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ABSTRACT — The paper reviews basic physical mechanisms underlying 

magnetoresistivity in normal and magnetic metals. It describes an experimental 

high accuracy system implemented in our laboratory and discusses some 

typical results of magnetoresistivy measurements in magnetic metals; brief 

comments on their interpretation are also presented. 

1 — INTRODUCTION 

When a magnetic field H is applied to a metal, small changes 

occur in the value of the electrical resistivity, originating the so 

called magnetoresistivity coefficient at temperature T, 

Ap/p =[ p(T, H)—p(T, 0)]/pC(T, 9) (1) 

In a non-magnetic metal the change in resistivity is caused 

essentially by the curvature of the electron trajectories produced 

by the magnetic field (Lorentz force) [1-3]. The magnetoresistance 

then increases with the sample purity (larger electron mean free 

paths), as confirmed by experiment. 

In a magnetic metal, besides the curvature effect (normal 

magnetoresistivity), two extra contributions are usually observed 

in Ap/p : 

Taking a simple ferromagnetic metal with localized magnetic 

moments m, below the Curie point (T < T,), the first extra con- 

tribution arises from an orientational effect of H in the spon- 

taneous magnetization (M,), as the scattering of an electron 

( wavevector k ) with a magnetic ionic moment m; usually depends 

on the angle between k and m, [4,5]. Since the thermal average 

<m,> has a definite direction in each magnetic domain, the 
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change of such directions produced by the applied field slightly 

modifies the intrinsic electric resistivity of each domain, therefore 

the sample resistivity. This effect is easy to observe in soft 

magnetic metals, for which M, rotates easily under the applica- 

tion of H (low magnetic anisotropy). 

Besides this orientational effect, the field H also reduces the 

(thermal) spin fluctuations in the system. The resulting increase 

in the magnetic order usually produces a decrease in the electrical 

resistivity (fluctuation effect) (*). This magnetoresistivity should 

be bigger in the vicinity of a magnetic transition point, where 

the spin fluctuations dominate [5, 6]. 

Magnetoresistance data can be usually related to fundamental 

aspects of the electronic and/or magnetic structure of the metal 

under investigation. 

In normal metals, direct information can be obtained on the 

Fermi surface structure (open and closed electron orbits; shape 

and connectivity) when the measurements are performed at low 

temperatures and in high purity samples [2, 7, 8]. 

In magnetic metals, magnetoresistivity measurements enable 

the study of fairly diverse problems, ranging from magnetic 

anisotropy constants [11] and spin reorientation transitions [12], 

to critical phenomena and corresponding exponents near the Curie 

or Néel transition points [13]; when magnetic interactions compete, 

magnetoresistance studies may give fairly detailed information 

on the succession of different magnetic structures under the 
application of an increasing magnetic field [14, 15]. 

The magnetoresistivity effects are usually fairly small, both 
in normal and magnetic metals, corresponding to variations in the 

electrical resistivity of the order of 10-*°— 10 Q.m per 10° Am 

applied field (corresponding to B ~ 1 Tesla). The smallness of the 

effect puts stringent conditions on the experimental technique, and 

corresponding accuracy, particularly for detailed studies of the 

structure of Ap/p curves, either as a function of H or temperature. 

In section 2 of this paper a brief account is presented on the 

basic physical mechanisms underlying the behaviour of the 

magnetoresistivity in normal and magnetic metals. In section 3 

(*) In ferromagnetic metals with large conduction electron wavelengths, 

the increase in magnetic order may produce an increase in », due to 

coherence effects in the electron. scattering by different magnetic 

moments [9, 10]. 
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we describe in detail an experimental system implemented to 

measure Ap/p with great accuracy, with an automatic recording 

unit. In section 4 we present various applications of the 

magnetoresistivity measurements in magnetic metals, making brief 

comments on the physical information provided in each case. 

2—PHYSICAL ORIGIN OF THE MAGNETORESISTIVITY 

2.1 — Phenomenological equations 

Normal metals 

In general, the electrical fields causing transport phenomena 

are sufficiently weak to be valid a linear approximation, 

Ei= pix Jx (2) 

between the components E, of the electrical field (E) and the 

components j, of the electrical current density (j). The quan- 

tities ¢,, define the generalized electrical resistivity tensor for the 

material under consideration. Isothermic conditions are assumed 

here and repetition of the k-index indicates a sum over the 

values (1, 2,3). In the presence of an internal magnetic induc- 

tion (B ) caused by the applied magnetic field (H ), the resistivity 

tensor obeys the Onsager relations ¢,,(B) =p, (-B). 

Separating ;, into a symmetrical and an antisymmetrical 

part (in B ), and having in mind that the effect of a magnetic field 

is usually fairly small, we can expand the resistivity tensor 

components in power of B,, obtaining, to second order in B, 

the result [16, 17], z 

px (T, B) = pu (T, 0) + ei aim (T) By + Bikim (T ) B, B,, (3) 

where «;,; = +1 for.i,k,l1=.1,2,3 (or any even permutation), 

ej) = —1 for odd permutations, and zero otherwise. 
In a standard measurement of the electrical resistivity one 

determines the electrical field component along the current direc- 

tion (say n), i.e. 

E-n=E, n;= px 0; Jy (4) 
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with j = jn,|n|=1. We then have for the electrical resistivity 
measured at temperature T, in the n-direction and under a magnetic 
induction B: 

e(T, n, B)=(E-n)/j = px ny mh (5) 

Introducing p;, given by eq. (3), we obtain: 

e(T, n, B)=px(T, 0)njn, + [ eng 1) My] aim (T ) By, 

TL Rikim (CT) 204] BB, = p(T, n,0)+Am(T, n) BB, (6) 

where Ap, (Tn) = Bim(T) njn,, and the first order terms 
in B do not contribute to the electrical resistivity (ex 7nj)n, = 0). 

We can then define a magnetoresistivity coeficient (eq. 1) 
corresponding to an electrical current along n and a magnetic 

induction along b (B=B b, |b|=1): 

(4p /e),, 6 =[e(T, n, B)—p(T, n, 0)]/p(T, n, 0) 

=[Aim(T, 1) / p(T, mn, 0)] BB =[ rim (T, 1) 8,8, 1B (7) 
where 

Yim (T, A= Aig GT n)/p(T, n, 0). 

