
ee kee 

PORTUGALIAE 
PHYSICA 

VOLUME 16 

SOCIEDADE PORTUGUESA DE FISICA



PORTUGALIAE PHYSICA 

Fundada em 1943 por A. Cyrillo Soares, M. Telles Antunes, A. Marques 

da Silva e M. Valadares 

| Director 

J. M. Aratijo (Faculdade de Ciéncias, Universidade do Porto) 

ComissGo Redactorial 

J. M. Aratijo (Faculdade de Ciéncias, Universidade do Porto) 

J. Gomes Ferreira (Faculdade de Ciéncias, Universidade de Lisboa) 

F, Braganga Gil (Faculdade de Ciéncias, Universidade de Lisboa) 

M. F. Laranjeira (Faculdade de Ciéncias e Tecnologia, Universidade 

Nova de Lisboa) 

_F. D. S. Marques (Universidade do Minho) 

A. Farinha Martins (Centro de Fisica da Matéria Condensada, Lisboa) 

R. Vilela Mendes (Centro de Fisica da Matéria Condensada, Lisboa) 

A. M. C. Moutinho (Centro de Fisica Molecular, Lisboa) 

J. Pinto Peixoto (Faculdade de Ciéncias, Universidade de Lisboa) 

A. Policarpo (Faculdade de Ciéncias e Tecnologia, Universidade de Coim- 

bra) 

J. da Providéncia (Faculdade de Ciéncias e Tecnologia, Universidade de 

Coimbra) 

F, Carvalho Rodrigues (Laboratério de Fisica e Engenharia Nucleares, 
Sacavém). 

F. D. Santos (Faculdade de Ciéncias, Universidade de Lisboa) 

E. Ducla Soares (Faculdade de Ciéncias, Universidade de Lisboa) 

O. D. D. Soares (Faculdade de Ciéncias, Universidade do Porto) 

J. B. Sousa (Faculdade de Ciéncias, Universidade do Porto) 

A. T. Rocha Trindade (Instituto Superior Técnico, Lisboa) 

L . Alte da Veiga (Faculdade de Ciéncias e Tecnologia, Universidade de 
Coimbra) 

Publicagao subsidiada pelo INSTITUTO NACIONAL DE INVESTIGACAO CIENTIFICA



ISSN 0048 - 4903 

PORTUGALIAE 

PHYSICA 

VOLUME 16





SINGULARITIES ON FIXED CYCLE UNDIRECTED ANIMALS 

A FEW ADDITIONAL ANALYSES 

M. CONCEICAO PIRES DE CARVALHO and J. A. M. S. DUARTE 

Laboratério de Fisica — Faculdade de Ciéncias do Porto, 4000 Porto, Portugal 

(Received I March 1985) 

ABSTRACT — The cycle animal values on the triangular and square site 

problems (extended by one more term) and the honeycomb bond cycle 1 animals 

are studied for their leading and confluent singularities as well as their 

multiplicities. 

INTRODUCTION AND SUMMARY 

In this presentation we aim at a consistent revision of results 

on the singularity location and exponent values for fixed cycle 

undirected animals. A classification of such undirected site animals 

according to their cyclomatic index for two-dimensional lattices 

was published by Duarte in 1981 [1]. Trees — or zero cycle 

animals — 'were much debated around the period following the 

field theoretic predictions of Lubensky and coworkers [2]. Duarte 
and Ruskin [3] proved that the leading singularity estimates for 
trees overlapped with those for the complete animals, as predicted 
in [2], and a significant advance followed in ref. [4], where 

2 and 3-dimensional data for most usual lattices were found to 

back a graph-theoretical prediction for bond animals (i.e. pertaining 

to 'weak embeddings) that the singularity alteration for c-cycle 
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animals is reduced to a change in the exponent (leading exponent 

here) according to the law 

0, = 8,—C€ (1) 

As can be seen, singularities get progressively stronger. Also, 

the multiplicity for trees remains unaltered for all c-cycle values. 

This requires a shift of multiplicity on summing all cycle values 

to obtain the complete number of undirected animals: a significant 

difference in structure from the percolation perimeter partition, 

which is well known to be characterized by a variable multi- 

plicity [1]. The data in Whittington, Torrie and Gaunt [3] for 

cycle values 2,1 in 2 dimensions are complemented in Duarte [1] 

to the order presently available for trees (and also for the 

honeycomb site animals). We have added here the 1-cycle 

honeycomb bond animals (for trees, see [3]) in table I and repeat 

the analyses for the additional evidence. 

  

  

TABLE I 

s & 

6 1. 

T 6. 

8 27, 

9 110. 

10 432. 

11 1,626. 

12 5,956. 

13 21,450. 

14 76,296. 

15 268,634. 

16 938,667. 

17 3,260,496. 
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Fig. 1— ©, sequences for the honeycomb bond 1-cycle animals: ©,, biassed esti- 

mates, @/ linear intercepts on them, @/’, averages of the 0, and ©/ sequences. 
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ANALYSES AND CONCLUSIONS 

All sequences are for two-dimensional lattices. According to 

eq. 1, the leading singularity is therefore known to vary as 

Ga) ue (2) 

a result that should be approached by the usual extrapolating 
sequences 

8.(S) ='S ( Le Rg/Xo ) (3) 

where R, = g, ./2.1,- is the ratio of successive c-cycle number 
of animals, 4, a good estimate of the multiplicity (in the present 

case, usually the central estimate for trees). 

Linear extrapolants 

9(S) = § 6,(8) — (8-1) 9,(8-1) (4) 

and averages of 0,(s) and 0((s) (here called 0/(s)) may also be 

used for assessing the evolution of the exponent sequences 

(Fig. 2): while the extra terms for the triangular site and square 

site sequences bring no great alteration in the pattern for ©, or 02, 

the new sequences according to eq. 3 for the honeycomb bond 

animals are of a comparable quality (Fig. 1), hovering somewhat 

below the ©, = 0 limit, as found for the other two lattices [4]. 

We also present graphical evidence on the A, value estimates 

for the honeycomb bond problem (Fig. 3). 

1 — cycle animals and trees are the most useful cycle values 

for estimation of the multiplicity. The combination 06, = 0 and 

0, =+ 1 means that the ratios R, and their linear intercepts 

under- and overestimate the X, value, respectively. Their averages 

evolve closer to the multiplicity limit (cf. Fig. 3) and one expects 

to compare them with the tree estimates biassed with 0, = 1 

Ap(S) =$ R,/(S-8) (5) 
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This comparison helped halving the uncertainty for , in triangular 

site animals in [4] and trim it slightly here 

No = 4.19 + 0.015 ; 4.196 + 0.007 ; 4.195 + 0.005 (6) 

[3] [4] this work 

while the extra term for the square site animals warrants no 

alteration of the value in ref. [4] 

Ao = 3.795 + 0.007 (7) 

  
  

1/s 

Fig. 2— Comparison of site 1-cycle animal exponents for the triangular (B), 

square (C) and honeycomb site (A) cases, The overall estimate is 9, =—0.1+0.2. 

The results for \, relative to fixed cycle honeycomb bond animals 

given in Fig. 3 bring no revision of the estimate given in [3] 

Ao = 3.35 + 0.01 (8) 

An interesting question arises with the possibility of a direct 

evaluation of the confluent singularities for fixed cycle animals. 
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Confluent singularities of an algebraic type have been referred 

by a number of authors and analysed for the total numbers of 

animals [5]. The asymptotic form of the tree values, for example, 

is then given by 

C0" % F* CLES s+ we) (9) 

| 

| R. 
rel 

| 
| 

| ¢ 

| 
3+ 

| 

| R? 
| s 

@) 4 

t+ 

} of 

Pil | 

+ 11h. ——__—__-—_—__} + - + { + + = 

1/s 012 0.10 0.08 0.96 0.04 0.02 0.00 

Fig. 3— Multiplicity estimates for the honeycomb bond 1-cycle animals: R, 

ratios, Ri, linear intercepts on them, R’, averages of the previous sequences. 
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with w the confluent correction. An independent estimate of w, 

not sensitive to the \, variation, can be obtained from: the second 

log difference 

Log [ ( s?-] )/s? il 8s+1,0 Soot 8s,0 r ] ~ g-Grts) (10) 

and the best results were obtained for the triangular bond trees 

(to s < 11 in [4]) and square matching trees (to s < 11 in [8]). 

All the others, including square site and bond trees, triangular site 

and both honeycomb trees were virtually of no pratical use. Even 

for the two best examples mentioned above, it is impossible to 

go beyond saying that the data are not incompatible with the 'w 

estimate for lattice animals [5] 

w = 0.86 + 0.05 (11) 

but an independent estimate is out of question for such com- 

paratively short series. 

In conclusion, the extended evidence confirms and marginally 

improves the multiplicity estimates, whereas the rather incipient 

evidence on the confluent singularity is not in disagreement with 

the animal value (11). 

This paper contains the results of a communication to the 

Conferéncia Nacional de Fisica, Evora 1984. 
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VARIATIONAL DERIVATION OF MEAN FIELD THEORIES 
WITH MIXED STATES 

J. DA PROVIDENCIA and C. FIOLHAIS 

Departamento de Fisica, Universidade de Coimbra, 3000 Coimbra, Portugal 

(Received 18 January 1985) 

ABSTRACT —A variational approach to the dynamics of many-fermion 

systems appropriate to physical situations requiring a description in terms of 

mixed states has been developed. The formalism presented here leads in a 

straightforward way to a mean field theory for mixed states. In this framework, 

the well-known Hartree-Fock and RPA results for pure states are generalized 

to the case of mixtures. 

1 — INTRODUCTION 

D. Brink has suggested in 1955 that one could build collective 

excitations on top of any stationary state of the nucleus, not neces- 

sarily its ground state [1]. 

In this vein, one may consider collective excitations, which 

have as “ground state” a mixture of pure states, chosen such as 

to make the energy of the system stationary. This conjecture has 

received strong support in 1981, with the experimental discovery 

at Berkeley of resonances in heavy ion collisions, which could be 

explained in terms of a dipole displacement of protons against 

neutrons in compound nuclei [2]. Indeed, y-ray spectra from 

deexcitation of compound nuclei with excitation energies of 

~ 50 MeV, have been measured and could be fitted by a bump 

superimposed on a statistical background. The same research 

group has been able to study the spectra of y-rays associated 

with products of deep-inelastic reactions, concluding that the giant 

dipole resonance strength function is temperature dependent [3]. 

The experiment indicates that the collective frequency decreases 
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with the increase of excitation energy, while the resonance width 
becomes larger. 

Such studies have added a new dimension to our knowledge 
of nuclear structure. It is then important to know how the 
theoretical nuclear response function can be formulated for excited 
systems, and how does it compare with experimental results. 

These calculations, which begun only recently, are expected 
to provide a guide for future observations in the field [4, 5, 6]. 
For example it is not excluded that other resonance multipolarities 
may be found in hot nuclei, although the techniques involved 
should be more sophisticated. In this context one may recall that 
the experimental discovery of the normal giant dipole mode 
preceded by 25 years the detection of the quadrupole resonance. 

Within the range of theoretical methods available to tackle 
the problem of nuclear collective motion at zero excitation, the 
variational approaches distinguish themselves because of their 
wide flexibility [7]. They provide an unified frame for a lot of 
approximation schemes, which are established according to the 

intuitive view one may have of the physical situation. 
In this paper we present a variational approach to collective 

excitations in hot nuclei, putting the emphasis on the derivation 
of mean-field theories appropriate to that kind of situations. 

As we have already presented the method in another publi- 
cation [8] — where we have also applied it to a schematic two-level 
model — we limit ourselves here to present in detail the calculations 

which lead, in the independent-particle approximation, to the 

self-consistent mean field picture of stationary and quasi-stationary 
states. 

The Hartree-Fock mean-field so obtained differs from the 
result with pure states (Slater determinants) through the intro- 
duction of occupation numbers of the single-particle levels. We 
call special attention to the fact that this occupation parameters 
must not be prescribed by the usual assumptions of the grand 

canonical ensemble. We stress this point, because it is not sure 

that there is always complete thermalization of the nuclear systems 
occuring in heavy ion reactions. This is in contrast with the case 
of matter inside massive stars, where statistical equilibrium is 

reached during its late evolutive stage. 

Small oscillation of the mean-field due to an external per- 

turbation are accounted for, leading to the response function of 
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the excited system (Random Phase Approximation (RPA) for 

mixed states). 

Specializing the results to mixed states corresponding to 

thermal equilibrium, the occupation numbers are given by the 

Fermi-Dirac distribution and the thermal Hartree-Fock and RPA 

formulae are readily obtained. 

The paper is organized as follows. In section 2 we sketch 

the method. This is based on the density matrix formalism, which 

is the natural tool to deal with mixed states. In section 3 the 

response function for mixed states is discussed. In section 4 the 

features of thermal equilibrium are presented. In section 5 we 

introduce the notation needed within the independent particle 

approximation. The static Hartree-Fock theory for mixed states 

is derived in section 6, while the corresponding RPA is derived 

in section 7. The conclusions, which are formulated in section 8, 

contain some perspectives of further work in the field. 

2— GENERAL FORMALISM 

Let H denote the hamiltonian of a general N particle system. 

According to the principles of quantum mechanics, an arbitrary 

mixed state of the system is described by a density matrix D 

whose trace is unity 

Tr D=1. (2.1) 

The density matrix D, describing a stationary mixed state 

satisfies the condition 

[H, DJ]=0. (2.2) 

This condition may be formulated variationally. For this purpose 

we consider the set of all density matrices having a fixed spectrum 
of eigenvalues given a priori. If D, belongs to that set, so does 

the matrix 

D=UD,U' =e 'p, e®, (2.3) 

where F is an arbitrary hermitean operator. The stationarity 
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condition for the energy, which is necessary to assure minimum 
energy, 

8 Tr (DH) =8 Tr(e ' D, eW H) =0 (2.4) 

leads to 

Tr ([D., 8F] H) = Tr ([H, D.] 8F) =0 (2.5) 

Since this equation must hold for all variations 85F one obtains 
finally eq. (2.2). 

We will discuss now the time evolution of D. According to 
the rules of quantum-dynamics the operator D should satisfy the 
Liouville-von Neumann equation 

D=i[D, H] (2.6) 

which is equivalent to 

D(t)=e po) et. (2.7) 

We see that the eigenvalue spectrum of D remains unchanged 
with the time. Our aim is to obtain a variational formulation 

of (2.6) which could be used as a source of reliable approximation 

schemes to the exact dynamical equation. We begin with writing 

the time-dependent density matrix in terms of the stationary 

density matrix which satisfies eq. (2.2): 

D(t)=U(t) D, U(t), (2.8) 

where U(t) is a variational unitary operator (the unitarity 
of U assures the time-invariance of the eigenvalue spectrum of D). 

Let us consider the action integral 

t, 

l= iy de; 2.9 I, (2.9) 

12 Portgal. Phys. — Vol. 16, fasc. 1-2, pp. 9-26, 1985
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where the lagrangian is given by 

. ~+ + 
L=iTr(UD,U )+Tr(UDU H). (2.10) 

The least action principle 81 = 0 with L given by (2.10) does lead 

to the correct equation of motion (2.6) as we shall prove in the 

following. 

We denote now by S6F an infinitesimal hermitean time-depen- 

dent operator which satisfies 

U+a—u ee, (2.11) 
We have therefore 

sU = -iU SF, (2:12) 

U" sU =—38U U=—isF. (2.13) 

The following boundary condition may be imposed on $F: 

Tr [D, ’F(t:) ] = Tr [D, dF (t.)] =0. (2.14) 

The variation of the action integral may be written 

t, 

al = f dt [iTr(sUD,U + UD, 8U~) + 
€ 1 

t, 

+Tr(sUD,U H+ UD,8U'H)]=iTr(D,sU'U)|* + 
t 

1 

t, 

+f attr sUU [i(UD,U’ + UD,U") + 
t, 

+ (UD, U’ H—HUD,U")]$ 

t 
t, ; 

= —Tr(8FD,) "+i f dtTrj UsFU (—iD-—[D, H]) } 
t 

t   1 

t, 

=f dt Tr} UsFU (D-i[D,H])$=0, | (2.15) 
t. 1 
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where use has been made of (2.13) and of the boundary condition 

(2.14). Since the variation 5F is arbitrary for t, < t < t, one gains 

indeed the Liouville-von Neumann equation (2.6) from the action 

principle. 

3 — THE LINEAR RESPONSE FUNCTION 

FOR MIXED STATES 

If a quantal system stays in a stationary state described by 

the time-independent density matrix D, and at some later occasion 
is slightly perturbed, the density matrix of the perturbed system 

may be written 

D(t) =e Ft) p, ef (3.1) 

where F(t) is a hermitean infinitesimal operator. Since F is 

infinitesimal the lagrangian (2.10) may be replaced by its leading 

order terms. The following quadratic lagrangian is obtained (the 

linear terms give no contribution): 

L°) = (~i/2) Tr(D, [F,F]) + 1/2 Tr(D.[F,[H,F]]). (3.2) 

The principle of least action will then lead to linear equations of 

motion which are the small amplitude limit of the Liouville-von 

Neumann equation. From the variation 

5 { L) at = 0 (3.3) 

we obtain 

i Tr(D,[8F,F])-—Tr(D,[8F,[H,F]]) =0, (3.4) 

so that 

iTr{sF({F,D.]+i([H,F],D.]) }=0, (3.5) 

or, since $F is arbitrary, 

[F,D.]=—ifH, [F, D]] (3.6) 

14 Portgal. Phys. — Vol. 16, fasc. 1-2, pp. 9-26, 1985
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Here the Jacobi identity for double commutators has been used 

together with the equilibrium condition (2.2). 

We consider now the eigenmode solutions of (3.6). We insert 

the appropriate ansatz 

jot + iw t 
F.(t)=e "06, +e ®, (3.7) 

and obtain 

+ + 
O, [ ,, D, | =[H, [9, » DJ] 

(3.8) 
— o, [ @,, D,] =[H, [9,, DoJ] 

where we can consider w, > 0. The following normalization con- 

dition for the operators @, and @*; may be imposed: 

+ 

Tr (D, [©,, ®, J) = 5, 

(3.9) 
+ + 

Tr (D, [0,, ®]) = Tr (D, [9 , ®, ]) =9- 

The general solution of eq. (3.6) can be written as 

=} * i 

F(t)=%(f,e “0, +f, e* @,). (3.10) 

The normalization (3.9) leads to the following expression for the 

mixed state transition amplitudes 

f.=Tr (D, [o,, F ¢0)]) 

(3.11) 

f'=Tr(D, [F (0), ©, ]) . 

The energy-weighted sum-rule for these transition amplitudes 

may now be derived. Indeed from eq. (3.4) with F instead of 5F 

we conclude that 

iTr(D,[F, F])=Tr(D, [F,[H F]]) (3.12) 
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It may be easily checked that iTr(D,[F,F]) =2 » o,/f,|?. 
Therefore . 

xo, |f,? =1/2 Tr(D, [F, [H, F]]) -  ©.13) 

We emphasize that this sum-rule is exact and not restricted to 

the RPA, in which log D, and F are one-body operators. 

Since the operators H and D, commute they may be simul- 

taneously diagonalized. Denoting by {|m >} a set of common 
eigenvalues 

H|m>=E,|m> 

(3.14) 
D,|m >=P,,|m> 

the solutions of the equations of motion (3.8) are given by 

or = B= Be 

(3.15) 
+ —1/2 

®, = (P,—Pu) [Im ><n| 
FE 

with E,, > E, and P, > P,,. The index r labels the pair (m,n). 

4— THERMAL EQUILIBRIUM 

The stationarity condition (2.2) should not be confused with 

the condition for statistical equilibrium. 

It is well-known that thermal equilibrium occurs when the 

entropy 

S =—Tr (D log D) (4.1) 

is maximal for a given value of the energy E=Tr(DH). In 

order to determine the states of thermal equilibrium the function 

W =86 Tr (DH) +Tr (D log D) (4.2) 
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should, therefore, be minimized with respect to variations of D 

satisfying the normalization condition (2.1). The parameter f is a 

Lagrange multiplier which fixes the energy and should be 

interpreted as the inverse of the temperature. The function W is 

proportional to the well-known Helmholtz function. 

The minimization of (4.2) may be viewed as consisting of 

two steps: 

i) Minimization with respect to D for a fixed eigenvalue 

spectrum. This stage is identical to the time-independent variational 

procedure formulated in section 2 because the entropy is not 

affected by canonical transformations. We determine, within the 

class of all density matrices with a given spectrum, the density 

matrix D, which minimizes the energy and commutes with the 

hamiltonian H, so that it may be simultaneously diagonalized 

with H (see eqs. (3.14) ). In this first stage we obtain the 

eigenvectors |m > of H and D, and the corresponding eigen- 

energies E,, . 
ii) Minimization with respect to the eigenvalues of D, the 

set of eigenvectors being kept fixed. We determine the eigenvalues 

P,, of D, which are suitable to describe thermal equilibrium. The 
function (4.2) may be written 

W=f8>P,, E, + P,, log P, (4.3) 

and the normalization condition (2.1) reads as 

= r,= 1 (4.4) 

Minimization of W with respect to the eigenvalue spectrum P,,, is 

now easily performed leading to 

P = gt @ FE m ; Z _ ~BE,, (4.5) e 

3
M
 

Finally we arrive at the following inequality 

+ , BE —log (Ye ° ™) < 8 Tr (DH) + Tr (D log D) 
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which is precisely the well known Peierls variational principle 

for the free energy. 

We observe that the equilibrium condition (2.2) is a necessary 
but not sufficient condition for statistical equilibrium. That con- 
dition may be interpreted as indicating short-term equilibrium 
around which the system may oscillate due to a small external 

perturbation. On the other hand thermal equilibrium should be 

understood as long-term equilibrium. The composition of the mixed 

state is in this case specified by (4.5). 

5 — INDEPENDENT PARTICLE APPROXIMATION 

FOR MIXED STATES : NOTATION 

In the independent particle approximation we assume that 

the density-matrix has the following form 

K 

D=Ce ; (5.1) 

here K is a one-body hermitean operator and C is a normalization 

constant. 

