained the lattice sums for yp, «1, and ex. The first has 
the expected form, analogous to eq. 9: 

ai 

yT=— oy =X (n-T)e(n)in-T>0 (13) 

The ledge energy is given by 

ey = —h,/(2v) X (n-U)e(n); n-US0,n-T=0- (14) 
n 

and the kink energy by 

=~ Bye ey) 2 (n-L)e(n); n-L>0, n-T=0, n-U=0 

(15) 

The series for e;, is a double sum (two subscripts) and that for cx 

is a simple sum (one subscript). Eqs. 14 and 15 give the energy 

of isolated ledges and kinks, respectively. Eq. 15 shows that the 

energy of a kink depends on the ledge where the kink is located, 

but not on the associated terrace. 

A simple interpretation can be given to these equations. Eq. 14 

is the expression that one would write to calculate the energy, 

per unit length, of a ‘‘surface’”’ created in a crystal plane (t), of 

normal T, by a cut along a direction L. This energy is, apart from 

the sign, one half the potential energy of one half-plane in the 

field of the other half-plane, the two half-planes being separated 

along a direction L. Calculating this energy by a process similar 

to that used to obtain surface energies, Eq. 14 would result, since 

the repeat distance along L multiplied by the inter-L direction 

spacing is v/h;,. Similarly, Eq. 15 gives the “surface” energy 
per atom of a row L, the “‘surface’’ being created by separating the 

row into two halves. These interpretations of «;, and ex could 
have been used to derive Eqs. 14 and 15. For example, two 

isolated parallel ledges can be created on the surface by separating 

the topmost plane into two half-planes, while keeping the half- 

planes at the same distance from the next plane. Eq. 14 would 

then result for the energy of an isolated ledge, per unit length. 

It is then apparent that the energies yp, «ez, and ex obtained from 
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Eqs. 13-15 are exact for the isolated or “pure” terraces, ledges and 

kinks, respectively. If those energy values are used to calculate 

energies of surfaces of any orientation, an error will result, which 

increases as the density of ledges and kinks increases, and, as will 

be shown below, as the atomic density in terraces and ledges 

decreases. An evaluation of these errors will be described in the 

following sections. 

4— APPLICATION TO F.C. C. CRYSTALS, 
MYE POTENTIALS 

Taking a orthormal basis e,, e., e,, with !e,! = 1, parallel 
to the cube edges of a f.c.c. cell, the general form of n is 

a 
— Sn, e,; » n;—even integer (16) 

i 

n=— 3 
24 

where the n, are integers with an even sum and a is the lattice 
parameter. For a plane with Miller indices (p,p.p;) = (p) we 

have 

—_
 

a= ; P=—ipe; P= z-Pi (17) a 
p us)

 

provided the p, are chosen as all odd (coprime) integers or all 

even integers (g.c.d. equal to 2). The indices [1, 1,1, ] of a lattice 

direction are chosen such that their sum is even; the repeat 

distance i,, along the direction is given by 

= —!1 P= I: fe
ar
) (18) 

aa 
Ne
 

The interaction energy between two atoms will be described 

by a Mye potential e| e’: 

wo] 
with e, e’ = 6, 9 and 12; « can be related to the cohesive energy 

per atom in the crystal, «,, and o to the near-neighbour dis- 

tance, r, (see Table 1 in ref. 7). Eqs. 9 and 13 for the surface 

energies take the form that has been derived in ref. 7. 
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The ledge energy (eq. 14) becomes 

V2 £0 7 
eL= tu Ty (one Ae o8e Ae) (20a) 

where 

of =F —; Was; => t (20b) 
Ly i i 

and 

m 
A. = x 7 (20c) 

with 

m=1/2in,u>0; 3 n, t,—0; P=> nj (20d) 

The u, are the indices of the lattice direction parallel to U. 

For the energy of a kink we obtain from eq. 15 

ex =~" (oF Vy—ot? He); P=XR (21a) 

where 

_— m’ 

¥,= 3 me (21b) 

with 

m = 1/2%n,,> 0; in, t= sn u,— 0; n? = dni (21c) 
1 1 1 1 

l, are the indices of the direction of the ledges. The sum ¥, can 

be written in a simpler form. Since rf is parallel to L andn-L>0 

we write 

n, = kl, k>1 

where k is an integer. This leads to 

= 2-e ¥ a Bazi 2   = V2 [2-e de (22) 

The actual calculation of the lattice sums A, and ¥, is 

discussed in the Appendix. 
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5. RESULTS 

5.1— Ledge and Kink Energies 

| Ledge and kink energies were calculated for f. c.c. Lennard- 

Jones crystals (potentials 6|9, 6|12 and 9|12) by the method 

described in the Appendix with M = 10 and k, = 10, respectively. 