The quadratic field dependence of the magnetoresistivity, obtained 
at the present level of approximation, is well reproduced by the 
experimental result in most metallic systems investigated [1-3]. 

Magnetic metals 

In this case, because of the existence of magnetic moments mi, 
the curvature effect associated with the Lorentz force is enhanced, 
due to the increase of the internal magnetic induction: 

B= »,.(H+M+H,) (8) 

M is the technical magnetization produced in the sample by the 
applied magnetic filed, M=%,<m,>/ (© is the sample 
volume), and Hq is the demagnetizing field, H, = —DM 
(D = demagnetizing factor; we assume, for simplicity, an 
ellipsoidal sample) [5, 18]. 
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Besides the curvature effect, we must also consider carefully 

the scattering between the conduction electrons and the magnetic 

moments m;. The corresponding contribution to the electrical 

resistivity depends on the degree of magnetic order present in the 

sample, i. e. on the value of the spontaneous magnetization at each 

temperature, M,(T) (mean field effect), and on the magnetic 

moment correlations e.g. < m,+mj; >, particularly near the criti- 

cal points (fluctuation effects) [19]. 
Furthermore, since each electron collision with a magnetic 

moment is in general anisotropic (angle k, m;), the electrical 

resistivity also depends on the angle 6 between the electrical 

current and the technical magnetization M (or, equivalently, of 

the applied field H) [5]. 
Putting these effects together (curvature, degree of magnetic 

order and scattering anisotropy) we can write: 

px ( T, H) = 3,.(T, By pecl; M, 9,<m,-m, >) (9) 

where %, contains the normal magnetoresistivity effect (with the 

trivial inclusion of M effects in B, eq. 8) and op represents the 

new magnetic contributions, associated with magnetic order 

(M, + correlations between fluctuations ) and with the electron 

scattering anisotropy (angle 6). 

In the following section we focus attention on some basic 

microscopic mechanisms which can contribute to the magneto- 

resistivity term p™. Within the scope of this paper, such 

treatment will be mainly illustrative rather than exhaustive. 

2.2— Thermal disorder and fluctuation effects. Microscopic 

mechanisms in magnetic metals 

a) Zero field case (H= 0) 

In a perfect crystal with the moments m, fully ordered at 

T= 0K, the conduction electrons travel through a_ periodic 

potential ( electrostatic + magnetic ), with no damping in the cor- 

responding wavepackets; we then have » = 0 (*). In a simpie 

(*) In an ideally pure crystal, no d.c. conductivity exists at T= 0K; 

the conduction electrons simply oscillate under the action of a d.c. electrical 

field, due to the caracteristic periodicity of the energy bands [20]. 
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approximation the motion of a conduction electron through the 
lattice can be described by the Hamiltonian: 

N N 

=—he/(2m) VF + SX vCr—Ri) + ¥ G(r—Ri)s-J; (10) 

where the first term represents the electron kinetic energy, the 
second term the electrostatic electron-lattice interaction ( R; refers 
to the i ion in the lattice and r to the electron position ), and 
the third one gives the magnetic interaction between the electron 
spin s and the ionic magnetic moment m; = (g;—1) upd; (gy is 
the Landé factor and wg, is the Bohr magneton ); J, is the total 
angular momentum of the ion i and G(r—R;) measures the 
strength of the magnetic interaction. 

At finite temperatures and below the Curie point (assuming, 
for simplicity, a ferromagnet), thermal disorder breaks the 
periodicities of the last term in eg. 10, with the consequent 

appearance of a magnetic resistivity contribution. Standard trans- 

port theory leads to the following expression for the magnetic 

resistivity measured along the i crystal direction [21, 22]: 

N 

Pin T)/ Pin co 2h C RT) 9° (Ri) (11) - 

where p,,,, is the saturation value of the magnetic resistivity 
(T>>T,), 1'(R;, T) is the correlation function between ionic 

moments at distance R;, 

PCR, T)=<)-§>/[I(I+1)] (12) 

and ¢“) (R; ) is the interference function for the electron scattering 

from different ions, which has the electron wavelength A, as a 
characteristic parameter for each metal. For an arbitrary crystal 

lattice, ¢%) (R;) is generally anisotropic, always satisfying the 
two conditions: 

3 g(R,)=0, 6(0)=1 (13) 2 
Notice also that 1(0,T) = 1. 

Introducing these conditions in eq. 11 we obtain: 

p?(T) N <i et 4 3 ae OCR sa po i0 J(J+1) * Re 
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Using the angular momentum thermal averages <J, >, <J;> 

and the thermal fluctuations 8J,, 8J; we can write: 

j=<h> +8, j= <)> + 5), (15) 

and thus 

£4,-h> = <i>. 2) >t (16) 

In a single domain ferromagnet, < J, > = <J; > =<J> z and 
< J > —=Jo(T), where o(T) is the reduced spontaneous mag- 

netization at temperature T, o(T) =M,(T)/M,(0); we then 
have 

<4-4> =I [o(T)] + <8h,-8);> (17) 
Introducing these results in eq. 14, and using the properties of 

6 (Rj), we obtain: 

p(T) J 2 J s 2 = 1—-— [6(T)] + = & <-> 9 CR) 
Pm oo I+] J(J+1) ix0 

(18) 

The [o(T I term represents the mean field effect on ¢“), asso- 

ciated with the temperature variation of the spontaneous mag- 

netization. The last term gives the effect of the correlations 

between the thermal fluctuations in different ions. 

If the system is not too close to the Curie point, the 

fluctuations 8J; and 8J; are usually fairly small and p(T) is 

dominated by the mean field term. Close to the Curie point 

«(T)— 0, the thermal fluctuations grow very rapidly, and the last 

term in eq. 18 may become important (*). The correlations between 

the thermal fluctuations (8J; and 8J,) therefore determine the 

critical behaviour of the electrical resistivity near T,. 
For temperatures not in the immediate vicinity of T,, the 

correlations between fluctuations can be described in terms of a 

mean field treatment (Landau type [16]; |(T—T.)/T.| > ee 
where «, is the so called reduced Ginzburg temperature [23], 

usually of the order of 10° for many magnetic metals). 