As this approximation is most conveniently discussed for a 

variable number of particles in the formalism of second quan- 

tization we represent the hamiltonian as 

H=T+V 

by (5.2) 
+ 

V= 1/2 3% v aa aa 
uyps Bh eo Evps 

where a;*, a; are respectively creation and annihilation fermion 

operators corresponding to an orthonormal set of single particle 

states. 
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If the number of particles is kept fixed we can write 

(5.3) 

where the operators t, and v,; act respectively on functions of 

the coordinates of the particle i and of the particles i and j. The 

symbols t and v denote therefore, respectively, the restriction 

of T and V to one-body and two-body Hilbert spaces. 

The expectation values of T and V in the mixed state described 

by an independent-particle density matrix D may be written 

<T> = Tr (DT) = %»,,t,, = tr (pt) 
pv 

(5.4) 

A 

<V>=Tr (DV) = 1/2 p,, p = 1/2 tr, tr, (pi pe Viz) Vv 
uvpo po vo, up 

where Py» are the elements of the one-body density matrix 

+ 

Puy = <plp|v> = Tr (Da, a.) 

(5.5) 

and v4 is the antisymmetrized interaction defined through 

A 
V =v —v (5.6) 

LY, po KY, po Kv, op 

We should call attention to the distinction between ‘Tr’ and 

“tr’, “Tr”? denotes trace in the Hilbert space of state vectors 

corresponding to an arbitrary number of particles (which is the 

direct sum of Hilbert spaces of state vectors corresponding to 

definite numbers of particles). On the other hand “tr” means 

trace in the Hilbert space of single-particle state vectors. 
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The relationship between D and p indicated by (5.5) can be 
made more explicit. If k is the restriction of K to the one-body 
Hilbert space then 

p=e/(lte) (5.7) 

The average number of particles, which must be kept fixed 
in all the calculations, is 

N = Tr (DX a, a,) = trp (5.8) 
bX 

6 — HARTREE-FOCK APPROXIMATION 

FOR MIXED STATES 

The Hartree-Fock approximation for mixed states requires 

that the variational space in (2.4) only includes independent- 

particle density matrices. Therefore log D, should be a one-body 

hermitian operator while F is an arbitrary hermitian one-body 

operator. 

The variational equation (2.5) with 8F a one-body operator 

determines the independent-particle density matrix D, which 

commutes as nearly as possible with H. Let us start with 

Tr (D, [H, F]) = 0 (6.1) 

which can be obtained from (2.5) using the cyclic property of the 

trace and replacing 8F by F. For fixed N the hamiltonian is given 

by (5.3) and we have 

1 (6.2) 

Then elementary algebraic manipulations lead to 

N N 

[H, F] = %[t,, f]+1/2 x [v,,f+£] ©) 
i= iAj=1 
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so that 

Tr (D, [H, F]) =tr, ( Pos [t,, £,]) + 

(6.4) 
A 

+ 1/2 tr, tr, ( po,1 Po,2 [v., f, + f,]) =0 

where p, is related to D, as in (5.5). From (6.4) we obtain further 

Tr (D, [H, F] = tr, (f, [poi bh J) =0 (6.5) 

where 

A, = t + ty (vis Po,2 ) (6.6) 

Since f, is arbitrary (6.5) implies finally 

[h, a] = 0 (6.7) 

These are the Hartree-Fock equations for mixed states. Let us 

consider now a representation in which h and p, are simultaneously 
diagonal: 

hle> =e,|~> 
(6.8) 

ple > = 1, |p> 

Then the Hartree-Fock equations may be written in the matri- 
cial form 

A 

ty SM Vuk, rk = 8p Oy (6.9) 

The occupation numbers n, are easily determined in the case 

of statistical equilibrium through the minimization of the function 

W’ = BE-S—B, N (6.10) 

The last term appears because a constraint in the mean number 

of particles must be included when using a formalism with a 
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variable number of particles. The function (6.10) is clearly 

proportional to the grand canonical potential. Following the 

arguments given at section 4 and using (5.1) and (5.7) it is 

straightforward to arrive at 

n= [1+e% 6%" #)j-1 (6.11) 

which is just the Fermi-Dirac distribution function. Our general 

mixed-state formalism provides a rigorous justification to the 

introduction of Fermi-Dirac occupation numbers in the Hartree- 

Fock equations (6.9), which are then called thermal Hartree-Fock 

equations. We emphasize however that the occupation numbers 

which appear in (6.9) may be given by some other prescription 

when situations of non-thermal equilibrium are under con- 

sideration. The occupation numbers no 1, 7 N and 1 = 0, 

v >N, correspond to the T = 0 situation. 

7--RANDOM PHASE APPROXIMATION 

FOR MIXED STATES 

Let us consider again the lagrangian (3.2), but we are now 

going to assume that both log D, and F are one-body operators. 

For a fixed number of particles we have the following values 

for the commutators involved in L®: 

[f, f,] (7.1) [F, F] = 
i 1 M

z
 

[F,(H,FI]= 5 ff, (t, f+ 
N A 

F122 & [its Db Mee F44,)]] 
i#j=1 

(7.2) 
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so that 

L®) = (—i/2) tr, ( Po, [f,. f,])'+ 1/2 tr, ( Po1 [f; [43 f,]]) 

(7.3) 

+1/4 tr, tr, (pos pos [fit fe» [Ve> fy +fe]]) 

The condition of least action leads now to 

itr, (po, [8f., f2])—tr, (po. [8f,, [t,, f.]]) 

(7.4) 
A 

—tr, tr, (Poa Po,2 [6f., [ve, fy +f,]]) =0 

After some straightforward algebraic manipulations we obtain 

i [Bas Porl—([ lh, Eads Pan | [0% ( Pos [vie f,}). Poi] = 9 

(7.5) 

Finally in the representation in which p, and h are both diagonal 

if,, (n,—n,)— (2,—8,) Ey (M,—,)—% (n,—n,) 

(7.6) 
A 

(n —n )v f =0 
v u up, vo op 

The solutions for the normal modes are obtained Fourier- 

analysing F. The one-body approximation of (3.7) is 

f.(t)se “'g tele g (7.7) 

which inserted in (7.6) provides the following RPA equations for 
mixed states 

+ + 
@r Or 4 (M— NK) — (Ce — 27) 8, yy ()— Ny) 

(7.8) 
A + 

— > (n;—n;) (n,—ny) Vig, x C2 = 0 
ij 
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These equations can still be written in matricial form 

“(Cy )= (ea) Cy) Y, —B* — A* Y, 

with 

in Oy wy (1,0) , n,>n, 

+ 

Ye we = Oy yy (2, —2,) ; n,>n, 

A 

MY, po (2,8) 550 Sup TV uo, vo (a,~n,) » n> mn? A, on, 

A 

dons mn bo (n,—n,) ’ n,>n,, n,>n, 

In analogy with (3.9) the following normalization condition 

may be imposed: 

tr (p) [0,, 8. 1) = 8% , 
(7.10) 

+ + 
tr ( po [Ops 6, ]) = tr ( po [ 0, ? 6, 1) = 0 

The general solution of eq. (7.6) is 

f=ys(f,eo +8 e@ 6.) (7.11) 

where the mixed-state transition amplitudes are given by 

f, = tr (p, [9,, f (0)]) 
* + 

f. = tr (p, [f (0), 4, J) (7.12) 

We observe finally that the RPA preserves the energy-weighted 

sum-rule 

X o,|f, 2) = 1/2 Tr (D, [F, [H. F]]) (7.13) 

where the right-hand side can be evaluated with the aid of (7.2). 
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If py is the independent-particle mixed state determined by 

conventional equilibrium statistical mechanics then its eigenvalues 

n are the Fermi-Dirac occupation numbers (6.11) and eqs. (7.8) 
are known under the name of thermal RPA equations. 

8 — CONCLUSIONS 

We have developed a variational approach appropriate to 

physical situations requiring a description in terms of mixed 

states. The formalism presented leads in a straightforward way 

to a mean field theory for mixed states. In this framework, the 

well-known Hartree-Fock and RPA results for pure states are 

generalized to the case of mixtures. 

As extensions of this work, which are presently being 

carried out, we would like to refer the following: 

1 — The description of correlations not included in a mean-field 

by boson expansions adequate for mixed states. We can establish 

a temperature dependent Holstein-Primakoff expansion, for mag- 

netically ordered systems, which is useful in the study of the 

interaction between spin waves [9]. 

2— The translation of the quantal mean-field formulae into 

classical terms. We obtain in this way a thermal Thomas-Fermi 

theory, for the ground-state of a statistical system, and a fluid 

dynamical representation of small oscillations around it [10]. 

3—The application to heavy ion collisions, such as those 

described in the introduction. In a realistic model, a constraint on 
the angular momentum must be introduced and the singe-particle 

states must be replaced by the single quasi-particle states of the 

Hartree-Fock-Bogolyubov approach. 
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THE FIRST TOWNSEND COEFFICIENT FOR 

ARGON-ISOBUTANE MIXTURES 
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ABSTRACT — Using the Korff approximation for the first Townsend 

coefficient and the evolution of the charge with the anode voltage for a 

proportional counter geometry, effective molecular parameters were calculated 

for argon-isobutane mixtures with the following isobutane concentrations: 32, 

39, 44, 48, 51, 56 and 60 percent. 

1 — INTRODUCTION 

Data are available on the first Townsend coefficient a, the 

mean number of ion-pairs produced per unit length of drift, for 

noble gases, hydrocarbon gases and a wide variety of mixtures [1]. 

Argon-isobutane mixtures have been widely used in detectors, 

an important characteristic of isobutane being its low optical 

transmission cut-off at ~ 7.3 eV [2], helping to prevent spurious 

effects due to photon feedback. Together with its widespread use 

in multiwire proportional chambers, multiwire drift chambers and 

more recently, time projection chambers, a reasonable knowledge 

of the basic mechanisms is now available, useful from the point 

of view of gaseous electronics and of better understanding and 

predicting the detectors intrinsic properties. Most theoretical 

interpretations rely on the Boltzman transport equations and are 

directed towards the transport coefficients, both with and 

without magnetic fields, computing drift velocities » and diffusion 
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coefficients D. The interpretation of these parameters corresponds 

essentially, from an instrumental point of view, to the problem 

of positioning by drift techniques. Using experimental data on D 

and » from [3] for mixtures of argon and isobutane (from 7% 

up to 38% isobutane) good fits have been obtained [4] that 

enabled to guess the behaviour of the total and excitation 

cross-sections of isobutane with energy [5]. 

Recently, research in a new mode of charge multiplication 

in gaseous detectors is being pursued: the formation of narrow 

streamers ~ 150 »m wide, orthogonally to thick anode wires, that 

quench themselves under a continuously applied high voltage. 

Large currents, approaching 1 mA are produced in less than 

~ 100 ns, allowing for good localization properties with simple 

electronics. Again, and essentially for the optical transmission 

properties of isobutane, argon-isobutane mixtures are being used 

in the self-quenching streamer mode, SQS [6,7], and efforts are 

being made towards understanding the basic mechanisms involved. 

It is known that the process is strongly photon mediated and 

space charge conditioned [8] and based on a mechanism of 

self-breeding by photoelectrons of the avalanche; quantitative 

estimations have been made of the photon flux as a function 

of its wavelength [9]. The first Townsend coefficient is a deter- 

minant parameter both for itself and for the calculation of the 

photon fluxes, essential to a quantitative interpretation of the 

SQS mode, and in this work experimental data for a over a wide 

range of isobutane concentrations (large concentrations are a 

necessary condition to obtain good efficiency plateaux) is presented. 

2 — EXPERIMENTAL TECHNIQUE 

The experimental system used in this work is essentially the 

one described in [7]. The gaseous mixture, argon-isobutane, in 

different proportions, flows through a cylindrical proportional 

detector under a continuous flow regimen at atmospheric pressure. 

For the determination of the gaseous composition, calibration 

curves of the flowmeters were obtained for both gases used. The 
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detector has an aluminium cathode 13 cm long and 14 mm internal 

diameter. The anode is a nichrome wire 60 pm thick stretched 

along the detector axis. 

The measurements of the charge characteristics of the 

chamber were made using a conventional charge amplifier 

electronic system and multichannel analyzer. The calibration of 

this system was made by using a Si-semiconductor detector. The 

bombarding radiation, X-rays from a °*°Fe source, enters the 

detector through an aluminium (0.025 mg/cm’) window. 

3 — EXPERIMENTAL RESULTS AND DATA ANALYSIS 

The experimental data obtained in this work are displayed 

in Fig. 1. The behaviour of the results is similar to that observed 

in multiwire chambers for the same mixtures [1] and proportional 

counters used for SQS filled with argon-methane and methylal [10]. 

It reflects the general behaviour of the first Townsend coefficient 

in mixtures of noble gases and polyatomic gases namely that, for 

increasing concentrations of this last component, higher fields 

are needed to obtain the same a. 

Data analysis must consider carefully space-charge distortion 

of the field, otherwise the molecular properties of the gas are 

obscured. Provided that this effect is taken into account deter- 

mination of a for such different techniques as sparking potentials 

and conduction measurements [11] lead to the same results for 

the same regions of E/p. 

Space-charge effects are well defined in Fig. 1 for charges 

S 1.5 pC. This detector was provided with better insulators (’) 

than a counter used previously for SQS studies [7]; the spread 

of pulse-heights for higher voltages was small so that reliable 

data, with clear space-charge effects, could be collected. These 

data were used for the analysis reported in this work. 

The usual Korff approximation [12] «a = pA exp ( —- B p/E) 

was used, where A and B are constants for a certain mixture, 

p is the pressure and E the electric field. From the field confi- 

(2) Kindly made for us by Dr. Rob Hollander, of IRI-ISO group, Delft 

Technical University, Holland. 
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guration, the charge gain of the counter is given, with a very 
good approximation, by 

Q(V) = (Epx e/W) exp [AV’/B exp (~— Ba/V’) ] 

where Ex is the X-ray energy, e the electron charge, W the 
energy needed to produce an ion pair and V’= V/In(b/a), V being 
the applied voltage, b and a the cathode and anode radius 
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Fig. 1— The average measured charge against applied anode voltage for 

different argon-isobutane mixtures, The isobutane concentration is quoted 

for each mixture. A least squares fit is shown. 
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respectively. The number of primary ion pairs was calculated 

using the formula given in [13]. Weighted non-linear least square 

fits to the experimental data, using the expression above for the 

gain, ‘were made for the several concentrations of isobutane. 

As an example Fig. 2 shows the evolution of x’, by varying the 

number of experimental data points used (successively supressing 

data corresponding to higher anode voltages) with the highest 

charge, Q,,.x, included in the fit. The same Fig. 2 shows also a 
detected correlation between A and B, that was taken into account, 

Argon+56 % Isobutane 

    
  

A 
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Fig. 2—a) The evolution of the x? as a function of maximum charge 

included in the fit (Qn ant) ; b) The detected correlation between parameters A 

and B for the argon + 56 % isobutane mixture; full line corresponds to good fits. 

at this stage, simply by the uncertainties quoted for A and B. 

As an example, a best fit for the argon + 56% isobutane is 
shown in Fig. 1, deviations at large charges being attributed to 

space-charge effects, although the question of the validity of the 

expression used for a should not be completely disregarded. The 

data obtained are summarized in Table I. Uncertainties in A 

are o, ~ 0.5, and in B, o, = 3. 
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TABLE I— Derived molecular constants according to a=pA exp (—Bp/E) 

  

% isobutane 32 39 44 48 Si 56 60 

  

A 

(cm~? torr ~1) 13.1 14.6 15.8 16.6 15.5 15.4 17.9 

B 

(V cm~? torr~1) 195 220 240 255 251 260 286 

E/p max 

(V cm~? torr ~1) 185 205 213 221 225 237 241                 
The corresponding effective mean free path length at atmospheric 

pressure A,,, = 1/A (A,, at pressure p is given by \,,,/p) and the 

effective ionization potential V;= B A, [14], are presented in 
Table II. 

TABLE II — Effective molecular parameters 

  

  

  

% isobutane 32 39 44 48 51 56 60 

r 
mo 

(um) 1.00 0.90 0.83 0.79 0.85 0.85 0.74 

Vi 

(eV) 14.87 | 15.08 | 15.23 15.37 16.14 , 16.91 15.98             
  

4 — DISCUSSION 

The main source of uncertainty associated with the data 

obtained in this work may be related to space-charge effects: 

positive ions produced in the early avalanches give rise to modi- 

fications of the local electric field and therefore reduce the gain 
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associated to electrons, from the same track, arriving later to 

the high field region. 

Experimental data available now for this effect concern both 

proportional counter and multiwire chambers [15, 16, 17] and the 

space charge reduction is of course dependent on the track 

geometry and diffusion. Data using X-rays leading to energy 

deposits varying by an order of magnitude (Mn K and Mn L) 

show space-charge gain effects starting at about 1 pC (0.3 pC 

from. [16] and 2.4 pC from [15]) if the criterion of negligible field 

distortion for the lower energy deposit is used. Although the 

main experimental parameters used by these authors that can 

affect the space-charge are similar to those of this work (X-ray 

energy, diffusion, wire thickness) another relevant one, the spatial 

distribution of the avalanche, is unknown. Nevertheless the 

threshold for field distortion obtained in this work by the use 

of Korff’s approximation can be considered quite reasonable 

implying the validity of that approximation for the argon-isobutane 

mixtures studied, up to the E/p values quoted. 

The value of the effective ionization potential V; is also 
natural: indeed the thresholds for ionization for argon and 

isobutane are respectively 15.77 eV and 10.57 eV, and the mean 

energy to make an ion-pair is about 25 eV. No considerations 

can be made concerning 4,,, due to lack of information on 
cross-section for ionization: for processes induced by electron 

impact there is data up to 8 eV only. 

In the same 'way that experimental data on drift velocities 

and diffusion parameters allowed the determination of total and 

excitations cross-sections for mixtures of argon and isobutane, 

the data presented here may lead to the calculation of ionization 
cross-sections. 

As a general indication and to be compared with the data of 

this work effective molecular parameters for several hydrocarbons 

are calculated from [11] and shown in Table III. 
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TABLE III — Effective molecular parameters [11] 

  

  

        
  

[1] 

[2] 

[3] 

[4] 
[5] 
[6] 

[7] 

[8] 

[9] 

[10] 

[11] 
[12] 

[13] 
[14] 

[15] 
[16] 
[17] 

34 

Hydrocarbon Methane Ethane Ethylene Acetylene 

Dns 18 13 14 0.88 
(um) 1.5 Ll 12 0.87 

V; 27.1 23.2 32.0 22.2 

(eV) 23.8 | 19.4 29.4 22.5 

E/p range 
OW em-2 donr=ij 33-165 50-190 43-154 47-285 

| 
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ABSTRACT — We report the effects of uniaxial stress perturbations on 

the H13 absorption lines in diamond. These lines are transitions to higher 

excited states of the well-known H3 optical centre. We show that, in common 

with other centres in diamond, the symmetry of the H3 centre is the same 

in each of its electronic states. However, there are large differences in responses 

of the different states to stresses. This suggests that each of the electronic states 

at the H3 centre is highly localised at the centre. The vibronic interactions 

between these spatially localised states produce significant effects on the 

optical spectra, even for states of very different energies. 

1 — INTRODUCTION 

When different experimental techniques are used to probe 

a defect in a crystal, they often produce data on different elec- 

tronic states (including different charge states) of the defect. 

Because the equilibrium atomic configuration of the defect depends 

on the electron distribution, the defect may be observed with 
very different structures by the different experimental techniques. 

For example, recent work on a carbon-carbon defect in silicon 

has shown that the two carbon atoms occupy equivalent sites 

(1) Department of Physics, King’s College, Strand, London WC2R 2LS. 
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in the lattice when the defect is examined using optically detected 
magnetic resonance [1], but the two C atoms are grossly 
inequivalent when the defect is investigated by electron paramag- 
netic. resonance [2]. 

Structural changes like these are of interest in themselves. 
They also cause practical problems. For example, they make it 
difficult to be certain whether the same defect is being observed 
in different experiments. 

In diamond there are only a few published sets of optical 
studies made on significantly different states of centres. These 
studies are of: : 

a) The neutral vacancy. The lowest energy optical tran- 

sition (zero-phonon line at 1.673 eV) has been studied 

in detail, particularly, e.g. [3], by the technique of 

uniaxial stresses which will concern us throughout this 

paper. A series of higher transitions nearer 3 eV has also 

been investigated by uniaxial stresses [4]. In all the elec- 

tronic states the neutral vacancy has the same point 
group symmetry: tetrahedral. 

b) The negative vacancy. An optical transition at 3.150 eV 

ascribed to the negative vacancy [5] has been investigated 

by uniaxial stresses [6]. The symmetry of the centre is 

again tetrahedral: evidently changing the charge state 

of the vacancy in diamond from neutral to singly 

negative does not change its symmetry. This contrasts 

strongly with the different symmetries observed for 
different charge states of the vacancy in silicon [7]. 

c) The 594nm centre. This centre is known to produce both 
the 2.086eV (594nm) and the 2.917eV zero-phonon 

lines [8]. In both cases uniaxial stress measurements have 

shown the centres to be trigonal [8,9]. In addition, 

paramagnetic resonance measurements on_ optically 

excited states (e.g. data on the nitrogen-vacancy centre, 

by J. A. van Wyk, private communication 1984) also 

show the same symmetries as those deduced from the 
optical studies. 

Present evidence suggests then that defects in diamond 

probably have the same symmetry, regardless of electronic state. 
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The purpose of this paper is to examine another optical 

centre, the well-known ‘“H3” centre with its main zero-phonon 

line at 2.463 eV. The centre is believed to be formed from two 

substitutional nitrogen atoms and one vacancy [10]. Recently [11] 

Collins has shown that the “H13” absorption line at 3.361 eV 

most probably also occurs at the H3 centre. This result is 

intriguing for the 2.463 eV transition has been shown [12] to 

occur at a rhombic I centre ( point group C,,), while the 3.361 eV 

line has been shown [13] to occur at a trigonal centre (point 

group Cz,, D; or Dsq). In this paper we present new data on 

the effects of uniaxial stresses on the 3.361 eV transition (and 

neighbouring lines). In $3 we show that the 3.361 eV line does 

occur at a rhombic I centre, as for the 2.463 eV line: again the 

point group of a centre is the same for different excited states. 

We show that there are significant differences in the effects of 

stress on each excited state. In $4 we suggest that these dif- 

ferences can produce interesting vibronic effects, and we show 

that unusual features in the absorption spectra of the H3 centre 

may be explained. 