Values of the calculated ledge energies are indicated in Table 1, 

TABLE 1 — Ledge energies (¢, /%, units ) 

  

    

  

  

Ledge energy 

Terrace Ledge 

6|9 6| 12 9|12 

(111) [110] 0.1467 0.1500 0.1566 

[112] 0.1594 0.1658 0.1785 

(002) [110] 0.1075 0.1038 0.0962 

[200] 0.1179 0.1188 0.1207 

[130] 0.1208 0.1202 0.1192 

(022) [011] 0.0376 0.0299 0.0145 

[200] 0.0526 0.0536 0.0555 

[211] 0.0548 0.0537 0.0513 

[222] 0.0531 0.0494. 0.0421 

(113) [110] 0.0184 0.0138 0.0044 

[121] 0.0397 0.0413 0.0443 

[031] 0.0371 0.0368 0.0361       
  

in «./r, units. The values are fairly similar for the three 

potentials. These data also show the effect of the associated ter- 

races on the ledge energy. The ledge energy tends to decrease as 

the atomic density in the associated terrace decreases. 
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Table 2 gives the energy of kinks located in the more close 
packed ledges, in e, units. The energies are again not too different 
for the three potentials used and decrease as the atomic density 
in the ledge decreases. 

TABLE 2— Kink energies (e, units ) 

  

  

  

Kink energy < 10 
Ledge —— —— 

6|9 6| 12 9| 12 

[011] 0.5447 0.6101 0.7409 

[002] 0.1980 0.1665 0.1034 

[112] 0.0683 0.0520 0.0195 

[013] 0.0161 0.0114 0.0021 

[222] 0.0095 0.0066 0.0010       
  

Surface energies, y, including terraces energies, y,~, were 

calculated in the preceding paper [7]; they are shown in Table 2 

of that paper. 

The method that we use to calculate the lattice sums is quite 
accurate. It is described in the Appendix. For example, when the 

number of terms in the direct sums is increased by changing M 

from 10 to 15 (respectively ~10* and ~15* terms in the direct 

sums), the resulting relative change in e«,;, is at most 10- for 

the 6|9 and 6/12 potentials and at most 10~ for the 9 | 12 poten- 

tial. A similar precision can be obtained for ex and yp (cf. ref. 7). 

5.2 — Applicability of the TLK Decomposition 

From a purely geometrical point of view, the TLK decom- 

position can be applied to any orientation of the surface and for 

any choice of the terraces and ledges. However, the surface energy 

calculated from eq. 8 using the energies of ‘pure’ terraces and 

ledges of the same crystallography as that of the actual terraces 

and ledges, may deviate more or less from the true surface energy. 
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This is because, as the ledges become closer or the kink spacing 

decreases, the actual contribution of ledges and kinks to the surface 

energy will change, since they will interact with each other. 

A first method for assessing the accuracy of the TLK decom- 

position is to compare the actual surface energies (see ref. 7) 

with those calculated by the TLK equation (eq. 8). Examples are 

given in Table 3 for planes vicinal to (002) and containing [110] 

TABLE 3 — Surface energies by TLK and by direct sum of planes 

with (002) terraces 

  

  

  

Surface energies (Ce, jf re units ) * 

Plane 
6|9 6| 12 9|12 

113 4 0.5115 0.5172 0.4678 0.4717 0.3803 0.3805 

024 b 0.5163 0.5238 0.4758 0.4811 0.3951 0.3955 

1152 0.5166 0.5176 0.4710 0.4717 0.3799 0.3799 

22 50a 0.5016 0.5025 0.4556 0.4563 0.3635 0.3640 

2 2 1004 0.4979 0.4980 0.4520 0.4520 0.3601 0.3601 

02 40% 0.5015 0.5016 0.4558 0.4559 0.3644 0.3644 

0 2 100% 0.4971 0.4971 0.4513 0.4513 0.3597 0.3597 

24 50a 0.5069 0.5069 0.4611 0.4611 0.3694 0.3694 

46 504 0.5122 0.5123 0.4664 0.4665 0.3747 0.3747 

26 506 0.5113: 0.5115 0.4658 0.4659 0.3747 0.3747 

46 20a 0.5202 0.5231 0.4760 0.4779 0.3874 0.3875       
  

* The values in italic were obtained by direct sum. 