(*) The fluctuations may be large, but if they are uncorrelated, the 

corresponding term < 8J,- 8 F > could still be neglected. 
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For temperatures in the range |(T—T,)/T.| < ec, a full 
treatment of the fluctuations is necessary, within the context of 
the modern theories of critical phenomena [24], namely renorma- 
lization group treatments [25,26]. Inside such critical region, 

scaling laws apply, and the critical exponents depend only on the 

lattice dimensionality (d) and on the number of components (n) of 

the order parameter; in particuiar, they are independent of the 

symmetry of the crystal lattice and of the direction in which the 

electrical resistivity is measured [27]. 

b) Magnetic field effects 

When a magnetic field (H) is applied, two distinct effects 

arise, in connection with the terms discussed in eq. 18. First, the 

progressive alignment of the magnetic moments m, produced by H 

increases the value of the sample magnetization, reducing there- 

fore p,,(T) (negative magnetoresistance arising from the mean field 

term in eq. 18). Second, the field H modifies the correlations 

between the different magnetic moments (i, j), an effect which 

becomes increasingly important as T approaches T,. This leads 

to characteristic critical features in the magnetoresistance near T,, 

both in terms of the temperature and of the magnetic field. The 

sign of the corresponding magnetoresistance depends on the par- 

ticular system under study, through the interplay between 

o0 (Rj; Aw) and < 8J,-8J; >, in the lattice sum of eq. 18. 
An extended summary of such effects of H (on thermal 

disorder and fluctuations) has been given recently in the litera- 

ture [13], including the critical indices theoretically expected for 

the magnetoresistivity in the vicinity of the Curie point, within 

different temperature and magnetic field ranges [6, 28, 29]. 

2.3 — Anisotropy of p,, versus M, (H = 0) 

2.3.1 — Phenomenological approach 

a)’ Single domain ferromagnetic crystal 

Quite generally [30], the electrical resistivity of a single 

domain monocrystalline ferromagnetic metal, besides the depen- 

dence on the temperature due to spin disorder (section 2.2), also 
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depends on the direction of the electrical current | with respect 

to the crystal axes ¢, (lattice anisotropy, e.g. due to different 

dynamical properties of the conduction electrons travelling along 

different crystal directions) and on the angle between | and the 

spontaneous magnetization M, (magnetic anisotropy, e.g. due to 

spin-orbit effects on the scattering of the electrons by the ionic 

magnetic moments). Normally we can write [31]: 

p(a, b) =F (a;, Bi, T) (19) 

where a, and 8; are the cosines of the angles (M,, c;) and 

(Il ¢,) respectively (*); a, b are the corresponding unit vectors. 

The general form of F depends on the symmetry of the crystal 

under consideration, as it must be invariant with respect to all 

its symmetry operations. For example, in the case of hexagonal 

symmetry and to a fourth order approximation, one can show, 

in analogy with similar formulae for the magnetostriction [32] 

(a physical property with the same tensorial character as the 

electrical resistivity): 

p(a, b)=a,+k, ( 62-1/3) +k, («2-1/3) +k, ( 3-1/3) (2-1/3) 

+k, [ ( a’ -a’,) (p,-B)+4 a, A By B,]+k, ( Qa 8, tea, B, ) a, Bs (20) 

where a, is the non-orientational contribution to the resistivity 

(given in 2.2) and k, are the anisotropy constants for the elec- 

trical resistivity. 

b) Multidomain ferromagnetic crystal 

The direction of the current with respect to the crystal axes 

continues to have a single value b. However, because of the 

domain magnetic structure, the direction of M, with respect to 

the crystal axes changes from one domain to the next. In each 

domain M, selects one of the (n) easy directions in the crystal, 
which we characterize by the unit vector 4, (1 = 1,2,...n). 

Since the orientational anisotropy of the resistivity is fairly 

small, the p-differences between different domains are small 

(*) We include explicitly the angles between M, and the crystal axes, 

since the crystal anisotropy is always operative, and may distinguish different 

directions of M, with respect to ¢,, e.g. through magnetoelastic effects. 
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compared with the domain resistivities ¢ (a, b). The effective 
resistivity of such multidomain structure can then be approximated 
by [33], 

re (b) ~fe (a, b)} (21) 

where {...} means a spatial average over the sample, and a fine 
domain structure is assumed. We then write: 

N 
5 D d Pe B 

Pp (b)=C1/2) & = Cup Cay, b ) of? (22) 

where © is the sample volume, o{) is the volume of the r mag- 
netic domain (r = 1, 2,...Nq), and c,, are occupation numbers: 
C,,; = 1 if the domain r has M, along the | easy crystal direction, 
and c,; = 0 otherwise. A complete description of the domain 
structure means therefore the knowledge of all the individual 
domain volumes o{") and of the corresponding easy direction (Cy 
coefficients). 

Performing first the r sum we get, 

Na 
p(B) = (1/2) % pCa, b) S cof (23) 

l= r=1 

Na 

Notice that > C,, of gives the total domain volume corre- 
r=1 

sponding to the | orientation, which we call qa (l); we then have 

pee(b) = (1/2) ¥ pCa, b)og(L) (24) 

If the magnetic domains are equally distributed over the easy 
directions, »{ = Q/n; and the simple result appears: 

pa(b) =(1/n) % pCa, b) 5) 

c) Multidomain polycrystalline ferromagnet 

We assume the sample as an assembly of N, crystallites 

oriented at random, each one numbered by an index j, with 

volume ©;, and with its own magnetic domain structure. Due 

to the polycrystalline structure, the current | makes in general 

different angles (1, c\) with the crystal axes of the different 
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crystallites, c{. The direction of | inside each crystallite can 

then be associated with a corresponding unit vector b“. Due to 

the domain structure, we can first calculate the effective resisti- 

vity of each crystallite, using eq. 24: 

Pee (b®) = (1/9,) & pCa, b®) o(1) (26) 
1=1 

The spatial average over the crystallites can now be written: 

N 

per (sample ) = (1/9) pe (b?) 2, (27) 

Introducing the explicit form of Ger (b® ), eq. 26, we obtain: 

N 

Pe (Sample) =(1/2)% & p(a,, b®) (1) (28) 
j=1 1=1 

If we assume that the crystallites have similar volumes (0, ~ 2/N, ) 
and that M, is equally distributed over the n easy directions, we 
then get the simple result: 

N 

pec (sample) = 1/(N.n)- ¥ % pCa, b?) (29) Sie 

2.3.2 — Microscopic approach 

Physical origin of the (i, M,) anisotropy; Smit mechanism. 