2 — EXPERIMENTAL DATA 

Natural diamonds were used throughout. The samples were 

cut to cuboids with linear dimensions of 1 to 2mm, and were 

oriented so that stresses could be applied along the main crystal- 

lographic axes. The crystals were irradiated with about 

5 X 102m 2 MeV electrons and annealed at about 1100K for 

two hours. 

The 3.361 eV line is relatively weak. Throughout this work 

measurements were therefore made using the luminescence exci- 

tation technique with the samples at liquid nitrogen temperature. 

The specimen was excited by light from a 1 kW Xenon arc, 

focussed through a 3/4m grating monochromator. Luminescence 

from the sample was detected in a direction perpendicular to the 

exciting beam. Fig. 1 shows the zero-stress luminescence excita- 

tion spectrum recorded with all the visible luminescence being 

detected from the diamond at photon energies hy < 2.5eV. This 

luminescence occurs from the H3 band (i.e. the 2.463 eV zero- 

phonon line and all its phonon sidebands [11]). This is confirmed 
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by the broken line on Fig. 1 which shows the luminescence 
excitation spectrum recorded at the same resolution but using 
a second monochromator to select only H3 luminescence (defined 
as the difference between the luminescence intensity at the peak 
of the H3 one-phonon sideband and the intensity at the minimum 

    

  

          

  

| 

| an 
, it a 

| sw 
LoS Ihe y ey 

- J \ / 

/ 
\ 

A 
159 meV 

L | | | J 

32 a3 34 3.5 3-6 
Photon energy eV 

Fig. 1— Luminescence excitation spectrum of the «H13» region at liquid 
nitrogen temperature. The solid line shows the spectrum recorded when all 

the emission in the H3 region is detected. The broken line shows the spectrum 

detected when a second monochromator was used to select only H3 emission, 

and is a higher resolution version of the spectrum given in reference [11]. 
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between the first and second H3 phonon sidebands). The total 

luminescence excitation spectrum evidently arises predominantly 

from the H3 band. In the stress experiments the total emission 

with hy < 2.5eV was detected. 

Fig. 2 shows the spectra recorded under uniaxial compres- 

sions along the <001>, <1l11> and <110> axes. The ener- 

gies of the stress-split components are shown as functions of the 

applied stress in Fig. 3. When detecting the luminescence from 

a resonantly excited defect, the observed stress-splitting pattern 

should depend on the experimental geometry [18]. However, in 

these experiments using small specimens it was not feasible to 

mask the crystals so as to closely define the optical geometry 

without seriously decreasing the already small signal. The 

polarisation of the spectra we recorded were very similar to 

those reported in the earlier absorption measurements [13]. 

3— ANALYSIS OF THE EXPERIMENTAL DATA 

The exact form of the spectrum near 3.3eV is sample 

dependent. In particular, the broad line near 3.32 eV shown in 

the sample for <001> and <110> stresses (figure 2) is inde- 

pendent of the H3 centre: it is associated with the similar «H4» 

centre [14]. Allowing for these independent lines there are still 

many transitions in figure 1 occurring at the same centre. The 

3.344 eV line has been correlated with the 3.361 eV line [13]. 

Other transitions at 3.310 and 3.373 eV, and the doublet at 

3.403 eV always appeared in our samples in very similar strengths 

relative to the 3.361 eV line. Further evidence that the 3.310, 3.344, 

3.361 and 3.403 eV lines occur at the same centre comes from 

what appear to be their one-phonon sidebands, all involving a 

well-defined phonon peak energy 159+ 0.7meV. The assigned 

one-phonon (and in some cases two-phonon) sidebands are linked 

to their zero-phonon lines in figure 1. The different intensities of 

the one-phonon sidebands relative to the zero-phonon lines will 

be discussed in § 4. 

The presence of all these closely spaced transitions creates 

problems in interpreting the uniaxial stress data. Stress induced 

interactions must be expected to occur producing shifts that are 

non-linear functions of the applied stress. In addition some of the 
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(non-interacting) components become superimposed with increas- 

ing stress (e.g. components C and D on figure 2). The widths of 

the lines (~4meV at zero stress and low temperature) are 

sufficiently large compared to some of the large separations of 

the lines that a fully detailed analysis is not feasible. 

The effects of stresses in all three stress directions are 

clearest for the 3.344eV line. This splits into the number of 

components with the polarisations and relative intensities only 

as expected for a transition at a C,, centre (see insets to figure 2 
and reference [15]) or an A to E transition at a tetragonal cen- 

tre [16,17]. The latter assignment requires the E state not to 

split under stress; the simplest assignment is that the 3.344 eV 

line occurs in the same C,, symetry as the 2.463 eV line of the 
centre. 

Under uniaxial stress, a transition at a C,, centre oriented 
with its C, axis along the [001] crystal axis is perturbed to first 

order in the stress tensor components by [15]: 

A(hy) = Ays,, + Ao(Sxx Syy) + AgSxy (1) 

where the s,; are defined with respect to the crystal axes x,y,z. 
By “first order perturbation” we mean that the stress is sufficiently 

small that there is negligible stress-induced mixing of the states 

involved in the transition with any other state of the centre. 

Under <001>, <111> and <110> the energy dependence 

of each stress-split component is given in terms of the unknown 

“stress parameters’ A,, A, and A; as shown in Table 1. The 

unweighted least squares fit of the theoretical shift rates to the 

observed shift rates (denoted a for line a etc.) is obtained when 
A, and A, satisfy 

25A, + 149A, = 36b + 24(c+d) + 36(f+g) + 18e 

and 

53A, + 25A, = 36a + 12(c+d) + 18e, 

and when 

26A; = 6(d-c) + 9(g-f). 

The least squares fit is shown by the lines on figure 3, using the 

parameters listed in Table 1. The fit appears to be plausible. 
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TABLE 1 

a) Comparison of the experimental and theoretical 

shift rates for the 3.344 and 3.361 eV lines. 

  

  

  

    
  

  

  

Shift rates (meV / GPa ) 

Stress Linear 

axis shift rates 3.344 eV 3.361 eV 

Compt Expt Fit Compt Expt Fit 

001 A, a 1d 1.4 A 2.7 2.5 

A, b =1.2 =0.7 B —0.8 0.1 

ciala 1/3 (A, + 2A, - 2A, ) c 3.6 21 Cc 4.0 4.1 

1/3 (A, + 2A, + 2A, ) d =.6 —2.0 D =1:5 =2.:2 

110 1/2 (A, + A, ) ce) =0.2 0.4 E 0.6 1.3 

A, — A, f 18 2.4 F 5.6 4.9 

Ay tA, g =3.6 3.7 G —4.4 —-4.6 

Typical uncertainties are + 0.3 meV / GPa. 

b) Stress parameters used in the fit (meV / GPa ). 

Line (eV ) A, A, A, 

3.344 1.5 = 3.1 =0.7 

3.361 2:5 —4.7 0.1 

2.463 (H3) =8.7 6.9 6.7       
  

The uncertainties in the parameters for the 3.344 and 3.361 eV lines are 

~+0.2 meV /GPa. This large uncertainty is caused by the relatively small 

perturbations of the closely spaced lines. 

From the polarisation of the stress-split components, the 

3.344 eV line occurs from a ground state whose irreducible 

representation in the C,, point group is A, to the excited B, 

state, or any other transition which can occur under a <110> 
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electric dipole moment. (A complete tabulation of equivalent 
transitions is given in reference [12]). Since the 3.344 eV transition 
occurs from the same ground state as the 2.463 eV line, which 
we will assume for definiteness is an A, state, there are only 
two possibilities for the excited state of the 3.344 eV line, B, or B, ; 
which are consistent with our stress data. 

The 3.361 eV line behaves in a similar way to the 3.344 eV 
line (figures 2 and 3). The main difference is that the stress-split 
components of the 3.361 eV line are not polarised as fully as 
expected for an isolated A, to B, transition. For example, under 
<111> stress component C is not fully polarised with its electric 
vector perpendicular to the stress axis. Possibly this is an effect 
of the nearby 3.373 eV line, whose stress-split components overlap 
(and probably interact with) those of the 3.361 eV line. We cannot 
separate these effects in the experimental data. However, in the 
limit of large stress, similar states which interact weakly with 
each other split with shift rates equal to the non-interacting states. 

We have therefore fitted the theory of equation (1) to the 3.361 eV 
line. The shift rates are shown in figure 3. There is a plausible 

fit to the experimental data using the stress parameters listed in 

table 1. These parameters are very similar to those of the 3.344 eV 
line, also listed in the table. In the most clearly resolved spectra, 

taken under <111> stress, the H3-related line near 3.31 eV also 
appears to split with a similar shift rate to the 3.344 and 3.361 eV 
lines (figure 3). 

We have shown that the 3.344 and 3.361 eV transitions occur 

at a Cy, symmetry, the same as for the lower energy 2.463 eV 
line. The earlier assignment of the 3.344 and 3.361 eV lines to a 
trigonal centre [13] arose through misinterpreting the complex 
experimental data resulting from the many, nearly degenerate, 
excited states of the centre. 

4— VIBRONIC COUPLING 

We have shown that the symmetry of the «H3» defect is the 
same in the «H13» excited states (near 3.36 eV) as in the «H3» 
excited states (at 2.463 eV). However, the stress parameters 
show that substantial relaxations occur between the H3 and 
H13 states. The stress parameters of table 1 only give the 
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difference in perturbation of the excited and ground zero-phonon 

states (equation 1). The differences between H13 and H3 are of 

the same order as the H3 parameters (last line, table 1). Evidently 

the electronic orbitals in the 2.463 eV and 3.361 eV excited states 

are both still sufficiently localised that the electron-lattice coupling 

is strongly dependent on the electronic state. It follows that these 

compact electronic orbitals may interact with each other vibro- 

nically as the atoms of the defect vibrate. 

As an example of the vibronic coupling we consider the 

3.344, 3.361 eV pair of zero-phonon lines. These lines are observed 

in the intensity ratio (figure 1): 

I 344 / 13.361 ~ 0.2. 

Their one phonon sidebands involving the 159 meV phonors are 

very weak, but are almost equal in intensity. This difference does 

not arise from different electron-lattice interaction of the two 

electronic states, for their stress parameters are closely similar 

(table 1). A more likely cause is that the 3.344 and 3.361 eV 

states are interacting vibronically, the interaction transferring 

intensity from the 3.361 eV zero-phonon line to the one-phonon 

sideband of the 3.344eV line. The amount of the intensity 

transferred is about 0.1 of the intensity of the 3.361 eV line, 

assuming that in the absence of the interaction the one-phonon 

sidebands of the 3.344 and 3.361 eV lines would have had inten- 

sities in proportion to the zero-phonon lines. 

For a quantitative discussion we denote the electronic excited 

state of the 3.344 eV line by ¢, (r), and that of the 3.361 eV line 

by ¢2(1), where r represents all the electronic co-ordinates. The 

harmonic oscillator wave-functions for the nth quantum level of 

the 159meV mode is denoted 7%, (Q), where Q is the mode’s 

coordinate. Since the 3.344 and 3.361 eV lines have similar stress 

parameters (table 1) we will assume that the equilibrium values 

of Q for these two states are the same. Then, in the absence of 

any vibronic interaction, the vibronic wavefunctions and energies 

for the two states are simply 

Yin(T,Q) = 41(7) 44 (Q), E=W, + (n+ 1/2) ho 

Yon(T,Q) = ¢2(T)%4n(Q), E= Wet (n+ 1/2) ho 

where W, and W., are the energies of the two electronic states. 
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We now introduce a vibronic coupling perturbation energy 

C=cQ. (2) 

Here c is an electronic operator with a matrix element 

C=f dr g(r) cg, (x) (3) 
between the two states. This perturbation couples vibronic states 
differing by one in the quantum number: 

Jar dQ Yan CQ vanir = C (h/mo)* Vn +1) /2 
(4) 

Sar dQ Yan-1 €Q Yan =C (/ mo) V2 

This coupling mixes the y,,, and ven to form new vibronic states 

Up(r,Q) = = apn Yin(T,Q) +e Dign Von (r,Q) 

The coefficients a,,, b,, are given by the secular matrix whose 
elements are as given in equation (4), in terms of the unknown 
C (h/ mo )*/2 and 

W, - W, = 17mev. 

From the coefficients the transition probability to the pth vibronic 
level is 

Ty = (t, Ano 1 ty Des )? (5) 

where from the measured zero phonon intensities 

(t:/t.)? =0.2. 

Numerical diagonalisation shows that 0.1 of the 3.361 eV 
absorption would be transferred to the one-phonon sideband of 
the 3.344 eV line when 

C (4 / Mo )/”? ~ 50 meV (6) 

with about a + 20 % uncertainty. 
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To give this interaction energy some physical meaning we 

can compare it to the stress parameters of table 1. From 

equations (2) and (3), C is the interaction energy between ¢, 

and ¢, for a unit displacement in Q. Multiplying C by a bond 

length in diamond, a, = 0.154 nm, gives the interaction energy per 

unit strain in the crystal. Division by an appropriate elastic 

constant e for diamond then gives an interaction energy per unit 

stress. The choice of elastic constant depends on the mode of 

vibration (e.g. whether it is a shearing mode or produces com- 

pressions on any particular axis). The type of mode is not known. 

We will use a simple mean of the elastic constants C,,, Cy» 

and C,, with the value e=600 GPa per unit strain. Using the 

mass of one carbon atom for m and yviw = 159 meV, from equa- 

tion (6) the interaction energy per unit stress is 

C, = Ca,/e=2.7meV / GPa. 

This is within the range of the stress parameters for the H3 cen- 

tre (table 1). The interaction will lead to stress-induced mixing of 

the 3.344 and 3.361 eV lines in the stress experiments. On figure 3 

the stress-split components of the 3.344eV line move almost 

parallel to the components of the 3.361 eV line they are interacting 

with, reducing the effects of the interaction. At 2 GPa, two states 

17meV apart interacting through C, would have their energies 

changed by ~ 1.6 meV as a result of their mutual repulsion: an 

effect less than the width of the 3.344 and 3.361 eV lines. The 

repulsion would be primarily seen as an apparent change of slope 

of the stress-split components and probably accounts for some 

of the deviations between experiment and theory on figure 3. 

The same idea of vibronic coupling can be used to explain the 

unusual peak at 3.28eV in figure 1, which is associated with 

the H3 centre [11]. The 3.28 eV line has an integrated intensity 

of the order of 10° of the intensity of the H3 vibronic band. 
The 3.28 eV line is very wide, 43 meV at low temperature, over 
ten times wider than typical zero-phonon lines in diamond. We 

suggest that it is the one-phonon sideband of a forbidden transition 

at the H3 centre; the line is observed through vibronic mixing 

with the H3 band. We assume (and we will support this below) 

that the phonon mode has again hw = 159 meV. The energy of 
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the forbidden zero-phonon line producing the 3.28 eV line is 

therefore ~ 3.12eV, ~ 470 meV higher than the centroid of the 

H3 band. Repeating the vibronic calculations with 

W, — W, = 470 meV, 

and with the transition probabilities t, = 1, t. = 0 in equation (5), 

we find that 10° of the absorption would be transferred to the 

3.28 eV line when the vibronic interaction term 

C (h/mo )/? = 160 meV 

(see figure 4). The resulting stress parameter C, ~ 8.6 meV / GPa 

is still within the range observed at the H3 centre (table 1). 

0-05 -- 

Induced - 

absorption 

  

  

  
0 ‘i | 
vA 100 150 200 

Coupling meV 

Fig. 4—The solid line shows the calculated fraction of the absorption 

transferred from an allowed to a forbidden transition when the excited states 

of the allowed and forbidden lines are separated by 470 eV. The broken line 

shows the experimental value for the 3.28eV H3-associated line relative 

to the H3 band; this value is obtained at a vibronic coupling (defined 

in $ 4) of 160 meV, equivalent to a typical stress parameter for the H3 centre. 

The same mechanism can explain the 3.32 eV H4 associated 

line seen on figure 2. This line again is 10-° of the H4 band, and 
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again its electronic state lies ~ 460 meV above the centroid of the 

allowed (H4) band. In this case a further peak, ~ 150 meV above 

the 3.32 eV line, can be resolved in favourable samples [14]; 

this is interpreted as the two-phonon sideband of the forbidden 

line, giving direct evidence for a mode quantum fw ~ 150 to 

160 meV. 

Paul Spear (private communication 1983) has shown that the 

3.32 eV line is a transition at a monoclinic I centre, the same 

symmetry as the H4 centre, as would be expected in this model. 

Vibronic interactions between states separated by considerable 

energies are clearly possible in diamond, producing the features 

like the 3.28 eV line. Vibronic interactions like these can occur 

essentially because the amplitudes of the vibrations are equivalent 

to considerable strains. For example, a 159meV mode involving 

one vibrating carbon atom has a root mean square amplitude in 

its zero-point (n=0) motion of 

[<Q’?>]}”?7 =(h /mo)'”? = 3.3 X 102m 

This is equivalent to a 2 % strain of a 0.154 nm bond length, very 

large compared with the 0.3 % strains typical in uniaxial stress 
experiments. 

5 — SUMMARY 

We have shown that the excited states of the H3 centre, 

giving transitions near 3.35 eV, occur at a C,, centre, the same 
symmetry as the basic 2.463 eV H3 transition. Nevertheless 
substantial differences occur in the response to stresses of the 

different excited states of the H3 centre. These lead to vibronic 

coupling, modifying the form of the optical spectra. In particular, 

isolated broad lines may occur, as observed in the experimental 

spectra, as a result of the vibronic coupling. Measurable bands 

may be induced even when the forbidden line is several hundred 

meV distant from the allowed line. We have suggested that this 

is the origin of the broad 3.28 eV line associated with the H3 

centre. With this assignment, a phenomenological explanation has 
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now been given for all the H3-associated lines observed in the 

visible and ultra-violet spectra of irradiated and annealed 

diamond. 
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RECENTLY FORMED STARS: OBSERVATIONS 
AND MODELS (*) 

M. T. V. T. Laco and C. C. SA 

Grupo de Matematica Aplicada, Universidade do Porto, 4000 Porto, Portugal 

(Received 28 November 1984) 

ABSTRACT — The impact of the recent observational achievements of 

Space Astronomy together with new developments in the theories of star 

formation, stellar evolution and the origin of the Solar System led to a burst 

in research work on recently formed stars. 

This paper, a compilation of our own ongoing research in this topic 

is divided in three sections: 1—The Introduction, where the properties 

characteristic of young stars, specially T Tauri stars, are summarized; 

section 2— containing a brief description of our spectroscopic data (both in 

the UV and in the visual wavelength region) and of the resulting physical 

parameterization of the atmosphere of the star inferred from the analysis 

of these data, and section 3—a brief reference to models we developed 

constrained by the observational results refered in the previous section. 

Since the paper aims at a compilation more than a presentation of 

detailed work no effort has been made to explain, either techniques and 

methods used or how the results were obtained. References to those are 

occasionally given and we direct the interested reader to them. 

1 — INTRODUCTION 

While refering to young stars we will concentrate on the so 

called class of T Tauri stars. Without entering in the details of 

how a particular star will be classified as belonging to this class 

we will point out some of the peculiar characteristics of such class: 

—T Tauri stars are low mass stars (1 to 3 solar mass), 

— they exhibit a peculiar continuum energy distribution when 

compared to «normal» stars belonging to the same spectral class, 

(*) Communication presented «<‘ «4.* Conferéncia Nacional de Fisica», 

Evora, Abril de 1984. 
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i.e., as displayed on Fig. 1, their spectra show an excess emission 

all the way from the UV to the infrared wavelengths, 

—although being cool stars (effective temperature in the 

range 3000 to 6000 K) they show an emission line spectrum 

overlapping the continuum. (The number and intensity of the 

emission lines present in the spectra varies from star to star; as 

a rule, there are always emission lines present to some degree), 

—they are irregular variables. 

Different lines of argument point to T Tauri stars as being 

young (< 10° years) stars still in the phase of gravitational 

contraction towards the main sequence [2]. These stars are located 

near dense molecular clouds to which they are observed to be 

dynamically associated [3]. These molecular clouds are known to 

be places of ongoing star formation. 

For further reading we refer to a large number of recent 

articles on T Tauri stars scattered through the literature. Two 

review articles on T Tauri stars have also recently appeared; 

one [4], essentially dealing with the observations at different 

wavelengths, the other [5], describing theoretical modelling, 

although strongly biased towards the protostellar collapse phase. 

A more wide review of the T Tauri stars, including a critical 

analysis of models and mechanisms and their relations with the 

observations, however strongly needed, is yet to come. 

2—THE DATA 

In this section we will present some of our spectroscopic data 

on T Tauri stars. We will concentrate on a particular T Tauri 

star, RU Lupi. For this star we have the most complete set of 

observations and the data analysis is at a more advanced stage. 

2.1— The visual wavelength range 

Our data includes: 

—several intermediate dispersion spectra (20 A mm) 

obtained at the Anglo-Australian Telescope. These spectra have 

been used for line identification and immediate analysis, such as 

the assessment of values of density and temperature for the 

52 Portgal. Phys. — Vol. 16, fasc. 1-2, pp. 51-59, 1985



  

  

  

  
  

  

% r Wy | | ' |.) 
v 8 i— a -) > a e 

: x = x eRY Tau 9153.647 

a, +e 2 OF +0G » 9095.928 
8 *\ xUX » 9153.712 
° oRW Aur 9476. 822 

md + caw »G5V 

2 
= 15h ES) 

+ 

10-— 
4 

5 
=] 

© ! 1 L I 
3000 4000 $000 6000 7000 a(A) 

. T T T T T 
é | II | | [| 

a ° — ° ad 

‘ = 8 . z 
: é 
2 2 
2 
ia 
“15 

+ 

a4 eo RY Tau 9475.644 
$06 « 9473.715 
x UX 9497.726 
@ RWAu 9525.785 

  
  

  
  6 
6000 7ooc 8000 a(A) 

Fig. 1— The spectral energy distribution of T Tauri stars classified as dG5. 