a — [110] ledges; b — [200] ledges. 

or [200] ledges. The TLK values are calculated from eq. 8 using the 

energy contributions of ledges and kinks given in Tables 1 and 2 and 

the values of y, obtained in the preceding paper for (002). The 

correct values are written in italic; they are always larger than 

the TLK values. The agreement is excellent, even for planes 

deviating as much as ~25° from (002), for which the ledge 

separation is of the order of r. 
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Table 4 refers to the errors in different TLK decompositions 
of the (6 8 10) plane, which makes similar angles with (002), (022) 
and (111). The smallest error among the various decompositions 
is always smaller than 1 %. Of course better descriptions, leading 

to smaller errors, would be possible for the (6 8 10) plane, 

including one in terms of (6 8 10) terraces for which the error 
would be zero. 

TABLE 4—Effect of the TLK decomposition on calculated surface energy 

of (6 8 10) plane 

  

y Ce, / ¥? units ) 
  Terrace Ledge |0,p (degrees) OL (degrees) 

    

6|9 6|12 | 9/12 

(111) [110] 28.61 7.59 0.5139 | 0.4712 | 0.3856 

(002) [110] 26.57 8.13 0.5143 | 0.4715 | 0.3859 

(022) [200] 27.69 35.26 0.5058 | 0.4652 | 0.3839 

(022) [211] 27.69 0 0.5054 | 0.4649 | 0.3839 

(6810)*| — 0 = 0.5222 | 0.4769 | 0.3862             
  

* Direct sum. 

An alternative method of showing the accuracy of the TLK 

values consists of plotting the correct surface energies of a family 

of planes containing (only) ledges of a given type and terraces 

of a given type, as a function of the angle between the plane and 

the terraces, 0,. From eq. 8 (with 6, = 0) 

Pd 

COS Oy 

  = yg + — tg oy (23) 
hy, 

Fig. 3a shows a plot y/cosO, as a function of tg oe, for planes 
vicinal to (002) and containing [110] ledges. Similarly, Fig. 3b 

applies to (002) terraces and [200] ledges. The curves are very 

nearly linear, deviating from linearity only at large angles. For (113) 

with 0,, = 25°, the difference between the two terms of eq. 23 

is at most 1 % (for the 6| 9 potential). 
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A direct calculation of the error in the TLK equation is also 

possible. The method consists of comparing the correct eq. 12 with 

the TLK equation (eq. 8), in which the energies yz, e,, eq are 

calculated from eqs. 13-15. Consider, for example, the terrace term 

in the two equations. The difference results from the fact that in 

(a) (b) 

¥
/
c
o
s
 

6,
 

8 
/c
os
e 

i 

a20 220) ar ko 2 901 (020) wr     
  

  

0.00 050 1.00 000 050 100 

tg 0; tg 6; 

Fig. 3 — Variation of surface energy with orientation (Op) for planes vicinal 

to (002): (a) in the [110] zone, [110] ledges; (b) in the [200] zone, [200] ledges. 

The surface energy is in fs units. Potentials: 6 -6|9; V-6|12;0 -9| 12. 

the TLK equation the atoms that enter in the lattice sum are those 

with n-T > 0, whereas in the correct equation all atoms with 

n-P > 0 are considered. The following result for the difference 

between the two sums is easily obtained, noting that for any 

atom n there is an atom -n : 

S (n-T)e(n)— 2, (n-P) «(n) = 2 zo De@) + 
n-T>0 n-T> 

n-P<0 

>» -T n seg (24) 
n-P=0 

The first sum in the right-hand side is for all atoms in a wedge 

formed by the two planes P and |: this term has a factor 2. The 

other sum is for atoms in the plane P to one side of its inter- 
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section with T. The difference (24) is expected to be always 

negative thus explaining why the TLK surface energies are always 

smaller than those obtained by direct sum. The error in the other 

terms can be obtained by similar equations. 

6 -- DISCUSSION 

The fundamental equations derived in this paper are the 

equaticn for the surface energy in terms of contributions of the 

energies of terraces, ledges and kinks, and the lattice sums that 

give the specific energies of terraces, ledges and kinks. 

As already noted, from a purely geometrical point of view, 

any TLK decomposition of a surface of arbitrary orientation is 

legitimate. From the point of view of energy, however, the TLK 

decomposition leads to an error which, in broad terms, increases 

as the spacing of ledges and the spacing of kinks decreases, and, 

on the other hand, as the atomic densities in terraces and ledges 

decrease. 