Experiment shows that the anisotropy of the electrical resisti- 

vity with respect to the direction of the spontaneous magnetization, 

M,, is present in most magnetic metals, ranging from heavy rare 

earths [12,34] to 3d transition elements [5] (localized, quasi- 

localized or itinerant magnetism), either isolated or in the form of 

alloys, compounds or pseudocompound systems. Furthermore, the 

anisotropy is present even in the cases when the crystal lattice 

has cubic symmetry. This shows that the observed anisotropy has a 

magnetic origin, and must be a consequence of an anisotropic scat- 

tering mechanism. In the case of cubic crystals, the anisotropy could 

result from some lower-than-cubic-symmetry scattering potential 

(e. g. magnons) with cubic-symmetry initial and final states, or 

from an isotropic scattering potential with lower-than-cubic- 
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symmetry wavefunctions [30, 35, 36,37]. The latter mechanism is 

generally considered the more likely one in the case of 3d transition 

metals, and was successfully applied, for the first time, by Smit [4] 

to discuss the intriguing resistivity anisotropy in cubic transition 

metal ferromagnets. To illustrate the subtle mechanisms underlying 

the magnetic anisotropy, we will concentrate here only on the 

Smit mechanism, following closely the review of McGuire and 

Potter [30], which assumes an isotropic scattering potential V(r). 

As observed by Smit, in 3d cubic crystals the symmetry of 

the electronic wavefunctions associated with each lattice ion can 

be lowered by the spin-orbit interaction, 

H, = KL:S (30) 

provided the electrostatic potential is radial; L and § are the ion 

total orbital momentum and total spin, respectively, whereas k 

measures the strength of the spin-orbit coupling. 

In the absence of such interaction, the five 3d atomic 

orbitals are degenerate (9, = xzf(r), 9: = yzf(r), os = xyf(r), 

gs — (X?—y?)f(r)/2, 95 = (1? — 3z*) f(r) /(2V3) ), and such degen- 
eracy remains even when we switch the (cubic symetry) crystal 

field interaction. Recalling that in transition metals the main 

resistivity mechanism results from the transitions of electrons 

from the s-conduction band (¥, ~ e'*" ; high mobility; low effective 
mass ) to the d-band (4, wavefunctions; appropriate linear com- 

binations of »; functions, with the crystal field (cubic) symmetry; 
low mobility; high effective mass), no anisotropy exists in the 

absence of spin-orbit coupling (within the model under discussion). 

The spin-orbit interaction makes a contribution to the energy 

of the d-states that depends on spin or magnetization direction, 

making it favourable for M, to point along certain crystallo- 

graphic directions. Thus the d-electron spin is coupled to its 

orbital motion, ‘which in turn is coupled to the lattice by the 

crystal field. In the presence of H,,, the degeneracy in the 4; 
functions is lifted, and new wavefunctions #{” then result, asso- 

ciated with each 3d ion. Due to the direction effect of M,, the 

functions ®( exhibit symmetry lower than cubic and are not 

eigenfunctions of S, because H,, mixes states of opposite spin. 

Because the levels associated with different # functions 

have not all the same energy, a particular combination of », functions 

is therefore energetically favoured. If some functions »; predomi- 
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nate over the others in such particular combination, the resistivity 

anisotropy immediately results. To illustrate this in simple terms, 

let us choose an extreme case in which the spin-orbit interaction 

selects, as dominant, the function », = xyf(r) (in this case, M, 

points along OZ, by symmetry). 

The transition probability of a conduction electron (k vector, 

vy, ~ er) to the 3d band (¢, state), produced by the scattering 
potential V(r), is proportional to the usual Born approximation 

factor, 

  Pa(te>es) &| fe '*'v(r) ¢, dr]? (31) 

Since k, ~ a' (a = atomic spacing ) and ¢g, is localized in the 

vicinity of the scattering ion, the dominant contributions to the 

integral correspond to |k.r|<<1, which justifies a_ series 

development of the exponential. We then have, after trivial cal- 

culations, 

Poa (vx > os) % keke| [ (xy)? V(r) f(r) del? (32) 

The s-d transition probability is in this case highly anisotropic, 

P.q « ki kj , depending on the particular direction of the elec- 
tron (k). For example, for an electron moving along OX or OY 

(k, =0, k, = 0, respectively) no scattering occurs, whereas 

collisions occur when both k, and k, are different from zero. 

We recall that the reference axes have been imposed by the M, 

direction, along OZ in the particular case just discussed. Therefore, 

the anisotropy with respect to the crystal axes is primarily due 

to the anisotropy with respect to M,. 

2.4 — Anisotropy of 0,, v. technical magnetization M(H +0) 

2.4.1 — General expressions 

For the general case of a polycrystalline (N, crystallites ) 

multidomain ferromagnet we have seen that the zero field electrical 

resistivity is given by the expression, 

N 

pa (T, 0)=(1/2)% & pCa, b®)oP(1,0) — (33) 
j=1 l=1 
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where o() (1, 0) represents the total volume of the domains in 

crystallite j orientated along the l-easy direction (for H=0). 

When a magnetic field is applied, the first effect is a redistri- 

bution of the domain pattern, through domain wall motion, so as to 

increase the domains oriented in favourable directions (with 

respect to H) at the expense of the domains oriented in 

unfavourable directions. Provided no magnetic domain is extinct 

in such initial process, the sum over I is still complete, and the 

only field effect will be the change in the individual magnetic 

domains. We can then write for the corresponding magnetoresis- 

tivity: 

N 
Ap if ] ¢ an 7 ha 

= = —— -— 3» 3 a,, b®) Ao (1, H 34 

— p(T, 0) Q j=! =, Po 1 ) Aol) ( ) (34) 

where Ao) (1, H) = 09 (1, H)—o(1, 0) . 

When some of the easy directions cease to be represented by 

magnetic domains, the sum over I| is progressively restricted. 

Ultimately, at higher fields, only a single easy direction survives 

in each crystallite (monodomain situation), not necessarily the 

same for all crystallites. Representing such particular crystallite 

easy direction by a unit vector 4);, we then have: 

be a ra(T) H) = 2S o(a, BP) PCL H)8,, BS) 
j 1=1 j j=1 J 

When the field produces this situation, no further domain 

wall motion exists inside each crystallite, and the magnetization 

process can only proceed through rotation of the spontaneous 

magnetization inside each crystallite, towards progressive align- 

ment with the magnetic field H. 