The lowest curve is for a standard G5V star (arbitrary vertical scale [1]). 
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different layers in the stellar atmosphere producing the emission 

lines [6]. The conclusions are compiled in Table 1 while Fig. 2 
displays one of such spectra; 

HI Call 
| 7S 

H12 

4 

H10 H8 WK Hs Fell Hy 
4 ' hoof 4 i t 

  

Fig. 2— An intermediate dispersion spectrum of RU Lupi in the wavelength 

range [3600, 4580] A. The spectrum was obtained with the Anglo-Australian 

Telescope and the Royal Greenwich Observatory spectrograph. 

— high resolution spectra (at inverse dispersion 5 to 10 A mm-') 
also obtained at the Anglo-Australian Telescope. This high quality 
data allows, through the detailed line profile analysis to conclude 
on the presence of suprathermal motions in the stellar atmosphere 

(from the line widths) and even of a strong stellar wind (from 
the line profile shape) [6]; furthermore we were able to get a 
velocity distance relationship (from the profile assymetry) [7]. 
These results are also included in Table 1a (the last line). 

TABLE la— Summary of observational constraints of the wind of RU Lupi 
suggested by the optical data analysis. 

  

  

  

  

Fe I, Ti II Fe II Ca. Il, ‘Hi 1 He I 

N, < 102 
. p 

density Nj, = 10" 
(cm- ) 

N, < 1012 N, > 10° N, > 1011 
e e e 

temperature 5800 104 105 

(K) 

velocity 170 240 

(Km s-1 )         
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2.2 — The ultraviolet data 

Over the last five years a wealth of information on every field 

in Astronomy has resulted from the activity of the International 

Ultraviolet Explorer (NASA-ESA). T Tauri stars are no exception 

and a large amount of data on such stars is now available in the 

data bank. Our own observations include: 

—low resolution spectra (Fig. 3) that has led to conclude on 

the presence in the T Tauri stars of a transition region, similar 

to the Sun, with temperatures up to 10°K; 

T ee T ~ T ee ee ee 

RU LUP | 

3500 + 

28008 + { 
i} 

sill ‘ { 
21004 gi siv CV Sill | i i + + | 

768 4 a 

    

        T T T T T T 
1500 1e00 2100 2400 2700 3000 

WAVELENGTH (A) 
FLUX IS IN ERGS/CM/CH/S/A »LOnm-16 

Fig. 3— Low resolution UV spectrum of RU Lupi in the wavelength range 
[1200, 3200] A. The spectrum shown results from the merging of two spectra 
both obtained with the International Ultraviolet Explorer (ESA-NASA). 

~ high resolution spectra (Fig. 4) that confirmed the presence 
of a (strong) stellar wind and have been used to constrain the 
models developed for this star. 
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4—High resolution UV data of RU Lupi obtained with the satellite 

International Ultraviolet Erplorer (ESA-NASA) [8]. 

From the analysis of the UV observations further information 

on the atmosphere of RU Lupi is obtained. These results are 

summarized in Table lb. 

TABLE 1b— Summary of observational constraints of the wind of RU Lupi 

resulting from the UV data analysis. 

  

  

  

    

Mg II, Si ID Si III], C III], Si Iv, C Iv 

density 1010 

(cm-* ) 

temperature 104 5.104 - 105 

(K) 

value 240 150 - 170 
(Km s-1 )   
  

56 Portgal. Phys. — Vol. 16, fasc. 1-2, pp. 51-59, 1985



M. T. V. T. Laco et al.— Recently formed stars: observations and models 

3—A MODEL FOR RU LUPI 

From the analysis of all the available data the following 

picture of RU Lupi emerges: 

a central star of mass ~ 1 Mo: radius ~ 1.6 Re and effective 

temperature 4400 K, surrounded by a spherically symmetric 

envelope where the observed emission lines originate; this 

(geometrically narrow) envelope is not isothermal and can be 

divided in a chromospheric layer and a higher temperature layer 

similar to the solar transition region. However the amount of 

flux coming out of these two regions is highly enhanced relatively 

to the Sun - RU Lupi emits both in the chromosphere and transition 

region approximately 10* times more energy than the sun. This 

seems to be a common characteristic for T Tauri stars, however 

with a variable degree of intensity from star to star. 

Therefore, the next logic question to be asked is: do T Tauri 

stars have such strong coronae as well? The observations one can 

use to investigate this problem are out of the range of IUE. 

Therefore one uses both optical observations, searching for the 

coronal lines of [FeX ] and [ FeXIV] that are observed in the 

solar corona, and X-ray emission. These observations would 

indicate the presence in T Tauri stars of emitting regions of 

temperature up to 107K. Several searches were done both in the 

optical ([9], [10]) and in the X-ray using the Einstein satellite [11]. 

In the case of RU Lupi no detections were made and in more 

general terms the existence of a corona in T Tauri stars is still 

a puzzle. Fig. 5 summarizes the result of work done on such 

topic, not just for RU Lupi but also for other two T Tauri stars 

previously detected as X-ray sources with the Einstein satellite [12]. 

Several explanations for the observational results have been 

proposed, namely, 

—the variability of coronal line and/or X-ray emission (may 

be flare-like outbursts) ; 

— the X-ray mechanism being non-thermal, perhaphs associated 

with some particle acceleration mechanism-magnetic field lines 
reconnection, for example. 

Meanwhile theoretical modelling has also been attempted. 

In the model the presence of a magnetic field and linearly 
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polarized Alfvén waves propagating outwards constitute the 

primary mechanism for driving the wind. Both theory and 

observations constrain the wind solutions and the overall picture 
is as follows [13]: 
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Fig. 5— Plots of the ratio of stellar to solar fluxes in 3 T-Tauri stars as a 

function of temperature [8]. This figure shows firstly that the distribution of 

material with temperature in the outer regions of these stars is different 

from that in the Sun (i.e. the ratios are not constant with temperature). 

—the wind velocity starts with very low values near the base 

of the chromosphere but (due to the presence of the waves) 

accelerates very fast reaching velocities of the order of 240 Kms* 

quite close to the stellar surface. In order to explain the observed 

stratification in the widths of the lines dissipation of the waves 

is assumed to occur before the flow velocity reaches the escape 

velocity [14]. Therefore the wind will decelerate afterwards due 

to the gravitational forces. The higher excitation lines would be 

produced in the decelerating region. The IUE high resolution 

observations have confirmed such expectations since CIV, SilV, 
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SilIJ] and CIII] are observed to be narrower than the strong MglIlI, 

Call and Balmer lines [8]. 

This model is able to reproduce the velocity-distance rela- 

tionship suggested by the optical line profiles and also the rather 

restricted density requirements imposed by the observations. It 

seems able to reproduce as well the line profiles observed for 

the hydrogen lines used to test the model. Furthermore, it suggests 

a possible explanation for the variation of the temperature through 

the line emitting region: the heating occurs as a result of the 

wave energy dissipation (over a short range of distances from the 

star surface) due to the density gradient. Further theoretical and 

observational work is being done, respectively the inclusion of a 

realistic dissipation mechanism while considering the energy 

problem in the stellar atmosphere and the study of variability. 

Through the study of variability, simultaneously in the chro- 

mosphere and transition region, we will be able to understand 

what causes the variations (changes in opacity or/and physical 

changes in the stellar atmosphere). Furthermore the time scales 

involved will probably provide a very severe constraint to the 

candidate mechanisms for wind driving and heating. 
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RESONANT ABSORPTION OF GRAVITATIONAL WAVES 

IN THE PAST OF THE UNIVERSE 
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ABSTRACT — The way the cyclotron absorption of gravitational waves 

varies with the cosmological red shift is analised. 

One concludes that waves in the proto interstellar and interstellar medium 

with frequency near the double of the electron Larmor frequency 2 ;, were 

never significantly absorbed in the period between the epoch when the 

reaction y —> e + @ ceased to occur spontaneously and the present epoch. 

It has recently been shown [1] that in a non-collisional 

magnetized plasma, there is a weak cyclotron damping of gravita- 

tional waves propagating parallel to the magnetic field which 

permeates the plasma. For a weak collisional regime this effect 

has been shown to increase with collisions [2]. 

The existence of an electromagnetic microwave background 

with temperature of 3 K has been known for many years [3]. 

This effect is due to the recombination of hydrogen when the 

temperature of the Universe was 4000 K. 

We therefore address ourselves the question: Was there an 

epoch in the past, when the Universe was not transparent to 

gravitational radiation in the resonant band near 2 oy, (oy, being 
the electron Larmor frequency for the interstellar medium and the 

media which in the past gave rise to it) due to this phenomenon? 

If the answer to this question were affirmative this could 

be a mechanism to contribute for a fossil gravitational wave 

background. 

However, we conclude by this study that the answer is 

negative. For the sake of simplicity, we assume that from the 
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epoch of galaxy formation until now galaxies did not have a 

significant evolution as far as the values of density, temperature 

and magnetic field are concerned. The interstellar medium is 

therefore assumed to be a fossil which dates from that epoch. 

We also assume a frozen-in magnetic field which permeated 

the pre-galactic medium along its evolution. 

We assume that the typical values for the collisional fre- 

quency (o,), electron Larmor frequency (;,), temperature (T ) 

and number density (n) for the interstellar medium at the time of 

galaxy formation where identical to the present ones, i.e., 

te 6 x 10* Hz , on, ~ 20 Hz , Te~ 10° K , Ne ~ 10*.cm™* (*), 

The previous evolution of »,, o,, and n, until such epoch, 

were given (using the standard Friedman model) [3] as a function 

of the temperature T by: 

a, 26% 10°" Ts? Hy 
o,7=2X 107 TT? Hz (1) 

n 2 1085 T* cm* 

From this, one can see that in the past ».<< o;, and therefore, 
one is justified in using a non-collisional model like the one due 

to Macedo & Nelson [1]. This model does not take into account 

the electron-positron pair production (Vlasov’s equation does 

not include terms which are due to it) and therefore, this analysis 

is restricted by the condition that the temperature of the Universe 

be lower than T,.; given by 

kT,5~2m, c? (2) 

where m, is the electron rest mass. This condition amounts 
to T<10°K. 

In Macedo & Nelson’s model, the frequency of gravitational 

waves propagating in a magnetized plasma of density n has a 

real part », and an imaginary part wo, (which is responsible for 

the wave damping), which is given by [2]: 

Oo. ~ 10° nT? mi’? oT: exp [—m, A? (o,-—2;,,)?/kT], (3) 

  

(*) The subscript G means — at the time of galaxy formation. 
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where \ is the wavelength; in the vicinity of 2.;,, where the 
exponential approaches 1, (3) reduces to 

wo ~ 10% nT? mi? of (4) 

Using (1) in (4) one gets the behaviour of this imaginary 

frequency with the temperature of the Universe in the period 
between the ceasing of e + e pair production and the period of 

galaxy formation 

o, ~ 10-7 T8? (5) 

If we define the damping frequency wa, as the inverse of 

the time t, it takes for the intensity of the waves to reduce to 

half its value, one has 

og = 1.4 X 10-47 T?/2 
6) 

We define a typical frequency », as the inverse of the time 

a graviton takes to cross a typical scale distance d, which at the 

time of galaxy formation is of the size of a galaxy ( ~ 10° cm). 

o, =¢/d, (7) 
G G 

Using a Friedman standard model, this distance scale in the 

past of the Universe (before galaxy formation) evolved as 

d.=d.T,T" , (8) 
G 

or 

d, ~ 1077) T? (9) 

This means that 

o, ~3 X10 T (10) 

Comparing », given by (10) with o, given by (6), one no- 

tices that, for T << 10° K, wg <<o,. 

One therefore concludes that, in the frequency band near 

the resonant frequency 2.;, there is no_ significant cyclotron 

absorption of gravitational waves in the Universe in epochs later 
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than the epoch when e-e pairs ceased to be spontaneously 
produced (*). 

In this period, we therefore conclude that the Universe was 

transparent in this frequency band and the cyclotron absorption 

did not contribute to the gravitational radiation background. 

We would like to thank Dr. A. H. Nelson for suggesting the 

problem and for useful discussions with one of the authors 

(P. G. Macedo) during his stay in Cardiff. 
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ABSTRACT — Observations of atmospheric ozone, including total and 

layered from the Dobson No. 13 spectrophotometer and direct sondings with 

the Brewer-Mast Ozonesonde are being made at Lisbon (38° 46’ N; 09° 09 W; 

105 m msl.) covering almost three decades. In addition, as from December 

1982 observations of the UV solar radiation at surface started at the same 

location, including the UV-B spectrum between 290nm and 330nm with 

the Berger’s Sunburning Ultraviolet Meter, as a contribution to radiation 

and ozone studies. 

Analysis of both totai and layered ozone and UV radiation will be 

presented aiming mainly to show their annual cycle and the local time 

correlations between both parameters. The maximum of the daily mean UV-B 

of 15.0 SU (Sunburn Unit) was observed in June, and the minimum of 1.4SU 

was observed in December. These values compare well with the results of 

other observers in places of similar latitudes. 

1 — INTRODUCTION 

The concern of the scientific community as regards the 

environmental impact of ozone field variations in relation to UV-B 

(290 nm to 330 nm) solar radiation increases in the biosphere has 

been stressed mainly in the second half of this century and is 

well illustrated by [5, 10, 11] and in other papers presented in the 

Meeting of Experts on the Ozone Layer, organized by UNEP in 

Washington DC, 1-9 March 1977. On the light of observations, 

it was possible to indicate [5, 9,11] that 10 % reduction in total 

(‘) Chief, Division of Air Protection; Associate Professor, Department 

of Physics, Faculty of Sciences, Lisbon; in charge of Research Project I2. 

(?) Chief, Aeronomyc Division; in charge of Research Project I2 

«Meteorological Research at INMG for Support of the Environment Protection». 
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ozone leads to increases of UV-B radiation at near surface air 

that may be almost twice the percent ozone reduction. In addition, 

analysis of Aspendale data [1] on both erythemally effective 

ultraviolet radiation and total ozone pointed towards a higher 

percent UV-B increase near ground than a simultaneous percent 

total ozone change in the mean, although the dispersion of 

individual cases is large. 

Being aware of this problem and taking advantage of the ozone 

observations available in Lisbon, a preliminary analysis of UV-B 

and ozone variations was undertaken and the results will be 

reported here, but it is understood that the interpretation of the 

results is subject to severe limitations, which was not the case of 

other larger networks [2, 4]. 

2—THE DATA AND THEIR ANALYSIS 

The results of the observations used in this paper include 

total and layered ozone both obtained with the Dobson ozone 

spectrophotometer No. 13 of the IOC located in Lisbon and 

operated by the Portuguese National Institute for Meteorology 

and Geophysics, the vertical distribution of ozone being derived 

from the Umkher method on C wavelength. In addition, in De- 

cember 1982 a program of observations of solar UV-B radiation 

was initiated in the same location using the Berger’s Sunburning 

Ultraviolet Meter [3] which allows the detection of the solar 

spectrum between 290 nm and 330nm by means of the Sunburn 

Effect. This implies, as it is well known, that the results may 

not be expressed as absolute energy, the reason why the computed 

parameter was the power of the radiation, that is, Sunburn Units 

per hour. On the time when the relative air mass p» = 2.5 on 

clear sky without mist, fog, smoke or dust, leading to conditions 

of very good horizontal visibility, simultaneous special total ozone 

observations were made and a set of 70 observation pairs was 

selected for analysis. 

The analysis of the UV-B data aiming to compare observation 

and theory is given in Fig. 1, which shows the annual cycle of 

this parameter for 1983, with the maximum in June and the 

minimum in December, as it should be for the Northern Hemisphere 

when the daily mean is computed from all times of any day. 
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Therefore, it may be accepted that the data set has internal 

consistency. In the same figure it is included the annual cycle 

of the total ozone for the years 1973 and 1983 at the same location, 

just to illustrate the mainly positive correlation of both parameters, 

which is not supported by theory on the grounds of absorption 

laws. This behaviour only stresses that the search for correlations 
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Fig. 1— Monthly means of total ozone for 1973 and 1983 (lower) and 

daily means of UV-B solar radiation for 1983 (upper) at Lisbon. 

needs to filter, as far as possible, the effect on UV-B variations 

not due to ozone variations. Before going to this, the reader can 

see in Fig. 2 how the mean yearly cycle of the UV-B at Lisbon 

compares with the yearly cycles at other locations on the 

Northern Hemisphere and conclude that a reasonably spacial 

consistency of the data exists, taking into account the differences 

in the length of the samples. 
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In order to examine the relation between the time variations 

of UV-B radiation at surface air and the total ozone it must be 

kept in mind that the ozone time and space variations arise from 

a complex action of mechanisms either on the basis of radiation 

     

     

  

     
MAUNA LOA(195°N) 

    
LISBON (38,8°N) OAKLAND (37,7°N) 
1983 ONLY 

TALLAHASSEE 
(304° N) UV

-B
 

(S
U 

)
—
—
>
 

L 

PHILADELPHIA( 40.0°N)    
    ELSK - DVZY (518° N)   
  

JAN FEB MAR APR MAY JUN JUL AUG SET OCT NOV DECMONTH 
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laws or of atmospheric dynamics, which has been dealt with 

by many authors and illustrated for the Lisbon station results 

in [6, 7,8] both for the total and the layered ozone. Fig. 3 shows 

the effect of the tropospheric jet related circulations on the total 

ozone variations, which gives rise to ozone concentration gradients 

across and along the jet axis [6], with highest ozone contents to 

the left of jets looking downstream. Such large scale ozone transfer 

process originates significant vertical ozone redistribution mainly 

in the lower and middle stratosphere and upper troposphere with 

implications on solar radiation absorption mainly in the UV band 

of the spectrum. Within this context, the analysis made in Fig. 4 

shows that the partial pressure of ozone over Lisbon for the same 

period of analysis of the UV-B contained in Fig. 1 and 2 was almost 

constant all over the year above about the 15 hPa level, which 

agrees with the observed distribution from ozonesondings at the 
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same location in 1973; but the ozone maximum was, however, of 

the order of 18 mPa at 50 hPa level in February. 
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Fig. 3— Ozone total, ©, in relation to the jet axis 

position (Winter and Spring, 1968-1971) for Lisbon, 

with the standard deviations, 59, and their varia- 

tions. (From Figueira, 1973). 

The aforementioned significant differences in ozone contents 
must be the main source of time variations of near ground UV-B 
solar radiation on occasions of clear skies, but the search for such 
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correlations requires the existence of sets of simultaneous ozone 

and UV-B observations at the same relative air mass values as 

referred to above. To this aim, » = 2.5 was selected and pairs 
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of observations were taken, separated in 7 groups of 10 values 

in chronological order; computed the mean value for the whole 

sample and for samples of 10 values, the percent deviations, 

dO, (and dUV-B) 

dO, = [ (Os so — (Os ) 201 / (Os ) 20 fs 100 

where plotted in Fig. 5. 
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It may be seen from Fig. 5 a clear anticorrelation of the 

parameters in analysis as expected on theoretical basis, but there 

is little sign of a double increase of near ground UV-B relative to 

total ozone decrease as reported by some but not all other 

authors. 
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Fig. 5— Time variations of total ozone and UV-B 

solar radiation at Lisbon for the indicated period. 

3 — CONCLUSIONS 

The preliminary study of the relations of total ozone and near 
ground UV-B solar radiation presented in this paper gives 
reasonable support that the methods of observation of the second 
parameter needs to be improved to obtain absolute values, but 
also that the equipment used so far is certainly very useful for 
this and other studies. In addition, the authors are aware of the   
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need to extend the period of simultaneous observations and to 

improve the method of analysis of the time variations of both 

parameters with the aim of their better understanding. 
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ABSTRACT — We study degenerate four-wave mixing (DFWM) in a 

ruby crystal, theoretically and experimentally, in isotropic and anisotropic 

configurations. We show that thermal DFWM is negligible when compared 

with resonant DFWM and this one is not affected by self-focusing. Finally 

we present phase conjugate reconstruction of a microscopic object as an 

application of DFWM. 

1 —FOUR-WAVE MIXING (FWM) 

FWM refers to the interaction of four waves in a non-linear 

medium. The term “Degenerate Four-Wave Mixing’ (DFWM) is 

used when the waves have all the same frequency. The geometrical 

configuration for the interaction, where two counter-propagating 

pump waves are used with a probe beam at some angle ¢, is 

sometimes called “backward DFWM” interaction (see Fig. 1). In 

3 

os ruby 

ar ie 2 

> Ss 

an M, 
1=0 i=L 

Fig. 1— Relative positions of the pump beams 1,2 and the probe beam 3. 

The angle ¢ is the angle between 1 and 3, inside the crystal, The z-axis 

has the same direction as beam 1. M, is the mirror where beam 1 is 

reflected to generate beam 2. 
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this way, the process can be distinguished from the forward 

DFWM [1], where only one pump with a probe generate a forward 

phase conjugate signal. This interaction corresponds to 3-wave 

mixing; but, as the pump acts as if it is formed by two forward 

pumps (or equivalently, two pump photons take part in the 

reaction), it can be considered a FWM process. We use ‘DFWM” 

instead of ‘backward DFWM” for simplicity during the exposition, 

since this is the only configuration we consider in this paper. 

The non-linear nature of DFWM implies that the response of 

the optical medium to the light fields is not linear, i.e. the 

polarization P (r,t) of the medium has terms which are non-linear 

functions of the electric field E(r,t). Because four waves are 

involved, the first important term of the non-linear polarization, 

when expanded in powers of E(r,t), is of third order [2] 

PM (r,t) =X : EEE (1) 

where x” is the third order tensor susceptibility and 

E = 3; E; (#) (j = 1,2,3,4) (2) 

is the field. 

For isotropic media and when only the polarization of fre- 

quency » is considered, the condensed expression (1) reduces [3] to 

PNU = a (E-E*) E+ y (E-E) E* (3) 

The first term leads to the holographic analogy [4, 5], where each 

pump acts as the reading beam, generating the phase conjugate 

beam. The second term describes the oscillation at frequency 

2. of the non-linear index of refraction which scatters one of 

the waves to generate the fourth [6] (parametric interaction). The 

coefficients a and y can be made large by choosing the right 

non-linear medium: one-photon resonant medium for large a, 

two-photon resonant medium for large y. Ruby behaves like a 

one-photon resonant medium and therefore a larger a is expected. 

If multi-photon processes are important, odd terms of the 

polarization higher than the third power of E have to be 

considered, since their coefficients cannot be neglected. 