The energy per unit area of a surface obtained from eq. 8 is 

always larger than the terrace specific energy. This points to the 

conclusion that the terraces should be chosen as planes for which 

pointed cusps occur in the y-plots. These are in fact the more 

closed packed planes. In the f.c.c. crystals studied (Mye poten- 

tials) these planes are (111), (002) and (022). For similar reasons 

the ledges should be taken along directions, in each of these 

planes, corresponding to cusps in the «,-plot for that plane. Cal- 

culations show that these cusps occur in <110> and <112> 

directions in the (111) plane, in <110> and <200> directions 

in the (002) planes and in <011> and <200> directions in (022) 

planes. Decompositions using such terraces and ledges are therefore 

those compatible with the observed cusps in the y-and «,,-plots. 

A problem that can be raised concerns the range of applica- 

bility of the TLK decomposition using these low index terraces 

and ledges, and more generally any other set of terraces and 

ledges. The problem can be solved by finding the region in the 

stereographic triangle corresponding to planes for which the error 

in the TLK equation is smaller than a given amount, e.g. 1%. 

Our calculations show that for the three more close packed terraces 
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and for the two more close packed ledges in each of these planes, 

the error for the best TLK decomposition is at most ~1 %. 

Clearly, the accuracy of the TLK decomposition of energy 

depends on the type of potential, particularly on its range. As the 

results (of Table 3, for example) show, the accuracy decreases . 

as the ranges of the attractive and repulsive terms in the potential 

increase. 

The analogy with the coincidence site lattice (c.s.1l.) model 

of grain boundaries is worth a few comments. Formally any grain 

boundary can be described in terms of a reference c. s. !. boundary 

where a certain distribution of grain boundary dislocations is 

introduced. The good descriptions are those for which the dislo- 

cations are widely spaced, although a more sound test would be 

in terms of an energy criterion. For example, one could decompose 

the energy per unit area of any grain boundary as a sum of the 

energy of the c.s.1. boundary with terms due to the families of 

grain boundary dislocations [9]. The energy so calculated could be 

compared with that obtained directly, e.g. by computer calcula- 

tions, and the error used as a test to the applicability of the model. 

Unfortunately, it is not easy to obtain the energy terms associated 

to the dislocations, and the range of applicability of the c.s.1. 

model has so far been evaluated simply from the spacing of the 

dislocations [e. g. 10]. 

APPENDIX — CALCULATION OF LATTICE SUMS 

FOR LEDGE AND KINK ENERGIES 

The sum A, (eq. 20c) is calculated term by term up to 

ne + ng + ne = MP 

and the number, N, of atoms (terms) in the sum is counted. These 

atoms are within a half-circle in the plane (t), limited by a 

row [1] and centred in an atom 0, in that row (see Fig. 6 of 

preceding paper). The half-circle is in the half-plane C and its 

radius R,a/2 is given by 

T t 
— R?—- — R,=Nt 

2 eT 
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since the area per atom in (t) is (a?/4) t. The subtractive term 

corresponds to a rectangular region adjacent to the diameter 

through 0, , of thickness equal to one-half of the interrow spacing, 

which is (a/2)-(t/l); no atom centres occur in this region. The 

rows [1] in C, outside the semi-circle, are replaced by continuous 

layers of thickness equal to the interrow spacing and centred in 

each row, and with an atomic density equal to 4/( a°*t ). The region 

outside the half-circle is the difference between: (i) the area of the 

half-plane C outside the circle; (ii) a layer of thickness (a/4 ) (t/l) 

adjacent to the diameter of the semi-circle and outside it. 

The integrals that give the rest of the sum A, are calculated 

in polar coordinates: p (in a/2 units), 0. They have the form 

  

since the number of rows m is 

iv 
n= 0 1 cos 0 

For the integral over region (i) defined above, the integration 

limits are: »p (Ro, ©), 0(0, 7/2) leading to 

A. = [l(e—-3) RY 

For the integral over region (ii), the integration limits are: 

pe (R.,t/(2lcos © )), 6 (cos* t/( 2IR, ), 7/2). Using the approxi- 

mation cos 06 ~ 7/2 — 0, we obtain 

  
tz 1 1 

AY” = — 

e PF 8(e-1L) Re 

The value of A, is 

A == hai + A =A 

ec n<M n e e 
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The series ¢, (eq. 22) is calculated directly up to k= k,. 

The rest of the sum is 

  pe dk 
Pe ~ rn ket = [(e-2) (k + 1/2)e2}° 
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