The above expressions, although physically adequate to 
identify the various effects associated with the magnetoresistive 

process, are not in a simple form appropriate to analyze the 

experimental results. Such formulae can be obtained through an 

adequate averaging process over the sample, restricted to the 

case of saturation resistivity, i.e. Ap is calculated between an 

initial demagnetized state (random domain distribution) and a final 

state where M, is everywhere aligned with H. 
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As shown in next section, the following general expression is 

obtained for the orientational dependence of the magnetoresistivity, 

(Ap / p)sat = ACT) + BCT ) cos? 0 (36) 

where @ is the angle between the electric current and H, and A,B 

are temperature dependent quantities, which can be related with the 

magnetoresistivity anisotropy coefficients k, (defined in 2.3.1.a)). 

2.4.2 — Averaging processes 

(i) Single crystal samples 

To illustrate this averaging process, let us take a hexagonal 

single crystal, with the electric current flowing along b. 

When the applied field H (along an @ direction) produces 

magnetic saturation, we have M,||H everywhere in the sample, 
i.e. A = G. We can then calculate the saturation resistivity, 9 sat , 

using eq. 20 for single crystals, 

Psat =P ( u, b)=a,+k, ( 62-1/3)+k, ( u2-1/3)+k, ( 62-1/3) (2-1/3) 

+k, [(up-a) Chl) 4, 0,6, 8, 1+ k, ( u, fb, +u, Bet; B, (37) 

When H = 0, we assume the sample to be fully demagnetized, 

with the magnetic domains equally distributed over the easy 

directions. The result of the necessary averaging process depends 

on the particular easy directions imposed by the magnetic 

anisotropy of the sample. For example, if we have a basal plane 

ferromagnet, the easy directions lie entirely in this plane and we 

can take a, a. +0, a; = 0 (taking the c-axis along Ox; ). For 

this case we have the following zero field domain resistivity, 

p(a, b)=(a—k,/3) +k, (62- 1/3) - 1/3 k, (63 - 1/3) 

+k, [ (0? - a3) (8% - B32) +4 0.028182] (38) 

Because the domains are assumed equally distributed in the basal 

plane easy directions, when we average o over such directions we 

obtain a simple result (using <a? > = <a>, <a,a>=0): 

<p(a, b) >n2o = (a.—k./3) + (ki —k,/3)(83—-1/3) 39) 
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The non-normalized saturation magnetoresistivity is then given by, 

Apsar CH | u ) = Psat — <p ( a , b)>= k, ut, + k,( 83 - 1/3 ) us, (40) 

+k, [Cuz a us CB - B3)+4u,u,8,8,] Ty ( U, pyru, B,) Uy B, 

If H is applied along the c-axis (u,=u.=0, u,;=1) we obtain: 

Apsar CH || ¢) = (kK, —k,/3) + k, 63 (41) 

Noticing that @; is, in this case, the cosine of the angle (06) 

between | and H, ‘we arrive at eq. 36, in the explicit form: 

Apsat CH || ¢) = (k, —k,/3 ) + k, cos? 9 (42) 

(ii) Polycrystalline samples 

For this case we have to calculate an average of 0 (a, b) 

over a large number of randomly oriented crystallites. Following 

McGuire and Potter [30], the polycrystalline average can be per- 
a 

formed by choosing 4 to lie within a cone about an arbitrary 

current direction b, with 4-b == cos@, and evaluating 

poy = (802) [dy (" dy (-" p(a, 6) dy (43) 
0 . oO 

where ¥ is an angle that locates 4 within the cone as shown 
in Fig. 1. The final result gives again an expression with a cos? 

dependence for the magnetoresistivity (eq. 36). 

3 —HIGH ACCURACY METHOD FOR MAGNETORESISTANCE 

MEASUREMENTS 

3.1 — Requirements on the experimental resolution 

As referred in 1, the magnetoresistive effects are fairly small, 

the relative change Ap/p under an applied magnetic field rarely 

attaining a value of 10° at saturation. If we want to measure such 

magnetoresistivity with a relative error of 1%, one should have 

5(Ap/p) _ 8 Ap) _ 8p = 10-2 (44) 
Ap/p Ap Ap 
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where 6 stands for the absolute errors. Putting Ap = 10°», we 

obtain the following requirement on the relative accuracy for 

resistivity measurements, 

5p/p = 10-4 (45) 

This estimate refers to the (favourable) measurement of Ap at the 

maximum field. If we want to study in detail the structure of 
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Fig. 1— Geometry and notation used to calculate the polycrystalline average 

of the magnetoresistivity (eq. 43). 

the magnetoresistivity curves (at field values from 0 to H,, ) 

one should measure the resistivity with higher resolution, at 

least one or two orders of magnitude better. We then conclude 

that high accuracy magnetoresistivity measurements require an 

experimental set-up which ensures, with confidence, 1/10° — 1/10° 

relative resolution in resistivity. The method here described fulfills 
this requirement. 

3.2 — Experimental technique 

The electrical resistivity, thus the magnetoresistivity, was 

measured with a four-wire potentiometric method, using a highly 
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stabilized de current (0-1 A; 1/10° stability per hour), the sample 

voltage (V) being measured with a few nV resolution ( V ~ 10° nV). 

The sample resistivity (p ) is given by the usual expression, 

p=f-(V/1) (46) 

where f is a constant geometric factor. 

Under strictly isothermal conditions, we then have the 

following limit for the relative error in p: 

| 8p/p|<|8V/V| + | aI/1| (47) 

From the figures quoted above for 5V/V and 8I/I, we just obtain 

the appropriate resolution in the » measurements. 

In practice the temperature is not strictly constant in the 

course of the measurement, when the field is gradually sweeped 

from 0 to H,,; usually a complete measuring cycle lasts for 

about 2-3 min. One should then ensure that the change in 

resistivity (8¢.) due to a change in temperature during the 

measurement ( ST ) is kept within the required limits. If one recalls 

that in most metals the relative changes in », per degree change 

of temperature, are of the order of 10° (or below), we can write 

Spy / p = 10-* ST (48) 

which restricts the allowed temperature variation during the 

measuring process to a maximum value 6T,,,,-=1 mK, for 

09,/¢* 10°. One then concludes that, in order to measure 

accurately the magnetoresistivity, it is crucial to implement an 

efficient temperature controller; such unit was projected and 

implemented in the course of our studies, and will be described 

in 3.3. 