The above considerations and general expressions for PN 

are valid for any non-linear medium. The expressions for the 
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susceptibility y and for the parameters a and y, however, result 

from the particular non-linear mechanism involved. In our medium, 

ruby, the mechanism is resonant absorption and the expressions 

that will be obtained are valid in general for those media. Therefore, 

although the theory in this paper refers specifically to a ruby 

crystal, it can be applied to any resonant absorber, after evaluating 

the corrections caused by different valued parameters. 

2—RUBY CRYSTAL DESCRIPTION 

A ruby crystal is a crystal of sapphire (Al,O;) where a 

certain percentage of Al®+ ions has been replaced by chromium 

ions Cr?+, which cause the pink color of the otherwise colorless 

sapphire crystal. The Cr.O, doping percentage in our crystal is 

0.05 wt.%, i.e. the concentration of Cr*+ ions is 1.58 x 10% 

ions. cm. 

In the free Cr atom (Z = 24), the shells from ls through 

3p are completely filled; shell 3d has five electrons (3d°) and 

shell 4s has one electron ( 4s‘ ). When the Cr atoms are introduced 

into the host crystal of sapphire, they share, in the bonding, three 

electrons with O2-, becoming Cr*+. One of those electrons comes 

from the 4s shell and the other two from the 3d shell. The 3d 

shell, which can be occupied with 10 electrons, is then only 

partially filled with two electrons. The possible arrangements of 

these two electrons in the 3d shell leads to the energy levels 

of the Cr?+ ions in the Al,O; host crystal [7]. When those ions 

form a solid like the ruby crystal, the energy levels for the crystal 

will be much more complicated than the ones for an isolated 

Cr*+ ion. 

In Fig. 2 we show a detailed energy level diagram of ruby [8] 

that has been obtained experimentally. For the optical frequency 

we used (the blue/green light of the Ar laser), the diagram of 

Fig. 2 can be simplified for that of Fig. 3. The Ar laser light excites 

the ions from ground state 1 to the excited level 3. From level 3 

they decay non radiatively and very fast (<1ns) [9] to level 2. 

The decay time from level 2 to level 1 is comparatively 

slow, 7~3 ms at 300 K and 4.3 ms at 77 K [10]. Absorption 

coefficients for ruby when it is in the excited level 2 have been 

measured [11]. Those results show that transitions from level 2 to 
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higher levels (dashed lines in Fig. 2) may take place. However 

the effect of the excited states’ absorption is usually sma!l [9]. 

Nevertheless, we will consider its effect in the latter calculations 

of the induced polarization. 
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Fig. 2— Energy level diagram of ruby [8]. 

The ruby crystal geometry is shown in Fig. 4. Its nonpclished 

5 < 11 mm? surfaces make a 60° angle with the c-axis. Both pairs 
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of polished surfaces 5 < 11 mm? and 5 X 5 mm? can be used for 

the entrance of the beams. 
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Fig. 3—Energy level diagram of ruby used for calculations on induced 

polarization. 

The position of the c-axis has been determined by analysis 

of bi-refringence patterns caused by a convergent beam, incident 

on the crystal and observed through a polarizer [12]. Figs. 5 and 6 

show those patterns for two different orientations of the crystal. 
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Fig. 5 refers to the transversal orientation, where the laser beam 

is incident on 5 X 11 mm? polished surfaces. Fig. 6 refers to the 
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Fig. 4— Ruby crystal geometry. The c-axis makes a 60° angle with the 

non-polished surface 5 X 11mm? and it is parallel to the polished surfaces 

5 < 11 mm?2, 

  

Fig. 5— Birefringence pattern for the transversal orientation of the crystal. 

longitudinal orientation where the beam is incident on the 

5 X 5 mm? polished faces of the crystal. 
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Fig. 6 — Biefringence pattern for the longitudinal orientation of the crystal. 

3 — SEMICLASSICAL THEORY OF RESONANT DFWM 

In this paper we study the case where the system in Fig. 3 

can be decomposed in two independent subsystems 1, 2,3 and 2, 4; 

the transition 3— 2 is nonradiative and the exciting field is in 

resonance only with the transitions 1—3 and 2— 4. 

This approach implies that pumping from level 2 to level 4 is 

negligible for the calculations carried on the subsystem 1, 2, 3. 

In other words, the absorption from the excited level 2 is small 

enough not to change significantly the population of level 2. 

We study first the subsystem 1, 2,3 and then the subsystem 

2,4 as a particular case of it. Finally we get the expressions for 
the whole system. 

We use the semiclassical theory of interaction in the electric 
dipole approximation [13], with the Hermitian density opera- 
tor p [14]. After neglecting thermal excitation, the equations of 
motion (Bloch equations) for the density matrix elements p can 
be written, introducing relaxation terms [15] as 

Py, a —Cish ) Vs, Psy Pas Vv.) + Psy Toy 7 bs, / Tey (4a) 

Poo ~~ Poo / T 34 at Ps / T 30 (4b) 

Pos =~ ( i / h ) ( in Pas — Pay Vv.) ~ P33 ( 1 / Tah + 1 / 730 ) (4c) 

Pi a —ie,, Pag (1 / h ) Va (P,, —P1) —pi,/T (4d) 

where V;; is the matrix element of the energy of interaction 
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V=-—wy,-€E with » as the electric dipole operator and 
E=3n(Amn/2) exp[i(ot—k,-r)]+ cc. is the exciting elec- 
tric field; 7;; is the lifetime of the excited level i before decaying 
to level j; T is the transverse relaxation time and o,, is the 
frequency associated to the energy difference of levels i and j. 

From eq. (4d) it is seen that nondriven (E = 0) behaviour 
of p,, is given by 

Pig = Pig (0) exp [—(io,, + 1/T) t]= r,,(t) exp (io, t) 

(5) 

where A(t) = p,,(0) exp(—t/T) is a time varying slow 

function, T= << 031 = — O13 [16]. 

When terms in exp(+ 2iot) are ignored and after using 

the probability conservation equation, we can write eq. 4, in the 
steady state regime, as: 

Pir 1 Poa F Pyg = 1 (6a) 

Poo = Cr ./ Ty) P55 (6b) 

ho* (1 + 8°) | a5 P Pig Bay) x 1/2 A, Ay, 
im (6c) 

exp [—i(k,—k,) -r]—p,, (75° + 75°) = 0 

d= — G43) G88) yy (0, 0g) 8 1/2 A, exp (—ik, 1) 
" (6d) 

where §=(o-—o,,) T is the normalized detuning of the field 

from the line center. The solutions of eq 6 are: 

py = (1 +el/1)/C+ 81/1) (7a) 

Pas = C1/Tyup) / C1 + BI/ 1) (7b) 
Ps, = Cael/T)/(1 + 61/1.) (7c) 

Py =p, POU 8) Cla) (1+ 6) 1 
+ 1/2 A,, exp [i(ot—k,-r)] 

-1 
sat) 

(7d) 

where a@=7,,/7,, » B=2at) ’ Q= (1 +7,,/7,,)7 

Igan = 2? (1+ 8?) / (| mus? T721Q) , 

1=1/2 % A,- Ate SW? 4 oe, 
1m 
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The magnitude of the induced real polarization is 

P=N<p>=N (ap, p,, + Hyg Py) (8) 

where N is the number density of the absorption centers 

(Cr** ions ). The real polarization associated with the subsystem 

1, 2,3 is then: 

a ~ An [6 cos (ot —k,- 1) — sin (ot —k,,-r) ] 

k( 1+ 8?) 1+ BI/Igar 
  P=— 

(9) 

where «, is the permittivity; k=|k,,| the wave vector and 

a =(o/h) N |u,,|?T the line-center (5 = 0) small signal field 

attenuation coefficient. 

Using eq. 7b we can get similarly the polarization associated 

with the subsystem 2, 4 and write: 

fy Ay. T/Igar 

k(1+8'*) 1+ BI/ Iya 

= An [ 8’ cos ( ot —Ik,,- 1) — sin (ot —k,,-r)] 

  P= 

  

1+T/ ar 
(10) 

where «ef = (o/h) N |y.,/?T’, 8 =(o-o,,) TY and 

Igar = 2? (1 + 8’?) / (| mosl? T’ vr 24) 

The total polarization P, of the whole system is then 

P le % Am [8 (1 + £(1)) cos (ot —ky-r) = ———. fA cos (ot —k,,-r)— 
k(1+8*) 'm . (11) 

(1+ g(1))sin (ot —k,-r)] $(1 4+ BI/Igap)7 

where 

6 U) = @i/e,) Or 8) Ct 8) gee CL T/T ea) * (12) 

f(1) = (8/8) g(1) (13) 
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From the following relation 

P. = & % Am [x’ C08 (ot — km) — x” Sin (ot —km-r) J (14) 

where x = x’ + ix’’ is the susceptibility, we get using eq. (11) 
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Fig. 7— Plot of xp (1,) for different values of the parameter Tear i Ioan? 

Curves a, b, c, d, e correspond to Tear / War = 10-3, 10-2, 10-1, 1, 10; we 

have taken 8 =a/a,= 8 =s=1. 

In Figs. 7 and 8 we show plots of the susceptibility given 

by the above equation, with different quantities as parameters 

and where 

X= ky tx =—x KCL + 8&)/a, (16) 
and 

Ip = I/ Igar (17) 
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In the approximation of neglecting level 4, f(1), g(1)<<1 

and with @ = 1 the complex susceptibility is, as shown in ref. [17], 

8 +i 
Kom (a, RT ee 18 

1+ I1/ Isat os 

The non-linear nature of x and consequently of P=«, x E 

complicates the solution of the wave equation, describing the 

light wave propagation inside the medium: 

v2 E— pe, ®E/dt? = pa P/ot? (19) 

where E(r,t) is a superposition of plane waves. A similar 

equation also describes the propagation of each component E; 

coupled to the others by the polarization P. In FWM, those 

components refer to the pumps, probe and FWM signal. For E; we 

can write: 

       
    

Vv? E; —~ PEG 0” E; / ot? = po? P/ot? |; > (20) 

— Xe 
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1 
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Fig. 8— Plot of x, (1,) for different values of the parameter of /a,: Curves 

a, b, c, d, e correspond to at / a, = 0, 0.25, 1, 2,4; B= & =S8= 1; 

Isat / ag = 01: 
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where the last term represents the component which matches the 
phase of the first member of the equation. 

We consider A; a slowly varying function of 9; only, where »; 
is the direction of propagation of beam j. Using the adiabatic 
or Born approximation we can get from (20) a system of coupled 
differential equations for each amplitude A;. For j =4 we write: 

dA,/dZ = (a/2) (A,—A, A* A, /Igan) (21) 

where a = a (1—i8)/(1+4+ 8°). 

To write eq. 21 we have considered ¢ = 0 and only the beams 1 
and 3 interfering to form an hologram which is read by beam 2. 

In general, no analytical solutions are possible for those 
coupled differential equations. However if As,1 < Aj,, such solution 
is possible either when I < Ig, or I>Ig,.. The solution for the 
first condition is simpler to get and turns out to be a particular 
case of that of second one [12]. 

The expression for the intensity of the phase conjugate 
signal I,(0) is [12]: 

I,(0) = 2(1 + 8?) RT*°I, (0)?1, (0) e%#L 1 — e-a’Ly2 / Ioan (22) 

where, 

Igan = ho / (Qor,,) = 6.6 X 10° / (dro) (23) 

o=a'/N,, a =a/(1 +8?) (24) 

Re T are the reflectance and transmittance of the crystal 
and Q=1. 

So far we have considered the non-linear medium as isotropic. 
However, the ruby crystal is uniaxial and it seems that an 
anisotropic theory should be needed. The geometry of interaction 
(propagation direction of the beams, field polarization and c-axis 
orientation) conditions the validity of application of those theories. 

Figs. 9 and 10 show two possible orientations of the crystal, 
corresponding to propagation of ordinary waves only. However 

when the crystal is rotated around n by an angle ©, ordinary 
and extraordinary waves propagate in the crystal and the 
developed isotropic theory is no longer valid. We can apply it 
however separately to each of the waves, treating them as inde- 
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pendent of each other. As it will be shown, the relative weights 

or ordinary and extraordinary waves in the measured FWM signal 

are dependent on the angle of rotation and the characteristic 

C-AXIS 

  

  

Fig. 9—JIsotropic configuration, with the transversally oriented crystal; the 

c-axis is normal to plane y containing the direction of propagation of 

beams 1, 2 and 3; n is the normal to 5 X 11mm® surface of the crystal. 

  

  

  

    

  

Fig. 10 — Another possible configuration showing the beams 1 and 3 incident 

on surface 5 X 5mm?. This is the most efficient configuration, because of the 

largest interaction length. 
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parameters associated with those waves. In the holographic inter- 

pretation of FWM it means that we have two distinct holograms: 

one called ordinary and the other extraordinary, which do not 

interact ‘with each other. 

With the two configurations shown in Figs. 9 and 10 we can 
check experimentally the validity of this theory. At the same time 

we will show different physical behaviour for those configurations. 

Geometrically the essential difference between transversal and 

longitudinal orientation of the crystal is that, during crystal 

rotation, the c-axis remains approximately normal to the prop- 

agation direction of the beams in the first case and makes a 60° 

angle in the second one. 

The quantities appearing in eq. 22 that are different for 

ordinary and extraordinary waves are a’ and Igaq. For light 
propagating in ordinary and extraordinary modes a net absorption 

coefficient can be defined for transversal and longitudinal con- 

figurations, as function of rotation angle ©: 

ap = a, cos? 0 + a sin? @ (25) 

at, = a, (cos? 6 + cos? @ sin? ©) + a sin? B sin? oO (2) 

where @, the angle between n and c-axis, is 60°. 

Fig. 11 shows the theoretical curves given by eqs. 25 and 26 

and the experimental data for ap and a7, as functions of 0. 
In analogy with eq. 21, the differential equations for A® 

and Ag (the indices o and e stand for ‘ordinary’ and 

“extraordinary”) can be written as: 

dAi/'0z = 1/2 @4 AV—L (AG As) /Iean + 

(Aste 97 Vea We} (27a) 

BAG /0Z=1/2 we AL—[(AL: Ay) / Tear + 

Chet, YI Gel Ae (27b) 

The physical interpretation of the above equation is that the 

ordinary (extraordinary) component of beam 2 is scattered by 

both ordinary and extraordinary gratings. However this may not 
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be the case if the Bragg condition is not satisfied for both waves. 

In this case, A° (A$) will be scattered only by the ordinary 
(extraordinary) grating. The equations 27a, b will become: 

dAL/dz=1/2 a [Ac—(A.* Ac) As/Ieam] 258? 
* 

dAS /dz=1/2 %e [A:—(Al*As_) As/Igar] (78) 
  

  

      T T T T T T 
0 100 200 300 

6 (deg.) 

Fig. 11— Experimental data points and theoretical curves for a4, and af 
as a function of rotation angle 6 , for transversal (Fig. 9) and longitudinal 

(Fig, 10) orientation of the crystal. 

The expressions for the intensity I,=I°+ I¢ (with 

I= A-A*/2) which correspond to those physical situations 

are [18] 

1,(0) =1/8(|B,|? cos? +|B,|2 sin?o) 
(C, cos?6 + C, sin? )? (29) 
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from eq. 27, and 

IF (0) = 1/8(|B,|2 C2 cos’e +|B.|2 C2 sin°o) (30) 

from eq. 28, where 

B,=B(a,/2) exp (-a,L) , (31a) 

B, =B(a,/2) exp (-@,L) , (31b) 

B =A;(0) A,(0)VR, (32) 

C,=[exp (- @{L) -1]/af Isar (33a) 

C.= [exp (-a{L) -1]/ 26 Igar ; (33b) 

4-—- EXPERIMENTAL RESULTS 

The experiments have been performed in order to check the 

validity of eq. 22 for the isotropic configuration and eqs. 29 and 30 

for the anisotropic one. Fig. 12 shows the set-up used to measure 

the DFWM signal. 

A~-—Isotropic configuration 

The orientation of the crystal used for testing eq. 22, is 

shown in Fig. 9. In this way, only ordinary waves propagate in 

the crystal. Since the quantity we measured was the power of 

the 4 different beams, the expression given by eq. 22 had to be 

modified. The beams have been considered to have Gaussian 

shapes and their radii have been measured or calculated. Written 

in terms of measured powers P, and P, eq. 22 becomes: 

P,=C(1+58)P, (nW, cm) (34) 

where C depends on the beams’ diameters and all the parameters 

affecting I, in eq. 22. 

Fig. 13 shows the theoretical curves for different wavelengths 

of the Ar laser, when §5=0. In Fig. 14 we show experimental 
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Fig. 13— Theoretical curves for §’=0 predicted by eq. 34, Each line 

corresponds to a different wavelength A of the Ar laser. 
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Fig. 14— Experimental points for P, as function of P,, with wavelength as 
a parameter. The lines are the best linear fitting. 
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data for the same wavelengths and where P, = 107 Pg,» for 
A =A, and x = a,b,c,d,e. 

When we try to fit the experimental data with the theoretical 
curves we get the following conclusions [12]: 

a) 8 (unknown independently) depends on the wavelength. 

b) Curves a,b,c show a slope close to 2; however d and e 
deviate from that slope. 

c) For large P, , curve a starts deviating from linear 
behaviour. 

The behaviour of curves d and e has been attributed to the 

increase of beams’ diameters with the electric current in the laser. 

The non-linearity of curve a for large enough valumes of P, 

is due to the proximity of Pgay. 

B— Anisotropic configuration 

i) Transversal orientation for the crystal 

With the crystal orientation shown in Fig. 9, we rotate the 
crystal by an angle © around the direction of propagation k, . 

The theoretical expressions for P, derived from eqs. 29 and 30, 
after substituting for the values of the parameters in eqs. 31, 
32 and 33, are respectively: 

P,(0) « (cos? 6 + 0.34 sin’@) (cos? 6 + 0.54 sin? )? (35) 

P, (0) « cos*e + 0.1 sin* 6 (36) 

The theoretical curves and the experimental data are shown 

in Fig. 15. The full-line corresponds to eq. 35 and the dashed-line 

to eq. 36. The best fitting is obtained with eq. 35, showing that 

the ordinary and extraordinary components of reading beam 2 are 

diffracted by both ordinary and extraordinary gratings. 

ii) Longitudinal orientation for the crystal 

The crystal has been positioned as in Fig. 10 and rotated 

around k, as in i). The experimental expressions for P, derived 
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from eqs. 29 and 30 are, after substituting for the numerical values 

of the parameters, respectively: 

P,(0) «< (cos?@ + 0.7 sin? 6) (cos? 6 + 0.74 sin?e)? (37) 

P: (0) « cos’o + 0.4 sin’ o (38) 

  

‘ TRANSV. CONFIG. 

pC
. 

PO
WE
R 

(a.
u.)

 

  

    
  

100 200 300 
6 (deg.) 

Fig. 15— Experimental data points and theoretical curves for FWM signal 

(P. C. Power) as a function of the rotation angle in the transversal con- 

figuration. Full line corresponds to eq. 35 and dashed line to eq. 36. The 

power units are arbitrary (a.u.). 

The theoretical curves and the experimental data are shown 

in Fig. 16. The best fitting (full-line) corresponds to eq. 38. 

From the above results we can conclude that, in the lon- 

gitudinal orientation, the ordinary (extraordinary) beam 2 does 
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not satisfy the Bragg condition for the extraordinary (ordinary) 

grating. 

  

LONGIT. CONFIG. 

PC
. 
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R 

(a
.u
.)
 

  

      T T T 
100 200 300 

6 ( deg.) 

Fig. 16 —Experimental data points and theoretical curves for FWM signal 

(P. C. Power) as a function of the rotation angle in the longitudinal con- 

figuration. Full line corresponds to eq. 38 and dashed line to eq. 37. The 

power units are arbitrary (a. u.). 

5 — THERMAL DFWM 

Because of the nonradiative decay from level 3 to level 2 

(see fig. 3), a thermal grating is also formed in the crystal. 

Since the index of refraction changes with temperature 

(dn / dT = 12.6 x 10° K") a phase grating due to temperature 

will result. 

The expression for the FWM signal intensity It(0) due to 
this effect is [12]: 

Ith (0) = RT* (4x - 107°/a)? e*WL (1 ew Ly? 120) 1, (0), (39) 

which when compared with I,(0) given by eq. 22 turns out to 

be ~ 10° smaller! This is the consequence of the high thermal 
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conductivity (’ = 0.42 W cm K-) of ruby causing the wash 

out of the thermal grating very effectively and rapidly (decay 

time ~ 10-°s). 

6 — SELF-FOCUSING 

Self-focusing gives rise to a deformation of a beam profile 

with non-uniform intensity and results from non-uniform changes 

in the optical properties of the medium, caused by the beam itself. 

Wavefront deformations of the beams used in FWM may, therefore, 

exist due to self-focusing. Such deformations can somehow affect 

the measured phase conjugate signal, as suggested in ref. 19. 

Two mechanisms can be responsible for self-focusing: non- 

uniform distribution of temperature and of energy level excitation. 

Theoretically, for the typical powers used in our experiment, 

the phase delay Aé between the center and the edge of the Gaussian 

beam are Ad, = 0.2 rad and Ad, = 0.15 rad respectively [12]. 

The radii of curvature have been calculated to be R, = 23m and 

R, = 66 m. Those values are small when compared with the intrinsic 

laser beam divergence. 

Experimentally we have used both Moiré and double exposure 

holographic interferometry techniques [12]. We did not observe 

any curvature effect with Ad >7z, the maximum sensitivity of 

the used techniques. 

Such results lead us to conclude that for the power levels 

we used in our c.w. DFWM experiments the self-focusing effects 

can be neglected. 

7—PHASE CONJUGATION — AN APPLICATION OF FWM 

Phase conjugation refers to any process in which a wave 

E.(r.t) = Re [Ai (r) eo] (40) 
is generated from an incident wave 

E.(r,t) = Re [As(r) e” ] (41) 
and the relation between their amplitudes is 

A,(r) = RAF(r), (42) 
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where R is a constant; Re stands for “real part of” and* for 

“complex conjugate’’. 