Fig. 2 shows the block diagram of the experimental set-up 

constructed to measure the magnetoresistivity. 

The temperature was measured using a copper-constantan 

thermocouple, the corresponding emf being measured to within 

a few nV. 

The low magnetic fields were obtained with a copper wire 

solenoid locally constructed [38] (0 < H < 1 kOe; 1:10* homoge- 

neity over 10cm axial length), powered from a stabilized dc 

current supply (1:10* stability). The solenoid calibration is 
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263 Oe/A. The solenoid is refrigerated with a water cooled coil, 

the ensemble being immersed in a large capacity oil bath. 

The high fields ( up to 10 kOe ) are obtained with a commercial 

iron core electromagnet with an adjustable gap. The current 

is provided by a stabilized power supply (0-30A) with 1:10° 

stability. 
In each case the field was automatically increased from 

0 to H,, by means of a ramp sweep unit, which controlled the 

output of the magnet current supply (rising times adjustable 

between 10s and 80h; usually we adopted about 2 min). 

  

CURRENT CURRENT SWEEP 

SOURCE —s SOURCE GENER. 
  

  
      

  

                      

  

      

      
  

  

  
  

ae 

POTENT. i POTENT. DIGITAL VOLT. 

; L_ 

DIGITAL MICROP. 
VOLT. 

PRINTER     
Fig. 2—Block diagram of the experimental unit for magnetoresistivity 

measurements. 

Automatic data acquisition was obtained with a microprocessor 

unit locally constructed [39], which prints the relevant data 

(p,H,T) every 2 seconds, if necessary. 

3.3 — Temperature controller 

In order to ensure the necessary stability in temperature, an 

automatic temperature controller was designed, using a high 

precision digital lock’in phase sensitive detecter. Fig. 3 shows 

the block diagram of such temperature controller. 
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The lock’in internal oscillator provides, besides the internal 

reference signal, the excitation voltage for the Wheatstone bridge. 

In two adjacent arms we use fixed resistances of 200 2, whereas 

in the other arms we put the controller resistance thermometer 

(thin copper coil; r ~ 2009 at room temperature, about 6009 at 

nitrogen temperatures) and a 4 decade resistance box with 0.19 

resolution. 

  

  

      
    

            
0 
a CURRENT 

P.S.D. SOURCE         
                

Fig. 3— Block diagram of the temperature controller for magnetoresistivity 

measurements. 

The unbalance signal from the bridge is accurately detected 

by the lock’in detector and, after suitable internal amplification, 

is used as the input of an unidirectional power supply. This source 

provides the current for the controlling heater of the experimental 

chamber (R= 2002; 5W maximum heating power ). 

This temperature controller enables quick temperature 

adjustments (e.g. a 10K variation in the setting point can be 

achieved in 5min), with a guaranteed subsequent stability better 

than 1mK/min. In order to ensure such degree of efficiency, 
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adequate attention has been paid to the design of the experimental 

chamber and the sample holder, as we describe next. 

  

   
     

H=20 2 

/ 
TL I. 

t 
r=200 2, 
nom. 

Fig. 4— Details of the sample holder: A-sample, B-copper basis, H-heater, 

r-resistance thermometer, T. I.-inox tube. 

3.4— Sample holder (and controller basis) 

In order to optimize all the thermal links in the system 

‘sample-controller thermometer-heating coil’, a special design 

was adopted for the supporting copper basis, as shown in Fig. 4. 

The coils of the controller copper thermometer and of the heater 

(constantan) are wound in narrow flat grooves in the immediate 

vicinity of the copper basis where the sample is attached with 

low temperature, thermal conducting, GE varnish. The ensemble 

is suspended inside the experimental chamber by two thin wall 

inox tubes, in order to increase the thermal resistance between the 

controlling copper basis and the external environment. 

A limited account of the method described in this section 

has been given elsewhere [40]. 
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4 —ILLUSTRATIVE EXPERIMENTAL RESULTS 

Experimentally, two distinct field orientations are usually 

adopted in magnetoresistivity measurements, either with the 

magnetic field perpendicular to the electrical current (Fig. 5a), 

4p, /p=[p.(T, H)—p(T, 0)]/p(T, 0) (49) 

or with H parallel to | (Fig. 5b), 

Ap, /p=[py (T, H)—p(T, 0)]/p(T, 0) (50) 

Here p (T,0) is the sample resistivity in zero field. 

x t ; 

: 
(a) (hee 

Fig. 5— Distinct field orientations used for magnetoresistivity measurements: 

a) Transverse Ap. /p, b) longitudinal Ap, / p 

  

In order to eliminate from Ap/p spurious odd effects in H, we 

should always take the average, for each T, of the results obtained 

with the two opposite directions of the field (+H). 

The results shown below illustrate some of the potentialities 

of the experimental method described in 3 and, at the same time, 

constitute selected examples of the behaviour of the magnetoresis- 

tivity contributions theoretically described in section 2. 

4.1—Critical phenomena (ferro-paramagnetic transition in 

Tbgs - Gd3. single crystal). 

Fig. 6 shows the temperature dependence of the longitu- 

dinal magnetoresistivity of an hcp single crystal Tbys - Gds. 

(current | in the basal plane) in the vicinity of the Curie point, 

T, = 253 K, and at a constant applied field H = 526 Oe. 
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A pronounced negative dip occurs in Ap, /p just at the 

Curie point, which we associate with the characteristic strong 
reduction (by the field) of the spin fluctuations near a ferro- 
paramagnetic transition, as discussed in 2.2. Notice that both 

sides of the AP, /p curve exhibit critical behaviour near Teyea 

full analysis of such behaviour, with the estimation of the cor- 
responding critical exponents, will be done in due course. 

  T T ai 

245 250 255 T(K) ee 

bP 
e(0) 

a0*) | 

' Tb gg Gdg2 
H3=526 Oe 

t- -10 { 

L 
Fig. 6 — Temperature dependence of the longitudinal magnetoresistivity in a 

Tbe, - Gd,, single crystal. 

      

Notice also that sufficiently above T, (when the correlations 
between fluctuations are virtually absent), the magnetoresistivity 
is fairly small, attributable to just the non-magnetic (normal) 
magnetoresistivity. 

On the other hand, for temperatures sufficiently below Ti, 
the magnetoresistivity exhibits an almost constant negative value. 
Since fluctuations are then drastically damped, such result is 
attributed to an orientional effect of H on the basal plane 
spontaneous magnetization, for which the low magnetic anisotropy 

readly enables directional changes in M, . 
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4.2 — Orientational effects (Pr. (Co,_, Fe, )47 intermetallic 
compounds ) 

Fig. 7 shows the field dependence of the longitudinal magneto- 

resistivity (H = 0—9.7 kOe) for a Pr. ( Coo. Feo.2 )1; polycristalline 

sample (Th, Ni,; hexagonal structure ), at different values of the 
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Fig. 7—Field dependence of the longitudinal magnetoresistivity of a 

Pr,(Co, .Fe,..),; polycrystalline sample, at several constant temperatures. 

measuring temperature, with the sample always in the ferro- 

magnetic phase (T <<T,). The magnetoresistance is now posi- 

tive, and entirely attributed to an orientational effect (Smit 

mechanism [5, 36, 37]; see 2.3.2). 

‘In all the isothermal Ap, /p curves shown in Fig. 7, we 
distinguish three distinct regions, underlying characteristic domi- 

nant effects. In the first portion, at low fields, the curvature is 

positive and is associated with the growth of domains in favourable 

directions, at the expense of decreasing domains in unfavourable 

directions (wall domain motion). The second portion of the curve, 

with a noticeable negative curvature, is associated with the rotation 

of the magnetic domains inside the sample ( towards the direction 

of H ), a process which is particularly difficult for those crystallites 
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where H points in hard magnetic directions. Finally, a third region, 

at high fields ( where saturation is almost achieved in Ap /o), is 

the final aligment stage of M, with H (*). 

4.3—Field effects on helimagnetic structures (Gd,_,- Yx 

single crystal ) 

Fig. 8 shows the field dependence of the longitudinal 

magnetoresistivity (H = 0-520 Oe) for a hcp Gdbo.ss- Yo.s2 single 

crystal (1//c axis) at several measuring temperatures, cor- 

responding either to the ferro or to the helimagnetic phase, in 

zero field. 

The crystal under investigation is ferromagnetic just above 

T* = 208.15 K, with M, along the c-axis, and helimagnetic just 

below this temperature. In the latter phase the magnetic moments 

lie in the basal plane (ferromagnetically ordered), exhibiting 

however an helical modulation along the c-axis, associated to a 

characteristic q vector [42, 43]. 
(i) Let us start with the curve taken with the sample 

initially in the ferromagnetic phase (T = 208.55 K ). 

At low fields (H < 50 Oe), no measurable change is detected 

in p, a fact which we associate with the absence of field pene- 

tration in the sample. This is achieved by domain motion (**), so 

as to produce a technical magnetization M = H/D in the sample, 

which ensures a zero value for the internal magnetic field, 

H; = H—DM. An estimate of the maximum value of H com- 

patible with the absence of field penetration, Hy, = DM,;(T) 
(using information on M,(T) and D for our sample) confirms 

the explanation referred above. 

At higher fields we observe a progressive reduction of the 

electrical resistivity, up to the maximum field used. This is 
attributed to the gradual suppression of the spin fluctuations, 

since the measuring temperature is only about 2K below the 

Curie point of this crystal. 

(*) In practice, the total alignment of the magnetic moments with H is 

not exactly achieved under finite fields, except for the principal symmetry 

directions in the crystal [41]. 

(**) In uniaxial ferromagnets, the growth of domains of one type (+ z), 

at the expenses of the other type (- z), does not change p (even function 

of cos @). 
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(ii) For the other curves, obtained with the crystal initially 

in the helimagnetic phase, the field penetration occurs immediately 

100 300 500 0 =i ' | | _H(Oe) 

Ra Ps, 

a =20 ¥, ’ Q v * ° 

‘A ane “ag, 208,55 

; 208.06 

t--40 

: 207.94 

4e gs i 

a ae oi 207.88 
(10°") ~ Ry 

r~-60 

Gdeg' 39 
Y%y 207.51 K       

Fig. 8—Field dependence of the longiutdinal magnetoresistivity of a 

Gd) ¢s- Yo,3. Single crystal, with Ij|/¢ axis, at several constant temperatures. 
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at low fields, as expected for an antiferromagnetic structure [44]. 

A pronounced negative magnetoresistance is first observed in 

the Apo, /p curve, as a result of the gradual distortion of the 
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Fig. 9— Normalized field derivative (1/ Ap, )-(de/dH), as a function of 

the applied magnetic field (H), for a Fe,,Ni,,P,,B, amorphous sample 

(1||H), at two distinct temperatures. 

helimagnetic phase (*). The final extinction of the helimagnetic 

structure is clearly associated with the kinks observed in our 

experimental curves, marking the onset of the ferromagnetic phase. 

(*) When the helimagnetic order exists, the associated magnetic 

periodicity (modulation vector q; period generally different from the lattice 

one) originates new energy gaps (less conduction electrons), thus higher elec- 

trical resistivity. 
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The subsequent increase of H only originates a small enhance- 

ment of the negative magnetoresistivity, due to the gradual 

suppression of the spin fluctuations in the system. One should 

notice the almost perfect parallelism between these Ap, /» curves 

at high fields and the one described in (i) (corresponding to an 

intrinsically ferromagnetic situation). 

4.4 — Magnetoresistance of amorphous metals ( FejoNioPi:Bs ) 

Although we did not consider this case in the previous sec- 

tions, the magnetoresistance measurements can be very informative 

in the study of amorphous metals. 

Fig. 9 shows the normalized field derivative (1/A¢9;)-(do /dH) 

as a function of H, at two distinct temperatures well below the 

Curie point; Ap, is the saturation value of Ao in high fields [45]. 
The pronounced differences between the two experimental 

curves have been associated with important changes (with tem- 

perature) of the direction of the easy magnetization in the 

amorphous metallic ribbon. This assumption is compatible with 

the recent interpretation of Méssbauer data in Fe. NioPi,Be 

amorphous samples [46], assuming that the easy magnetic direction 

changes from the ribbon plane (T > 220K) towards a tilted 

configuration with respect to the ribbon plane (about 20°; 

T < 220K). 
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by INIC (Portugal). Thanks are also due to P. P. Freitas for the 

contribution given in a preliminary stage of the implementation of 

the experimental method. 