For simplicity we consider the case of ‘plane waves’. If we 
write 

ikz 
A; = wv (r) ee. (43) 

and because of the identity 

E.(r,t) =Re[Ry*(r) eikz ett = Re[Ry* (r) eikz elt ys 

(44) 

]=Re[RA(r)e “], 
—iot =Re[Ry(r) ee 

we can say that E, is the time reversal of R E;, i.e. E, is equal 

to R E; after t becomes -t. Phase conjugation and time reversal 

are therefore often used with the same meaning. The above 

discussion is also valid for non-plane waves if the superposition 

principle applies. 

The solution of eq. 21 shows that A, is proportional to A* 
i.e. the FWM signal 4 is the phase conjugate of probe 3. 

To show the phase conjugate imaging properties of FWM we 

introduce a resolution chart in our set-up as shown in Fig. 17. 

The orientation of the crystal is that shown in Fig. 10, which 
corresponds to maximum efficiency because of the larger inter- 
action length L. 

  

  

Fig. 17 — Schematic of the experimental set-up (the same as in Fig. 12) for 

the phase conjugate reconstruction of a microscopic object. 0 and 0 are the 

object and the phase conjugate object planes. MC is a microscope with a 

photographic camera. 
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The input and the phase conjugate image are shown in 

Fig. 18a,b. A speckle averaging technique has been used [20], 

to improve the image quality. It consists in moving the crystal 

4 5 
Set 

+ 

= Whee ws 
be 

Gi mg? we 
id tall  B- me on 

  

A B 

Fig. 18 — (a) Input object in plane 0 (b) phase conjugate reconstructed object 

after speckle averaging: multiple (15) exposure 15 X 1/125 sec. The spatial 

frequency of 5-1 group is ~30 line pairs/mm. 

continuously during exposure or by steps with multiple exposure. 

This can be also accomplished by phase modulation of one of the 

beams which causes in addition, by averaging the grating contrast, 

a more uniform intensity of the image. 

The author would like to thank Prof. S. P. Almeida for 
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ELECTRONIC CIRCUITS FOR VARIABLE BIT LENGTH, 

HIGH-SPEED, CLOCKLESS, BINARY ANALOG-TO-DIGITAL 

AND DIGITAL-TO-ANALOG CONVERTERS 
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Physics Department, University of Coimbra, 3000 Coimbra, Portugal 
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ABSTRACT —It is shown that a simple circuit made of just an 

operational amplifier, a comparator with precision saturated output and two 

identical resistors can be used as the basic unit for fast, clockless, variable 

bit length ADC’s. An inexpensive version of this circuit is discussed. It is 

also shown how a modified circuit can be used as the basic unit for DAC’s. 

The commercially available analog-to-digital converters [1] 

are generally of one of the following types: ramp-comparator, 

integrating and successive approximations. Cascade-encoder type 

ADC’s [2,3] while very fast have not yet lent themselves to 

integrated or monolithic circuit units perhaps due to the com- 

plexity of the design. 

In the present work we describe a very simple circuit that 

can be used as the basic unit for a variable bit length ADC of 

the cascade-encoder type. It requires no linear gates nor clocks 

and lends itself to integration. The only precision components 

required are two identical resistors (per bit), that can be externally 

trimmed. 

The basic circuit is indicated in Fig. 1. 

If we assume that the saturated output of the comparator C 

is equal to E, (logical 1) if V;>E,/2, and equal to zero 

Portgal. Phys. — Vol. 16, fasc. 1-2, pp. 99-104, 1985 99



  
C. A. N. ConpE — Variable bit length, clockless, binary ADCs and DACs 

(logical 0) if V; << E,/2; the output of the operational ampli- 
fier A, is (*) 

_(2V; if V,<E,/2 

2Vi-—V, if V,;>E,/2 

Vo 

This means that to obtain the linear output V, we multiply 

the ratio V; /E, by two and then multiply the fractional part of 
the number thus obtained by E, (it is assumed that the input 

voltages V; are within the 0 to E, Volts range). The integer part 

is available as a logic signal, B, which is actually equal to 

the most significant bit of that number. If V, is fed to the input 

LOGICAL 

(integer part) 

OUT PUT 
O 

            

Vo LINEAR 

O (fractional part) 

OUTPUT 
  

Fig. 1 — The basic circuit for building ADC’s of the cascade-encoder type. 

of another circuit identical to the one described, the second most 

significant bit can be obtained at its logical output, etc. Thus, 

an n-bit binary analog-to-digital converter can be built just by 

connecting in cascade n circuits identical to that of Fig. 1, as 

shown in Fig. 2. 

The speed of this ADC is limited mainly by the slew rate 

and the settling time of the operational amplifiers and the response 

time of the comparators, and can thus be very fast. As soon as 

the first circuit processes the input signal V; and feeds V, into 

(*) If we consider the operational amplifier with finite gain A , common 

mode rejection ratio CMRR and input offset voltage e,, V, will be given 

by V,=[2V, (1+ CMRR™) + 2e,-E, §] (1+2/A)-+ where § =1 if 

V,>E,/2 and § =0 if V;<E,/2. 
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the second one it is ready to start processing another input signal. 

Thus the different circuits in the cascade can process simulta- 

neously successive signals. This will introduce no errors provided 

the logical outputs are conveniently delayed so that the digital 

data B,, B,,...B, corresponding to a same signal V; arrive at 

the outputs at the same time. Therefore the limiting speed of 

this ADC is determined by that of a single stage. 

  

          

B B B 
©) 

C. a 

> Dh | 

Eo 
2 

. LL L = 

circ. ,| cire. j (n-4)} circ. 
\; 1 iy Wlee | View don 
Oo. | a —_——                     

Fig. 2— An n bit ADC. 

The response of the basic circuit (Fig. 1) for V, > E,/2 was 
not discussed. For these cases the comparator works in the linear 

rather than in the saturated region and its output is somewhere 

between 0 and E,. Under these circunstances the circuit does not 

process correctly the input V, and gives a wrong output V, . These 

cases correspond to the region of width A V around E, / 2 shown in 

Fig. 3. Although A V can be very small (of the order of 0.1 mV for 

a precision comparator) the errors arising in the processing are 

large and in general cannot be tolerated. This difficulty can be 

easily solved using a comparator with positive feedback (with 

very little backlash) or feeding the output of the comparator into 

a positive feedback circuit like a Schmitt trigger. Then the response 

of the circuit is of the type shown in Fig. 4. If the backlash A Vp 

is rather smaller than the least significant bit no appreciable 

errors will arise. 
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An experimental and inexpensive circuit of the type of that 

of Fig. 1 was built using a 311 comparator and a 741 operational 

amplifier. However as this comparator does not give a precision 

saturated output, it was used in a gating system to connect, 

through two COS / MOS bilateral switches (CD 4016), the input 

resistor R (10 kOhm) toa +10 Volts (E,) supply when the com- 

parator output was a logical one, and to the ground potential 

when the comparator output was a logical zero. The experimental 

results show that, with no adjustments, the response function of 
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Fig. 3 — Response curve for the circuit of Fig. 1. 

the circuit deviates from the theoretical function (Figs. 3 and 4) 

by about 2 % at the output, V,, or by about 1 % when referred 

to the input. This means that ADC’s with an accuracy of about 

7 bits can be made with no other adjustment than the matching, 

in pairs, of the resistors R. The main source of error seems to 

arise from imperfections of the operational amplifier due to the 

common mode voltage applied to its positive input. 
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These experimental results show that it should be possible 

to implement in a single integrated circuit chip one or more 

circuits of the type of Fig. 1 using COS/MOS and MOS 

technologies. 
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Fig. 4— Response curve for the circuit of Fig. 1 with hysteresis. 

A circuit similar to that of Fig. 1 can also be developed for 

digital-to-analog conversion. It is shown in Fig. 5. The amplifier 

with precision saturation I gives a voltage E, = 0 if bit B is zero 

and E, =—KE,, where K is a scaling factor, if bit B is one. 

If we have various circuits like this one in cascade, short circuit 

to ground the input V;, of the first one, and the successive n bits 

of a binary number are fed at the bit inputs, B’s, the linear output 

at the last stage is given by: 

V, = (2"B, +2” B,+...+2B,) KE, 
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which is the analog conversion of the binary number. To avoid 

saturation of the operational amplifiers, K should be made small: 

for an 8 bit conversion it should be of the order of 0.001 to keep 

the output voltage within the 0 to E, range. 

R 

  
  

  

  

Fig. 5— Basic circuit for building DAC’s. 

It is possible to have a circuit that combines the functions 

of the circuits of Fig. 1 and Fig. 2. With straightforward logic and 

with an analog switch that connects either a E, or a E, = —KE, 

supply, it is possible, that by the use of just a single logic signal, 

to have such a circuit executing either ADC or DAC functions. 

This circuit will not be much more complicated than that of 

Fig. 1 and will be thus more versatile. 

This work has been supported by Instituto Nacional de Inves- 

tigacao Cientifica. We thank Carlos A. Correia for many interesting 

discussions. 
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AN APPROXIMATE METHOD TO CALCULATE 

ENERGY LEVELS 

J. Dias DE Deus and A. B. HENRIQUES 

Centro de Fisica da Matéria Condensada/INIC, Av. Prof. Gama Pinto 2, 1699 Lisboa Codex, Portugal 

(Received 8 October 1985) 

ABSTRACT — An approximate method, to calculate energy levels of 

quantum systems bound by a potential, is introduced which uses the virial 

theorem and an independent minimization procedure at each energy level. 

Results obtained are presented and discussed. 

I — INTRODUCTION 

Recently, an approximate method to calculate energy levels 

of quantum systems bound by a large class of potentials was 

introduced by Gersch and Braden [1]. One of its most appealing 

features is the use of the Heisenberg uncertainty principle, one 

of the basic principles expressing the physical content of quantum 

mechanics. The careful and criterious application of approximate 

methods to deal with the Schrédinger equation is always wellcome, 

as such methods may help to develop an intuitive understanding 

of the behaviour of microscopic systems and of how such behaviour 

is affected by changes in the parameters defining the system. 

The variation method is amongst the most powerful approxi- 

mate methods and highly sophisticated generalizations of Ritz 

technique have been devised to calculate energy levels beyond 

the ground-state E,. These calculations may, for example, start 

with a linear combination of functions, 4,;,; =X, Cy 4, not 

necessarily orthogonal among them, and, by a convenient minimi- 

zation procedure with respect to the c,’s, successive approximate 

eigenvalues are then found. The closer these functions are to 

exact wave-functions, the closer to the exact eigenvalues are the 

successive E,’s [2]. 
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Our purpose with this note is mainly pedagogical. We shall 
be dealing with a simple, non-orthodox, application of the variation 
method which we believe has some connection with the work of 

ref. [1]. We will enforce the virial theorem (as well as the 
Hellmann-Feynman theorem), by performing, at each level sepa- 
rately, an independent minimization procedure with respect to a 
convenient trial wavefunction and a variation parameter 8 

dE/oB = 0, (1) 

dropping the constraint of orthogonality among the trial wave- 
functions corresponding to different levels. We, nevertheless, find 
that the calculated levels are in very good agreement with the 

exact ones. An effort is made to understand why this happens. 

The great advantage of the technique is to give simple 

analytical expressions for the energies, in terms of the parameters 

of the system under study. Even when more than one term is 

taken in the potential, a simple pocket calculator can easily handle 

such expressions. The method can thus hopefully play a useful 

role, both at the pedagogical level and at the level of research, 

in estimates of energy levels of models under investigation (for 

example, in elementary particle spectroscopy). We only use 

knowledge that a student, having followed a basic course in 

Quantum Mechanics, should have. 

In section II we introduce the method and apply it to some 

important types of potentials. In section II] we put together and 

complete our arguments and draw conclusions. 

II— THE METHOD AND APPLICATIONS 

With straightforward dimensional arguments one can easily 

show how condition (1) fulfills the virial theorem as well as the 

Hellman-Feynman theorem [3]. (See the Appendix for a more 

general proof). 

Consider a potential 

Vix)-2z (2) 
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and a trial wavefunction depending on the minimization parame- 

ter 8, w(x, 8), such that 

¥(x,B)= VB $(é) (*) (3a) 

with 

£= 6x (3b) 

and 

[FCx) ¥ Ox) de =f oC) 6) =I (3c) 

The variable é is here a convenient dimensionless quantity. 

The energy eigenvalue, for any level, can be written as 

1 @ 
2 dx? 
  <E>, = mid S + oS = aie hee |! 

be 

v designating the order of the level and » the reduced mass. 

With (2) and (3) the energy <E> _ is a function of » and £, 

E=E(un, 8), @ itself being, through “the Schrédinger equation, 

a function of ». 

We have 

2 
<T>,~A°/n and <V>,~1/8", (5) 

the dimensionless numerical constants of proportionality in (5) 

being obtained from integrals over £. 

The minimization condition (1), then becomes, with the help 

of expressions (5), 

a<E> /d8 =2 <T>,8*—p <V>, f+ =0, (6) 

giving 

2 <T>, = p <Vo,.: (7) 

the form of the virial theorem for power behaved potentials. 

(*) This condition is fulfilled for (trial) wavefunctions of a power 

behaved potential (h.o. potential, for example). 

Portgal. Phys. — Vol. 16, fasc. 3-4, pp. 105-116, 1985 107



J. Dias DE Deus et al.— An approximate method to calculate energy levels 

From the very same condition (1), we still have, using (5) 

and (6), 

d<E>, _9<E>, 4, 9SE>, d8, _  <T>, | (8) 
dp Op 0B, du be 

a statement of the Hellman-Feynman theorem. 

The argument is independent of p, although in practice 

the method is most suitable and easily applied to cases 

when p = n (integer), i.e., to polynomial potentials of the type 

V(x) =X a x" (n even) or V(r) =X a r, 
n>0 n>0 

We are still left with a large variety of possible trial functions. 

The 1-dimensional harmonic oscillator (h.o.) has the peculiarity 

that in this system the uncertainty relation for Ap, .Ax is maxi- 

mally realized; by this we mean that Ap,.Ax=//2 [6] 

(Ap, .Ax =(n+ 1/2) & for n>o). Thus, its wavefunctions 

should be a good choice for variation calculations, either in 1- or 

in 3-dimensional problems, in agreement with ideas of Gersch and 

Braden and the interpretation of {pdq = nh (see ref [10]). 

a) We start with a 1-dimensional system. In the spirit of 

the previous statements, the trial wavefunctions will be the h.o. 

wavefunctions 

  
a a -1/2 pox? _ V po 1/2 

U, N, H, (Vuox) e€ N, = (7t8— ’ (9) 

where the integer v gives the order of the level and H, are the 

Hermite polynomials; a = po is a strength parameter, » the 

frequency of the oscillator and » the reduced mass. We calculate 

equation (4) for <E>, and minimize the resulting equation with 

respect to » (w has dimensions of mass, but this is of no conse- 

quence here, as can be seen): 

d<E> /d0=0. (10) 

The key point is the application of (10) to each level 

separately. 
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As an exercise, we apply the procedure to the quartic oscilator: 

V(x) = ax‘, for which accurate approximate methods have been 

developed [1, 4]. Using u(x) = (@/yz)'/ exp (— 1/2 pox’) we 

calculate <axt>, and <T>, = <— 1/2y.d*/dx’>, correspon- 

ding to the ground-state: 

<ax'>o = 3/4 a( po)? , <p*/2m>o = 0/4 

Minimizing <E>,, we find » = (6a/y*)'/* and, as our best 

estimate for E,: 

<E>> (a/p?)7? = 3/8. 6. (11) 

Continuing for the excited states we construct Table I, where 

we compare our results with accurate numerical calculations [9]; 

we also quote Gersch and Braden [1] and the results of Hioie and 

Montroll [4] (taken from ref. [1]). Our results compare very 

TABLE I — Approximate energy levels of V= ax* 

  

  

State - a F lays Sie results ua sete 
v ” (ref. 9) (ref. 1) (ref. 4) 

v=0 3/8.6 1/3 = 0.6814 0.6680 1.1906 0.5461 

1 9/8.10 1/3 = 2.4237 2.3936 3.0001 2.3627 

2 15/8.(78/5)1/3 = 4.6850 4.6968 5.1514 4.6688 

3 21/8.(150/7)3/3 = 7.2911 7.3367 7.5598 7.3121 

4 27/8.(83/3)1/3 = 10.167 10.244 10.179 10.222 

5 33/8.(366/11)1/3 = 13.267 13.379 12.980 13.358 

6 16.565 16.712 15.943 16.692 

7 20.037 20.221 19.050 20.201 

8 23.668 23.890 22.289 23.869 

9 27.446 27.706 25.651 27.685         
  

It (*) <E>,/(a/p2 1/8 
(*) <E>,/(a/,2)18 

1.1906 n4/? (n=1,2,...3 N=Vv +1) 

1.376 (v + 1/2)4/8 (v =0,1,2,...) I 

Our results can be put into a form ~ (v + 1/2 )4/3, except that the parameter 

in front of (v + 1/2 )4/% slightly decreases with increasing v . 
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well with the exact ones, the first level being much better than 

the values obtained in refs [1] and [4]. 

The case of several terms in V(x) is handled in exactly the 

same way. When V(x) has a part odd in x, an extension of 

the method is possible. In such cases the introduction of a second 

variation parameter is desirable in order to displace the origin 

of the variable (x—x-—X,). For a complete treatment of the 

double-well potential and the anharmonic potential using the 

present method, the reader is advised to consult ref [5]. 

b) For three-dimensional potentials the method is a straight- 

forward generalization of the one-dimensional case. The wave- 

functions of the three-dimensional h.o. are constructed from 

products of the one-dimensional wavefunctions 

Vivi ve ve (XY, Z) x et/anurt H, (ex) H, (ay) H,, (az) (12) 

with parity (-1)”’, v=vitvw+yvs , and r? = x? + y?4+ z?. 

Taking linear combinations, we can form wavefunctions 

appropriate to levels with a given orbital angular momentum I and 

parity (—1)% As an example we quote for the first few levels: 

State 

(IS)v=0 1=0 (4(po)*?/Va)¥? Y,, 

(1P) 1 1 (8(po)*?/3V 7)? 4 Yy, 

Qs), 2 0 (2 (po )2/3Vm)/? (2 po 2-3) Yo, 

(2D) 2 2 (4 ( po )™2/15 Vw )/? 2? You 

(3P) 3 1 (20 (po )7?/75V x)? (2 wo r—5r) Yun 

l l ~ ry, etc; 

all expressions are to be multiplied by exp (— 1/2 uo r*) and the 

Yjm refer to the spherical harmonics. 
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Let us calculate the energy levels of the linear potential 

V(r) =ar which, as is well-known to particle physicists, has 

had a large application in quark models for mesons and baryons. 

To be definite, we assume two particles of mass m, bound 

by V(r). Separating the centre-of-mass motion in the Schédinger 

equation, we are left with an equation in terms of the relative 

coordinates (r, 0, ¢). 

We find 

<E> 15 = 30/4 + 2a/V apo (13) 

After minimization (9 <E>,,/d0—=0), we get the best 

estimate for the ground-state: <E>,, = 9/4 (4a/3 V op )?/3, In 

Table II we compare our estimates for S-wave states ‘with the 

TABLE II — Linear Potential 

(M=<T>+<V>+ 2m) 

  

  

State Our results a 

1S 3.111 3.105 (input) 

sh 3.695 3.695 

a8 4.175 4.182 

4S 4.599 4.609 

5S 4.987 5.000 

1P 3.456 

2P 3.966     
  

(a=0.211 GeV?, m= 1.16 GeV ) 

exact solutions of the Schrédinger equation, obtained from the 

poles of the Airy functions—ref [6]. This paper deals with a 

simple application of the linear potential to the charmonium 

system and the values quoted are very approximately the masses 

of the first few S-resonances: y, y’, y”, etc. For completeness, 
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we show our results for the 1P and 2P-wave states. The results 
have an error smaller than 0.4 %. 

How well behaves the method, with h.o. wavefunctions in 

the case of the Coulomb potential? The results are not as good 
as the previous ones and we can hint at that from the following 

detail: in a Coulomb potential there is a degeneracy between, for 

instance, levels 1P and 2S, 2P and 3S, etc. If we calculate <E> 
with h.o. functions this degeneracy is artificially lifted, although 
by a small amount; the best approximation will be to take average 
values. In Table III we present the results for the first levels. 

TABLE III — Coulomb Potential 

(We take m=1,2=—1) 

  

  

  

  

  

  

  

Exact results 
State | Our results average (B_=-1/4n?; n=‘, «..) | ‘ ; as 

3 /27¥2\2 
v=1, 1=0| - — = = -0.212 -0.212 -0.250 

4 3Vx 

7 / 5Y2\2 
2 0|- — — ~ -0,06316 

4 \ 21x 
_ -0.0599 -0.0625 

5 / 4/2 \2 
1 1/- — — = -0.05659 

4 \ 15x 

11 / g9//2 \? 
3 0|- ral =) ~ -0.03184 

4 \ 660 x 
VE -0.0287 -0.0278 

9 2V 2 \* 
3 1) = ral =) ~ “o.oosea | 

4 \ 15x     
  

One detail in the table is worth mentioning. We do not get 

upper bounds for the excited states when working with S-wave 

h.o. functions, but do get them using P-wave functions. This 

comes from the fact that the last functions are, due to their 

parity, orthogonal to the S-wave functions of the lower level. 
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The method should, nevertheless, still be reliable when the 

Coulomb interaction appears as a perturbation to the main 

potential: V(r) = Vo + Veouw - 

In the phenomenological models of particle physics, V, is 

often taken to be the linear potential. Such models do work very 

well, as far as mass spectroscopy is concerned, and work along 

these lines can be found in refs [3] and [8], which provide an 

intructive example of the influence, on the behaviour of the 

system, of the different terms of a potential. 

III - CONCLUSIONS 

We now put together those of the previous arguments which, 

in our view, justify the good results obtained with the method 

described. 

In the first place, the application of the independent minimi- 

zation procedure (1), with an appropriate choice of variation 

parameter, compels the expectation values of T and V to satisfy 

the virial theorem. There is an adaptation of the trial function to 

each state, in order to obtain the proper balance between the 

kinetic and potential energies of the state, as is required in 

spherically symmetric potentials. Certainly, both sides of the 

equality can still be wrong, differing from their exact values by 

the same amount, and we have to make sure that this difference 

is not large. 