REFERENCES 

[1] A. H. Witson, The Theory of Metals, Cambridge Univ. Press, London 

(1953). 

[2] J. L. OLsEN, Electron Transport in Metals, Interscience Publishers, N. Y. 

(1962). 

[3] H. M. ROSENBERG, Low Temperature Solid State Physics, Oxford Univ. 

Press (1965). 

[4] J. Smit, Physica, 16, 612 (1951). 

[5] R. M. Bozortu, Ferromagnetism, D. Van Nostrand (1951). 

218 Portgal. Phys. — Vol. 16, fasc. 3-4, pp. 191-220, 1985



[6] 

[7] 

[8] 

[9] 

[10] 

[11] 

[12] 

[13] 

[14] 

[15] 

[16] 

[17] 

[18] 

[19] 

[20] 

[21] 

[22] 

[23] 

[24] 

[25] 

[26] 

[27] 

[28] 
[29] 

[30] 

[31] 

[32] 

[33] 

[34] 

[35] 

J. B. Sousa et al.— Magnetoresistivity in magnetic metals 

Y. Yamapa, S. TakapA, J. Phys. Soc. Japan, 34, 51 (1973). 

C. M. Hurp, Advances in Physics, 23, 315 (1974). 

N. W. Asucrort, N. D. MERMIN, Solid State Physics, Holt, Rinehart and 

Winston (1976). 

J. S. DuGpALe, The Electrical Properties of Metals and Alloys, Edward 

Arnold, London (1977). 

J. B. Sousa, M. M. Amano, M. E. BraGa, R. S. Pinto, J. M. Moreira, 

Commun. on Physics, 2, 95 (1977). 

T. Hiraoka, M. Suzuki, J. Phys. Soc. Japan, 31, 1361 (1971). 

D. S. Simons, M. S. SALOMON, Phys. Rev., B10, 4680 (1974). 

P. P. Freitas, J. B. Sousa, J. Phys. F: Metal Physics, 18, 1245 (1983). 

J. M. Moreira, Ph. D. Thesis, Univ. Porto (1985). 

J. M. Moreira, J. B. Sousa, J. D. MONTENEGRO, M. E. BRaGA, D. MELVILLE, 

Physica, 130 B, 88 (1985). 

L. D. Lanpau, E. M. Lirsuitz, Statistical Physics, Pergamon Press, vol. V 

Course on Theoretical Physics (1958). 

J. B. Sousa, J. M. Moreira, Portugaliae Physica, 13, 137 (1982). 

R. I. JosepH, E. SCHLOMANN, J. Appl. Phys., 36, 1579 (1965). 

S. ALEXANDER, J. S. HELMAN, I. BALBERG, Phys. Rev., B13, 304 (1976). 

H. CiarK, Solid State Physics, MacMillan (1968). 

T. G. Ricuarp, D. J. W. GELDART, Phys. Rev. Lett., 30, 290 (1973). 

M. E. FISHER, J. S. LANGER, Phys. Rev. Lett., 20, 665 (1968). 

V. L. GinzBuRG, Sov. Physics, Solid State, 2, 1824 (1960). 

H. E. STANLEY, Introduction to Phase Transitions and Critical Phenomena, 

Oxford Univ. Press (1971). 

G. TouLousE, P. PrEuTy, Introduction au Groupe de Renormalisation et 

a ses Applications, Presses Univ. Grenoble (1975). 

S. K. Ma, Modern Theory of Critical Phenomena, W. A. Benjamin Inc. 

(1976). 

N. BoccarA, Symétries Brisées, Hermann (1976). 

H. Yamapa, S. TAKADA, Prog. Theor. Phys., 48, 1828 (1972). 

I. BALBERG, J. S. HELMAN, Phys. Rev., B18, 303 (1978). 

T. R. McGuire, R. I. Potter, Trans. Magnetics, MAG-11, 1018 (1975). 

J. B. Sousa, J. F. D. MONTENEGRO, J. M. Moreira, M. E. BraGa, J. Phys. 

F: Metal Physics, 12, 351 (1982). 

E. DU TREMOLET DE LACHEISSERIE, Ann. Phys., Paris, 5, 267 (1970). 

C. HERRING, J. Appl. Physics, 35, 1939 (1960). 

J. B. Sousa, M. M. Amapo, R. P. PINTO, M. F. PINHEIRO, J. M. MOREIRA, 

M. E. Braca, M. AusLoos, P. CLIPPE, D. HUKIN, G. GARTON, P. WALKER, 

Advances in Condensed Matter Physics, ed J. T. Devreese, Plenum 

Press N. Y., vol. 4, 115 (1981). 

L. BERGER, Physica, 30, 1141 (1964). 

Portgal. Phys. — Vol. 16, fasc. 3-4, pp. 191-220, 1985 219



  

  

[36] 

[37] 

[38] 

[39] 

[40] 

[41] 

[42] 

[43] 

[44] 

[45] 

[46] 

220 

J. B. Sousa et al. — Magnetoresistivity in magnetic metals 

J. Smit, Physica, 21, 877 (1955). 

J. Smit, Physica, 24, 39 (1958). 

J. SANT’OvalA, J. B. Sousa, Seminario, Lab. Fisica do Porto (1981). 

A. Lace, A. GOMES, Fac. Engenharia do Porto (1979). 

J. B. Sousa, J. M. Moreira, P. P. FrEITAS, Proceedings Portuguese Physics 

Conference 84, Evora, page 346 (1984). 

S. CHIKAZUMI, Physics of Magnetism, John Wiley, N. Y. (1966). 

T. Ito, S. LeGvoLp, B. J. BEAuDRY, Phys. Rev., B23, 3409 (1981). 

J. B. Sousa, J. M. Morerra, M. E. Braca, S. B. PALMER, S. BATES, 

B. J. BEAupRY, J. Phys. F., 16, 1171 (1985). 

D. H. MartTIN, Magnetism in Solids, liffe Books, London (1967). 

J. M. Moreira, J. B. Sousa, J. D. MONTENEGRO, M. E. BRaGA, Proceedings 

of Portuguese Physics Conference 84, Evora, page 312 (1984). 

C. L. Caren, R. Hasecawa, J. Appl. Phys., 4%, 2234 (1978). 

Portgal. Phys. — Vol. 16, fasc. 3-4, pp. 191-220, 1985