It is important, at this point, to understand the role of the 

uncertainty principle in reducing the possibility of a wrong estimate 

of the energy eigenvalues. Having used as trial wavefunctions 

solutions of the Schrédinger equation with harmonic oscilator poten- 

tial, the constraint <Ax>. <Ap> =(<Ax> - <AP> Dn o. ah {2 

is naturally enforced. Intead of introducing an ad hoc, although 

quite reasonable, rule to fix <Ax> - <Ap>, as in ref [1], we have 

in our case <Ax> - <Ap> given by the wavefunctions of the h. 0. 

potential. As these trial wavefunctions are solutions of the 

Schrédinger equation they have the correct limiting behaviour as 

x—>0and x > o (r—0andr-— o in three dimensions ) and the 

correct nodal structure for the various eigenstates. They look like 

as wavefunctions should look: <Ax> -<Ap> cannot come very 

Portgal. Phys. — Vol. 16, fasc. 3-4, pp. 105-116, 1985 113



  
J. Dias DE DEus et al.— An approximate method to calculate energy levels 

wrong. This provides an additional constraint that guarantees, with 
the viral theorem, that the energy levels are reasonably estimated. 

However, one should not trust in detail these trial functions. 
In the virial theorem and in the uncertainty relations one only 
makes use of some of the lowest moments of the distribution 
| (x) |. Whenever the detailed structure of the wavefunctions 
is required, as it may happen in transition matrix elements, the 
optimized wavefunctions, in particular for the excited states, may 

give a poor approximation. It is clear that the closer the potential 

being studied is to the potential used to extract the trial wave- 

functions, the higher are the chances of the optimized wavefunc- 

tions to simulate accurately the real ones. 

Finally, we would like to finish by expressing the hope that 
our simple procedure will be useful for first estimates of energy 

levels for a large class of potentials. 

APPENDIX 

Let us write the trial wavefunction y, showing explicitly the 
parameter dependence: 

Yn = Yn (x; Qn > Bas moe Fe fa (A.1) 

Recalling that |¥|* has the meaning of a probability distri- 

bution, it is wise to choose the parameters { a,, 6,,... } in con- 

nection with the moments of the distribution. For instances, 

Oi, ~ CE, (A.2) 

being related to the mean and 

fy ~ (<> y— <E>p)? (A.3) 

being related to the dispersion. We shall keep only these two 

parameters. 

(*) True wavefunctions have no dependence of a f>--- on n. Such 

no dependence on n is equivalent to the orthogonality condition. 
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If the trial wavefunctions are solutions of the Schrédinger 

equation with a power behaved potentital, V. = a(x-b)", with r 

even, it can be easily shown, from scaling and translation 

invariance properties of the Schrédinger equation, that 

Yn (X3 Gn, Ba) =VBn $(&), (A.4) 

with é= 8,(xX-a,) and 

ao) May °.°) 

Jo vax) tdx=f 0 léa(ey [ede (A.5) 
—co —-o 

The energy for the nth-level can be written 

1 = d? = 
SLE Sere ae dé+ V d A.6 Ey 7 PF Orn oC) et+[o(é) VCE) CE) dE (A6) 

and the minimization conditions 

d<v|Hl]y>,/08, =90 and d<v¢|H|y>,/de,=0 (A.7) 

    

  

become 

d<vl/H|y>, 1 | aV | 
ese os |] 2 <TD <x — > 

0 Bn Bn * ox = 

(A.8) 

; im g <V>,=0 or Bn Aan Dan 1 a 

and 

|H - 
UBS JEL Ce <V>,=0. (A.9) 

0 ay Oey 

It is clear that (A.8), together with (A.9), implies the virial 

theorem. 

An application of the two-parameter minimization procedure to 

the double-well problem is given in ref [5]. 
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ABSTRACT — The proton spin-lattice relaxation time T, (T, « ) has been 

measured in the isotropic and columnar phases of hexaoctyloxytriphenilene 

(THES ). T, (T, » ) is continuous across the isotropic-columnar transition and 

is essentially due to the alkyl chain contribution. Data analysis suggests that 

the complexities of alkyl chain motions may be lumped into two simple 

mechanisms, namely «rigid body» chain reorientations and relatively faster 

internal motions. Chain motions corresponding to intercolumnar diffusion 

(permeation) are another effective mechanism of relaxation. 

1 — INTRODUCTION 

Since their discovery in 1977 [1], discotic liquid crystals have 

been a subject of growing interest and a large number of reports 

have been published on the properties of these materials [2]. Their 

molecular dynamics has been probed in two cases by proton spin 

relaxation techniques [3, 4]. We have used these techniques [3] to 

study the isotropic-columnar transition and the molecular dynamics 

in the isotropic phase of hexaoctyloxytriphenilene (THES for 

short). In ‘this work we propose an interpretation of new and 

previous [3] data on the columnar phase of THE8, and revise 

briefly the interpretation previously given [3] to the data con- 

cerning the isotropic phase, with regard to some aspects on which 

an improvement is possible on the light of recently published data 

on some material properties. 
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2— EXPERIMENTAL AND GENERAL REMARKS 

The synthesis of THE8 was described in ref. [5]; it shows a 

single liquid crystalline phase of the columnar type D,,,, between 
340 and 358.8K. The molecules are regularly stacked in the 

columns with intermolecular distances of 3.6 A, and the lattice 

arrangement of the columns is hexagonal with intercolumnar 

distance of 23.2 A [6]. The sample (0.5cm*) used in our NMR 

experiments was degassed and sealed under vacuum in a 10mm 

diameter glass tube. 

Measurements of the proton spin-lattice relaxation time T, 

were performed with a Bruker SXP/4-100 NMR spectrometer for 

twelve values of the Larmor frequency w/27, between 4 and 

90 MHz. 

We have observed an apparent continuity of T,(T) through 

the isotropic to columnar transition at all working frequencies, 

and an apparently similar behaviour of T,(T,«») in both phases, 

including a strong frequency dependence of T, in the isotropic 

phase over the whole range of temperatures covered in our 

experiments (up to 90K above the clearing point) [3]. We also 

have observed vanishing angular dependence of T, when the 

sample was rotated about an axis normal to the magnetic field. 

In view of the following analysis we should also keep in mind 

that most of the protons in each molecule belong to the aliphatic 

chains and only 6/108 of them belong to the triphenilene core. 

3—DATA ANALYSIS 

A significant portion of our experimental data on T,(o,T) 

for the columnar phase is displayed in Fig. 1 for T = 354K. The 

curves ‘were obtained from a computer analysis of the data, as 

explained below. 

Four different types of molecular motions have been con- 

sidered in our analysis of the data, as eventually effective 

mechanisms of spin-lattice relaxation: 

(i) long-wavelength collective motions associated with 

bending fluctuations of the columns; 

(ii) rotational diffusion of the molecules around the sym- 

metry axes normal to the planes of their discs; 
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(iii) intercolumnar translational self-diffusion of the mole- 

cules, with components along the columnar axis (D},) 

and normal to it (D{) due to the uncorrelated posi- 

tions of adjacent columns; 

(iv) intramolecular motions such as conformational changes 

of the aliphatic chains, etc. 

Mechanism (i) has been discarded on the basis of actual 

computations and the fact that no discontinuity of T,(T) is 

observed at the isotropic-columnar transition. Mechanism (ii) has 

been described by the following expression [7]: 

    
Ar 

TR TR 
= a + —— ‘ (2) 

Gata). 2 (5 J = 2) 

and assumed to be independent of (iii); B has been treated as an 

adjustable parameter. To describe (iii), i. e., relaxation induced by 

molecular translational self-diffusion, the theoretical computations 

by Zumer and Vilfan [8] have been used. They give: 

(1/T, dy = (9/8) y*h? (nrp/d? ) R, (l/d, D{./Dj,, «, A, orp ) (2) 

where R, is a dimensionless function such that expression (2) can 

be very well aproximated by: 

Cin = 0, (> ) (3) 
Db ] + o- Th 

in the region of our measurements. The diffusion coefficients 

D? and Dj{ are given by: 

Do? = <ri>/4rp and D)-= <rj>/2rp. (A) 

Finally, the motions included in (iv) have been assumed to be 

fast enough to contribute only with a constant term (C) to the 

relaxation rate. 

The overall relaxation rate should then be given by the 

following expression: 

1 4; w =B( TR i" R )ta +e (5) 
Lfatr | 1+ 4% Lah 
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which was fitted to the experimental data in Fig. 1 (for 

T = 354K) giving: 

TR= 15 xX 10s B = 2.72 X 10's” C = 2.58 $7 

tT = 0.9 X 10° s C, = 1.32 X 10° s? 

Putting these values in expressions (1) to (3) and (5), curves for 

the overall relaxation rate 1/T, and for its three components have 

been drawn as functions of 1/\/o, as represented in Fig. 1. 

  

16 T=354K 

  
    
  

  

x10 s-%) 
Vw 

Fig. 1 — Frequency dependence of the overall and partial contributions to the 

relaxation rate, at T— 354K, in the columnar phase. 

4 — DISCUSSION 

The value ~ 10-*s for the correlation times derived above is 

quite convincing in view of the apparent dispersion of T,(«) 

shown by Fig. 1 around the corresponding frequency. 

The diffusion coefficients D! and Dj} are another interesting 
output of this research, because they can be measured inde- 
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pendently, thus giving a check on our data analysis. Using 

expression (4) with the computed value of 7p, and taking 

<r’>'/? <L=3.6A, where L is the intermolecular distance 

within one column, and <rj>'? =d, = 23.2 A (intercolumnar 

distance [6]), we find, for T = 354K: 

D$=L5 X 10% cm?s* and Di<72 Xx 10° cm?s". 

Dong et al. have recently measured the diffusion coefficient 

D? as a function of the temperature [9]. For T = 354K we get, 

from their results, D? = 0.6 < 10-° cm® s*; which has the order 

of magnitude of our result. The slight disagreement may be only 

apparent since Dong et al. [9] estimate that their absolute values 

of the D’s may be off by as much as a factor two, due to experi- 

mental difficulties. 

Small variations in the numerical values of the parameters 

given above do not change significantly the r.m.s. error of the 

fit in Fig. 1. We can, for instance, get smaller values of D° by 

increasing 7,. This, however, leads to negative values of B in 

expression (5) (for 7, > 10*%s), which are unphysical. We 

remark that the contribution (1/T,), is relatively small in any 

case. On the other hand, 1/T, as given by expression (5) may 

be viewed as a linear combination of three lorentzian contributions 

plus a constant term. We may ask whether a single lorentzian plus 

a constant term would reasonably fit the data. The answer is yes 

but if we associate that lorentzian contribution with translational 

diffusion we get D? = 1.4 X 10° cm’s", i.e. nearly the same 

value as before. 

Similar difficulties have arisen in a reanalysis [10] of our 

previous interpretation of the data about the isotropic phase [3]. 

The addition of new experimental data, now available in the low 

frequency region, changed significantly the outputs of the fitting 

procedure in [3], which was based on the well known Torrey’s 

theory, and suggests the need for the introduction of a second 

relaxation mechanism. Such a need is more evident in the isotropic 

phase than in the columnar phase. Depending on the value assumed 

for <r°>'/ (certainly greater than 3.6 A ), the value of the diffu- 

sion constant which comes out from the new analysis [10] of the 

data is of the order of 10° cm? s at T = 366 K, which is consistent 

with the value D®° = 1/3 (D{+ 2D? ) = 1 X 10° cm’s", calcu- 
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lated from the results above for the columnar phase at T = 354K 

(12 degrees below). 

In the columnar phase the values of 7, and 7, are of the 
same order of magnitude. This suggests some coupling between 

molecular rotation and self-diffusion (this coupling was negelected 

in the analysis above). In the isotropic phase 7, is an order of 

magnitude lower than rp [10]. The constant C is also an order 

of magnitude lower in the isotropic phase, thus suggesting an 

increased internal mobility of the alkyl chains in this phase. The 

correlation time for the internal motions in the isotropic phase 

is the order of 10's (estimated with the interproton distance 

of -CH.- groups). 

5 — CONCLUSION 

The proton spin-lattice relaxation rate in the columnar 

mesophase of hexaoctyloxytriphenilene in the 4-100 MHz region 

is dominated by the contribution of the protons in the alkyl chains. 

The data can be reasonably well rationalized on the basis of a 

simple model, in which the complexities of the alkyl chain motions 

are lumped into two main effects, namely global reorientations and 

relatively fast internal motions. In addition, the model considers 

molecular translational self-diffusion essentially as an_inter- 

columnar permeation. A few puzzling problems arise, which 

suggest that more experimental studies are required, e. g. measure- 

ments at lower Larmor frequencies, to fully understand the 

relaxation mechanisms involved in the columnar and _ isotropic 

phases of discotic liquid crystals. 

We are grateful to Dr. C. Destrade (Bordeaux) who supplied 

the sample. 
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ABSTRACT — The development of an intermolecular potential energy 
function for carbon tetrafluoride is outlined, which is able, when used in 
conjunction with a perturbation theory, to accurately predict a variety of 
PVT properties over wide ranges of temperature and pressure (120-400 K, 
0-110 MPa ). The importance of anisotropic forces in the dense fluid region 
for this molecule is clearly demonstrated, the most significant forces arising 
from the non-spherical shape of the molecule rather than its multipolar 
interactions. 

1 — INTRODUCTION 

The ability to predict P-V-T data over wide ranges of 
density and temperature is, perhaps, one of the strictest tests of 
intermolecular potentials. It is well-known [1] that second-virial 
coefficients do not generate a unique potential and recent potential- 
inversion techniques [2] for this property and transport properties 
can only generate gaseous potentials for spherical or quasi-spherical 
molecules. Transport properties, which are another source of 
potential functions, are difficult to measure accurately. 

In perturbational and variational treatments, intermolecular 
potentials are usually developed by requiring agreement with 
experimental data along the saturation line (usually vapour pres- 
sures and liquid densities) often because accurate P-V-T data 

(¢) Author to whom correspondence should be addressed. 
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over extended pressure and temperature ranges are not available. 

However, as we have recently shown for ethylene [1], orthobaric 

data may not define the intermolecular potential in a unique way. 

That definition can only be reliably achieved by testing the 

potential against the whole phase surface of the substance. This 

supports the claim of Powles et al. [3] that there is an urgent 

need for configurational energy data over wide ranges of density 

and temperature, in order to properly test theories and improve 

intermolecular potential functions. 

We have recently completed such a study for tetrafluoro- 

methane, CF, [4]. Thirty-three isotherms, covering the temperature 

range 95-413 K and pressures up to 110 MPa have been studied, 

resulting in over one thousand and five hundred data points. This 

amount of data should enable us to develop an effective and 

flexible intermolecular potential energy function for CF,, which 

can then be applied to predict properties of systems of which 

CF, is a component. 

Despite its apparent simplicity, tetrafluoromethane is an 

attractive substance from both the industrial and theoretical points 

of view. It has a low order of toxicity and a remarkable thermal 

stability. As Freon-14, it is widely used as a low-temperature 

refrigerator and sometimes as a gaseous insulator. On the other 

hand, CF, molecules display an interesting degree of anisotropy, 

as manifested in the intermolecular potential function, which any 

successful theory must be able to account. Whilst the gross 

features of the CF, molecules may be considered to be repre- 

sentable by a quasi-spherical or globular model, the thermodynamic 

behaviour of the substance, especially in mixtures, displays a 

non-ideality which is characteristic of the anisotropy present at 

the molecular level [5]. Even the existing low-density studies lead 

to contradictory conclusions about the intermolecular potential 

of CF,. While some authors claim that a simple (12,6) Lennard- 

Jones potential 

u(r) = 4¢ [(r/o)*—(r/o)*] (1) 

is able to describe the second virial coefficient data [6], others 

have argued that a spherical-shell model is necessary [7]. 

Tetrafluoromethane is then an intermediate case between those 

of methane, CH, (which can roughly be treated as spherical) and of 
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tetrachloromethane,: CCl, (which displays strong anisotropy and 

requires a spherical-shell or site-site model). The discriminating 

factor would appear to be the octopole moment (the first non-zero 

electric moment exhibited by a tetrahedral molecule) which is a 

measure of the electronic non-centrality of the molecule. 

Strong orientational correlations, which seem to persist over 

several molecular diameters, have been found for tetrahedral 

molecules [8]. Interlocking effects have also been detected in CCl, 

molecules, using Brillouin scattering techniques [9]. In addition, 

calculations carried out using the site-site distribution function 

formulation show that the disagreement with results from computer 

simulation is much larger than for diatomic molecules [10]. All 

these facts seem to add up to the general conclusion that despite 

their apparent simplicity (small size, higher symmetry, non- 

polarity) CF, molecules offer enough problems to make a sys- 

tematic study of its underlying potential worthwhile. 

2—THEORY AND PROPOSED MODELS 

A spherical reference based perturbation theory approach due 

to Gubbins, Gray and co-workers [11-13] was used to evaluate 

the Helmholtz energy and hence all other thermodynamic properties 

of CF, from a knowledge of the dominant isotropic and anisotropic 

contributions to the intermolecular potential energy function, by 

the use of Statistical Mechanics techniques. The intermolecular 

pair potential u(ro,.) depends on the molecular orientations 

o;( = 6;¢;4; for non-linear molecules) as well as the inter- 

molecular separation, r. Such a potential may be separated into 

isotropic and anisotropic parts 

u Cro, 2 ) = Uy.(r) + u, (ro, o> ) (2) 

where u, is a reference pair potential of isotropic particles and u, 

contains all the orientation-dependent terms. The reference poten- 

tial is given by 

Uy (r ) = < U(r; os ) a. (3) 
1 ®2 

where <...> denotes an unweighted average over orientations o, . 
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The Helmholtz energy, A, may be expanded in powers of the 

perturbing potential as 

Atotal = Ag Ay A, +A, +... (4) 

With the choice of a reference potential given by Eq. (3), the first 

order term, A,, vanishes. The series expansion is slowly con- 

vergent, but for moderately polar molecules its sum can be 
obtained from a Padé approximant 

Atctat = Ay + A, (1-A;/ A, )7 (5) 

where A; is the it order term in the series. Detailed expressions 
relating A; to the underlying intermolecular forces have been 
given previously (see, for example, ref. [11]) and will not be 
repeated here. 

The major thrust of this paper lies in the development of the 

best possible effective intermolecular potential energy function 

for CF, which is able to give the closest prediction of experimen- 

tally determined thermodynamic properties over as wide a range 

of state conditions as possible, thus providing the most stringent 

test of the flexibility and dependability of the model potential. 

For CF,, it will be interesting to try to ascertain whether a 

spherical, isotropic model for this molecule is indeed sufficient 

to reproduce the thermophysical properties of the fluid as has 

been suggested by some authors [6], to determine whether 

anisotropic forces contribute significantly to these properties and, 

if so, which anisotropic forces are the most important. Several 

candidates for orientation-dependent forces suggest themselves for 

this fluid. CF, is known to have a reasonably large octopole 

moment (Qpr, = 4.8 x 104 esu) and we might expect the 

spatial anisotropy of the molecule’s electronic structure to cause 

charge overlap forces to be significant. In order to test the relative 

contributions of these terms we proposed four models, building 

on the isotropic potential model ( which constitutes model A) in 

a stepwise fashion, thus: 

Model A: Wu = Uy ™ 6) 

Model B: u = uy 9 + Udo (336) 

u 

u 

Model C: u = uy“ ©) too (336) + ug;, (803 + 033) 

Model D: u = uy +o (336) + ug;, (303 + 033) + u,, (303 + 033) 
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where: u is the intermolecular potential energy; u,“® is the 

contribution from the reference fluid, here a Lennard-Jones (n, 6) 

potential; Ug, is the anisotropic octopole-octopole interaction; u -" 

is that due to the anisotropic dispersion; and u,,, is that arising 

from anisotropic charge overlap forces. The figures in brackets 

refer to the leading term or terms in the spherical harmonic 

expansion of these interactions. Such a method of determining the 

quality of the proposed model was used recently for ethylene [1], 

with considerable success. 

The thermodynamic properties of the reference fluid were 

obtained using a methane equation of state [14]. This has been 

shown previously [5] to provide a better reference system for CF, 

than the more commonly employed argon reference used, for 

example, in most of the proposed models for ethylene in refer- 

ence [1]. The potential model for CF, used in reference [5] is that 

given as model D here, and we shall use exactly that potential 

(with accompanying potential parameters) as our model D to test 

its efficacy in predicting PVT and other thermophysical properties. 

The adjustable potential parameters involved in each of the 

models (the Lennard-Jones parameters ¢«/k, o and n for 

models A-D and the shape parameter 5, appearing in u,, in 

model D ) were obtained by fitting to the experimental saturation 

line values for ;, and Pj, [15]. Experimental values for the 
octopole moment (©) and dispersion coefficient (8,) were 

employed in each model where appropriate. For CF, it was found 

to be considerably more difficult than usual to determine an 

acceptably invariant set of parameters over the whole saturation 

curve. It was possible to obtain a similar quality of fit to the 

coexistence properties with each of the models tested, underlining 

cnce again that these properties do not provide a route to a unique 

potential model for any fluid. The potential parameters determined 

in this manner for each of the models are given in Table 1. Using 

these models, the PVT properties from 120-400K and from 

0-110 MPa were predicted with no further adjustment of 

parameters. 

3 — RESULTS 

Several key PVT properties were predicted using each of the 

potential models described in the preceding section, over as wide 
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a range of temperature and pressure as the theory (and the 

reference equation of state) would allow. The resulting theoretically 

predicted values were compared with recent, extensive experi- 

TABLE 1 — Potential Parameters for CF, Models 

  

Model |. n (€/k)/K o/A @ X 10*4/esu B, 

  

          

| 

A 20 232.7 4,255 = — | _ 

B 18 221.2 4.260 48 = | _ 

Cc 20 231.7 4.220 4.8 -0.20 — 

D 20 232.0 4.250 4.8 -0.20 | 0.10 
  

mental data due to Rubio et al. [4]. Isotherms from 120-400 K and 

pressures from 0-110 MPa were investigated, excluding state points 

where the reduced density, ¢o*, exceeds 1.05 (the limit of the 

methane equation of state ), and temperatures close to the critical 

region (210-240 K ), where the theory is invalid. 

TABLE 2— Average Percentage Deviation Between Theory 

and Experiment (120-210 K, 0-110 MPa ) 

  

  

Model [Ap | % |Auc|}% | | ASe|% 

A 1.54 4.09 5.42 

B 1.63 465 | 5.40 

Cc 1:22 5.29 6.90 

D 0.58 5.03 8.20         
The most important property in this study is that of the 

density, due to its sensitivity to the intermolecular potential and 

its key value in industrial applications. Its prediction by each of 

the models is summarized in Table 2, where the average deviation 
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between theory and experiment is given covering the whole 

temperature and pressure ranges. This information is disseminated 

in Figure 1 to show the deviation between theory and experiment 

as a function of (sub-critical) temperature. It can be seen that the 

full anisotropic potential (model D) is clearly superior to that of 

a simple Lennard-Jones model (model A). It is interesting to note 
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Fig. 1— Deviation between theory and experiment for the density of CF, as 

a function of temperature: © , model A; A, model B; (1), model C; x, model D. 

from this figure that the major improvement in predicting the 

density arises not from the addition of the octopolar forces 

(compare the results of models A and B), but from the addition of 

the shape forces (compare models C and D). The prediction 

of the density (and the other PVT properties) at supercritical 

temperatures is of much less interest. At high temperatures the 

effect of the anisotropy is ‘washed out’ by the higher kinetic 

energy of the molecules and any useful distinction between the 

potential models is precluded. The performance of the full 

anisotropic potential (model D) in predicting the density of CF; 
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over wide density and temperature ranges can be fully appreciated 

in Figure 2, where the experimental results are compared with 

  

      O | 1 | | 
O 200 400 600 800 1000 

p/bar 

  

Fig. 2— Comparison of experimental density values (¢) with the predictions 

of perturbation theory using potential model D (—), as a function of 

pressure, for several isotherms. 

those from perturbation theory. Table 3 lists both the experimental 

and calculated values of density at round values of temperature 

and pressure. 

The prediction of the configurational internal energy, u; 

was also investigated; results for this are shown in Table 2 and 

132 Portgal. Phys. — Vol. 16, fasc. 3-4, pp. 125-136, 1985



J. C. G. CaLapo et al.— Intermolecular potential for fluid tetrafluoromethane 

 
 

‘d 
[epoW 

Jeyus}0d 
0} 

puodsoaii0os 
s}nse1 

ATOOyL 
x 

 
 

 
 

  
  

  
  

  
 
 

82761 
L66'81 

PPrS'61 
66661 

81G°0Z 
GZZ'0% 

L
6
7
1
 

LL8‘0% 
== 

LSG'1Z 
OOTT 

000°6T 
€6L'81 

ee9'61 
LI¥'6I 

GOE'0z 
€90°0% 

S8TIZ 
9EL°0% 

=
 

LEP 
IZ 

000T 

LSL’81 
PLG'SI 

II¥'6I 
1Z2'61 

880'0Z 
768'61 

€F6'0Z 
889°0 

= 
IT€'1Z 

006 

G6P'8I 
9e'8I 

eLI'61 
11061 

L98°61 
60L'61 

69F' 
02 

Teh" 
0z 

—
 

6LI'1Z 
008 

60281 
PLO'ST 

81681 
€8L'81 

re9'6I 
ZIS'6I 

99% 
0
 

¥9%'0Z 
= 

6E0'1Z 
O0L 

L68°LI 
G8LLT 

ZP9'ST 
eeS'8T 

L8€°61 
66261 

7ST 
02 

G80'0Z 
609°I1Z 

7
6
8
0
 

009 

8PS'LI 
SSF 

LI 
OFE'SI 

9S7'8I 
€ZI'6I 

L90°61 
868'61 

€68'61 
980°1Z 

GEL‘0Z 
00S 

IST'LI 
180°LT 

G00'8T 
eh6'LI 

8E8'8I 
OI8'8T 

ZP9'61 
¥89'61 

G68'0Z 
L9OS'‘0% 

00F 

L89°91 
ZE9'9I 

929°LT 
€8S°LT 

97S°8T 
1ZS'81 

OLE6I 
vSPr'6I 

vEr'0Z 
G8E'0% 

00€ 

IIT‘91 
690°91 

S8TLI 
ZSTLI 

O8T'ST 
O61°8T 

G60°61 
86161 

817202 
88102 

002 

L62'S1 
L8@ST 

9F9°9T 
909°9T 

L8L'LI 
96L'LI 

G6L'8T 
806°8T 

0S6'61 
0L6'6I 

00T 

1p9'FI 
QIL'PI 

IT€91 
092'91 

99G°LT 
G9G*LI 

Geo'sT 
SPL'SI 

bC8'61 
ZS8'61 

os 

€LO'FI 
CEE 

FI 
9IT 

91 
8S0°9T 

SPF 
LI 

SEF 
LI 

€S¢°81 
69°81 

O9L'6T 
06L'61 

Gz 

» 
ALOOYL 

‘ydxq 
» 
AlooyL 

‘ydxq 
» 
A1OOYL 

‘ydxq 
» 
ALOOYL 

“ydxq 
» 
AlooyL 

*ydxq 
\ 

w
a
a
 

002 
O8T 

O9T 
OFT 

OZI 
M/L 

‘ 
  

  
  

  
  

 
 

s
e
q
 

QOII-GZ 
pue 

9 
00Z-OZI 

Wosy 
P
D
 

Jo 
A
z
S
u
o
q
 

oY} 
Jo 

u
o
l
I
p
e
l
d
 

[
e
o
e
1
0
9
4
]
,
 

pue 
sonjeA 

[ejUuewIIedxy 
jo 

u
o
s
i
u
e
d
w
o
g
—
e
 

A
I
G
V
L
 

133 Portgal. Phys. — Vol. 16, fasc. 3-4, pp. 125-136, 1985



  

J. C. G. Catapo et al. — Intermolecular potential for fluid tetrafluoromethane 

Figures 3 and 4. This property is of somewhat less importance 

than the density, its experimental value being derived rather than 
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Fig. 3— Deviation between theory and experiment for the configurational 

energy Uc of CF,, as a function of temperature: ©, model A; A, model B; 0, 

model C; x, model D. 

fundamental and subject to more uncertainty (~5%). The 

theoretically predicted values do not have the accuracy obtained 

for the density but give an adequately good description of the 

experimental values. Here, unlike for the density, no clear 

improvement is produced by adding anisotropic forces to the 

potential. The overall prediction of the internal energy for model D 

is numerically not quite as good as that of model A, but the 

difference is not particularly significant given the experimental 

uncertainly. 

The results for the configurational entropy S° in terms of 

the observed trends between models mirror those for U‘, 

although the prediction of this property is significantly poorer for 

all the models studied as can be seen in Table 2. 
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Fig. 4— Comparison of ‘‘experimental’’ configurational energy, derived from 

the experimental values of density (———), and the predicted one by pertur- 

bation theory (——), using potential model D. 

4 — DISCUSSION 

The development of an effective fluid potential for carbon 

tetrafluoride using a perturbation theory approach is clearly a 

difficult task; indeed it has been suggested [16] that this molecule 

is probably too far from sphericity to be adequately represented 

by such a procedure. It has already been noted that the deter- 
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mination of the potential parameters is particularly difficult for 
this fluid. Fortuitously, however, the prediction of the PVT proper- 
ties appears to be relatively unaffected by this choice. The 
prediction of the most discerning property, the density, shows a 

clear distinction between the proposed models, with the importance 

of including the anisotropy of the molecule clearly demonstrated 
over a purely isotropic Lennard-Jones model. It was interesting 

and somewhat unexpected, to discover that it is the non-spherical 

shape of the fluid molecule which provides the most significant 

of the anisotropic forces, and not the octopolar forces. Whilst 

the preferred proposed model (D) clearly does not provide the 

definitive intermolecular potential for CF,, the stringent tests 

applied have demonstrated that for most practical purposes it may 

serve as a useful source of thermodynamic properties with 

acceptably good accuracy. 
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ABSTRACT — Using a corrected version of the method first developed 

by Shuttleworth, very precise calculations of surface energies for a large 

number of orientations of the surface in a monoatomic f.c.c. crystal have 

been undertaken. The effect of the exponent of the repulsive and attractive 

terms in the Mye-type potential function was studied; the exponents used 

were combinations of 12, 9 and 6. The surface energies were corrected for 

the relaxation of the more exposed surface atoms to their equilibrium 

positions, using a method based on the TLK decomposition of the surface. 

The corrections never exceed 1%. These calculations also allow the deter- 

mination of (relaxed) evaporation energies of surface atoms, particularly 

atoms in surface terraces, ledges and kink sites and of ad-atoms. The energies 

(measured in terms of the cohesive energy) are little affected by the potentials 

studied. 

1 -- INTRODUCTION 

In this paper we report on results of computer calculations 

of surface energies and evaporation energies, with emphasis on 

the anisotropy of these quantities and on the effect of the 

interatomic potential. The surface energies are calculated by the 

method first used by Shuttleworth [1], with a correction in 

the determination of the rests of the lattice sums, for a wide range 

of orientations of the surface. A pairwise interaction between 

the atoms is assumed, with a potential energy «(9 ). The actual 

calculations were made for f.c.c. crystals with Mye potentials 

6|9, 6|12, and 9| 12. All surface and evaporation energies were 

corrected for the relaxation of the more exposed surface atoms. 
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Similar calculations of surface energies for a wide range of 

orientations were undertaken by Nicholas [2] using Mye and Morse 

potentials, but he did not consider the correction due to relaxation. 

Nicholas’ calculations extend previous work [3] on the anisotropy 

of the surface energy of cubic crystals, based on the broken-bond 

model. Although the results of Nicholas [2] were obtained for 

various potentials, no general conclusions were drawn on the 

effects of the potential range on the anisotropy of surface energy. 

These effects were considered by Drechsler and Nicholas [4] in 

relation to the equilibrium shapes of crystals, but again with no 

correction for surface relaxation. 

The use of pairwise potentials for calculating the energies of 

surfaces and other crystal defects can of course be criticized 

(e. g. [5]), in special because of the difficulty of developing good 

potentials (particularly for metals, e.g. [6]), but is still the more 

efficient method of studying the structure and properties of crystal 

defects. Linford and Mitchell [7] introduced interplanar potentials, , 

instead of pairwise interatomic potentials, to calculate surface 

energies, but their method is of restricted application. Finally, a 

few attempts have been made to calculate surface free energies 

(e. g. [8], [9]) and predict the effect of temperature on the surface | 

tension. 

2—LATTICE SUMS FOR SURFACE ENERGY 

Consider a crystal with one atom per lattice point, in which 

the atoms interact by a pairwise potential «(9.), where p is the 

distance between the two atoms. A suitable vector basis ( e: e» e: ) 
is chosen in the crystal. The relative positions of the atoms are 

defined by vectors of the type 

n= > ni ej (1) 

The permissible sets n; have to be identified beforehand, for 

example, by relating the e, to a lattice basis (if the e; are a 

lattice vector basis, the n,; can take all integral values). The plane 

of the surface is defined by the Miller indices (p) = (pi P2 Ds) 

relative to the vector basis chosen. The (unrelaxed) surface 
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energy y(p) is calculated from the potential energy, E, of inter- 

action between two half-crystals, C and C’, separated by a 

plane (p), per unit area of this plane (Fig. 1). When relaxation 

3 -0-- -0-—-0- —-0- —-0-+~+0-+~+9- +-0-=+ 

  

   

2’ ——o— —o——o-— —o0——0—-0— —0 —-o- C’ 

1’ ——-o— —o——o0— +0 — —o— — 0o— —o— —- 

Oo ee Ga = 8 Se ee 

1 --o——0o—-—0o, bp——0—o 00 P, p;) 

2 ~——o~——o-4 o—=> 0 ——0 ——o0 ——o—— 0- 

3 -O——o ——d ——0 ——0 ——0 ——o0 ——0 — — C 

4 —©——o——o ——o— —o0——o——90 ——0 —- 

Fig. 1—A crystal is divided into two half-crystals, C and C’, by a plane 

(Pp, P,P, ) of unit normal P and interplanar spacing d. When C and C’ are 

separated, two (identical) surfaces are created. 

of the atomic positions is neglected, the surface energy is simply 

given by 

y=-E/2 (2) 

This follows directly from an energy balance and from the defini- 

tion of surface energy as an excess energy, per unit area, relative 

to the perfect crystal. 

      

    
ey nin A, v)d 

(1+A)d ee 
d S\ 

d 

ML, a Micrel y RB 
  

Fig. 2— The topmost plane relaxes to a distance (1+ ))d. The dashed 

region is treated as a continuum for calculating the rest of the sums D, 

(see Appendix). 
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The atoms in the surface region will relax to new equilibrium 

positions, and this reduces the surface energy calculated from 

eq. (2). Consider first the relaxation of the atoms in the topmost 

plane (Fig. 2). We assume that this relaxation occurs exclusively 

along the normal to the plane. The corresponding correction to 

the surface energy is obtained as follows (cf. ref. [1]). Let E* (A) 

be the potential energy, per unit area of the topmost plane, in 

the field of the other planes, 1 being a measure of the relaxation 

of that plane (\ = 0 for zero relaxation ). The atoms are assumed 

to keep the same positions as in the perfect crystal, except, of 

course, for the change in the distance of the top plane to the 

following plane. The value, », of » that minimizes E* is 

calculated. If EX is the corresponding energy and E* is the 

energy for \ = 0, the corrected surface energy y, is 

Ye = y+ E*—E* (3) 

The energies per atom will be indicated by e«’s and the energy 

correction per atom by Ag (Ae = e* - e* ). 

In the calculation of E we use a generalized version of the 

method of Shuttleworth, with corrections in his procedure for 

calculating the lattice sums. In this method, the number of pairs 

of interacting atomic planes (p), one in half-crystal C, the other 

in C’, is the relevant quantity. 

Taking for origin an atom position 0% in the plane of order 

0’ of C’, adjacent to the surface (Fig. 1), the positions of the 

atoms of crystal C are defined by all n such that 

= (n-P)=m>1 (4) 

where d is the interplanar spacing and P is the unit normal to 

the surface plane. The number m is a (positive) integer that 

gives the order of the plane of C where the atom n_ is located 

(Fig. 1). For each n, the number of pairs of planes, one in C the 

other in C’, with a spacing equal to md, is precisely m. The 

potential energy of C’ in the field of C, per atom in the plane 

(p), can then be calculated from the potential energy «(n) of 
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an atom in the plane 0’, provided this energy is multiplied by m 

and then summed for all n_ satisfying eq. (4). Finally, if v is the 

volume per atom, the area per atom in the plane (p) is v/d and 
the unrelaxed surface energy is 

1 

2vV n d 

which can be written as 

: 6 VCP) == 5 win: PD e(n); n-P>0 (6) 

This form of y(P) was first presented by Herring [10] and used 

by Nicholas [2] in his calculations. 

3 — CORRECTION TO SURFACE ENERGY 

We now turn to the correcting terms E* due to relaxation 

of the top plane from its unrelaxed position at a distance d from 

the following plane (Fig. 2). The relaxed distance is (1+.)d, 

equivalent to a vector displacement (—AdP). The potential 

energy of the top plane, per unit area, is 

E*(P;a) = Sy e(|n+AdP]) = Sm ORY 5 n-P>0. (7) 
Vn Vv 

The values E¥(A = 0) and E*¥(.,) at the minimum have to be 

determined to evaluate the correction to the surface energy (eq. 3) 

due to relaxation of the atoms in the top plane. 

Except for the lower index planes, the relaxation of the atoms 

in planes following the topmost plane may give a non-negligible 

contribution to the correction. The method that we shall use to 

determine the correction to the surface energy in these cases is 

based on a description [11] of the surface in terms of terraces, 

ledges and kinks (TLK ), such that the terraces and ledges are 

atomically compact, and the distances between ledges and between 

kinks are large compared to the interatomic spacing, as in the 

low atomic density surface of the two-dimensional crystal of Fig. 3. 
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In the companion paper we derive an equation (eq. 8 in 

ref. 11) for y in terms of the contributions of terraces, ledges and 

kinks. From this equation we obtain for the correction Ay to the 

  

Fig. 3—A two-dimensional crystal surface of orientation corresponding to 

the dashed line, showing terraces and ledges. 

surface energy of a plane, with a particular decomposition TLK, 

the following result: 

ip :' ; 
sin Op COS Oy, + y Aex sin Op sin Oy, 

(8) 

  dp 
Ay = Aep — COS Og + 7 

. e Vv iz, dy 

where Aey, Ac, and Acgx, respectively, are the corrections, per 

atom, for atoms in terraces, ledges and kink sites; dy is the 

interplanar spacing of terraces, i, the identity distance along 

ledges and v the volume per atom; ©, is the angle between the 

surface plane and the terraces and 6, the angle between the 
intersection of these planes with the direction of the ledges. 

The total correction is then calculated by summing the cor- 

rections due to atoms in terraces, in ledges and in kinks. The 

latter is calculated from the correction for the topmost plane 

under consideration. The correction due to the terraces is directly 

obtained from the calculated «* — «* for the plane of the terraces. 

Finally, the correction due to the ledges is obtained from that for 

a vicinal surface plane containing the same terraces and Jedges 

(but no kinks) as the plane under consideration. In this method 

for obtaining the correction to the surface energy it is assumed 

that all atoms in terraces (e. g. atoms 2-5 in Fig. 3) and all atoms 

in ledges are equivalent. This is not strictly true: for example, 

the atoms in terraces near a ledge (e. g. atoms 2 or 5 in Fig. 3) are 
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not in positions equivalent to those in terraces far from ledges 

(atoms 3 and 4). The error in the calculated corrections should 

then decrease as the width of terraces and the inter-kink distance 

increases. 

4—LATTICE SUMS FOR EVAPORATION ENERGIES 

The evaporation energy is the absolute value of the potential 

energy of a surface atom in the field of all other atoms. For an 

atom in the topmost plane, the (corrected) evaporation energy is 

given by 

ay = - Ce ee) (9) 

where e% is the contribution of planes below the top plane and «F 
is the potential energy due to the other atoms in the top 

plane. «* is calculated as described above (eq. 7) and «5 is 
obtained from 

ep =Se(n)in-P=O0;n#0 (10) 

Evaporation energies of atoms in the second and following planes 

may de comparable to «,, in the case of high index planes. By 

considering a TLK description of the surface, the evaporation 

energies of other surface atoms (in terraces and in ledges) can 

be obtained; the evaporation energy for the topmost plane cor- 

responds to the kink site atoms (ledge atoms, if the surface has 

no kink sites). 

5-- APPLICATION TO F.C. C. CRYSTALS 

We take three orthonormal vectors (e, e. e; ) along the edges 

of the cube cell (!e,|;= 1). If a is the lattice parameter, the 
general form of n is 

n= Xn, e, with + n,; = even (11) 
i 

a 
aa | 

the n; being integers such that their sum is even. The Miller 
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indices (pp. ps) Will be taken as all odd (and coprime) or all 

even (g.c.d. = 2); then 

a 

d=— >; pPHtp;: P= = Pi ej (12) 
p i 

1 

p 

The interatomic distance in the crystal is r, = a/\/2 and the volume 

per atom is a*/4. The e|e’ Mye potential (namely 6! 9, 6| 12 and 

9| 12, see Fig. 4) will be used 

/o\¢ e- coeuf (Qh Gy free on 
where «, and o are constants that can be related respectively to 

the cohesive energy per atom, «,, and to the equilibrium separa- 

tion, r,, in the crystal, by imposing that the potential energy of 

an atom is a minimum at the equilibrium separation. Table 1 gives 

Se 
c 

0.10 fF 

0.0   

Vis     

T -0.10 

  

  
Fig. 4— Plot of the potential functions ¢(p) used in the calculations, The 
energy is in ¢, units (cohesive energy in the crystal) and the distance in r, 

units (equilibrium Ist neighbour distance in the crystal). The distances to 

2nd, 3rd, etc., neighbours are indicated. 
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values of o/r, and «,/e,, obtained from very precise calculations 

of the lattice sums involved (cf. ref. [12]). Also indicated in Table 1 

are the values of the equilibrium separation p,, and energy «,, for 

an isolated pair of atoms. The fact that r,/p,, is smaller than 

unity indicates that the near-neighbour interaction is repulsive for 

all potentials. This is in fact valid for any Mye potential [13]. 

TABLE 1— Potential constants 

  

| 6|9 Potential 6|12 Potential 9|12 Potential 
    

o/t, 0.91710 0.91729 0.91747 

£,/€, 0.69769 0.46456 1.39026 

TDs 0.95255 0.97123 0.99024 

—€n/ Eo 0.10336 0.11614 0.14663         
For the f. c. c. crystal with a potential e | e’, eq. 6 becomes 

y(P; ele’) =—— (ote Cy —o*? C,) (14) 

where ‘ 

o* = 2 a/To (15) 

and 

Cc, = x m’/ ne (16a) 

with 

m= 5 = my p> 05 ¥ mj = even; = = (16b) 

The energy E*(.) per unit area of the topmost plane, when 

its separation from the following plane is (1 + \) d, is obtained 

from eq. 7 noting that the displacement of the top plane is 

— Xap” (3 Pi @;): 

2 Eo , 

(i) = = Dye Dy) (17) 
0 
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where 

BetAy == Cr (18a) 
n 

with 

1 
ae n; pj > 0; 2 n= even; n® = 5 n?; nj = ny + 2p p 

1 1 1 

(18b) 

Finally, the potential energy of an atom in a plane (p) due 

to the other atoms in the plane is given by 

e* = e, (0% P,,—a** P,) (19) 

where 

P, = > me (20a) 
n}#0 

with 

Sn, pj = 0; & n,; = even; n®? = & ni (20b) 
1 

6— RESULTS AND DISCUSSION 

All lattice sums, C,, D, and P, were calculated by the 

methods described in the Appendix, with M = 10. The number of 

terms (atoms) in the direct sums was approximately 1000 for the 

series C and D. The rest of the sum C, for (002) is 2.3% of 

the value obtained in the direct sum. This figure is 0.35 % for D, 

(with 4 =0). The figures for C, and D, are respectively 

3.7 x 10° % and 1.2 X 10° % and for C,, and D,, they are about 

5.10-* %. The precision in the values of y is quite good. For example, 

the value of y for the (002) plane obtained with M = 20 is between 

(0.3-5) < 10° different from the value for M = 10 for the three 

potentials. All calculated values will be written with at most 

four or five digits, according to the cases. 

The determination of the equilibrium relaxation X, of the top 

plane was found by calculating E* (A) with increments of 0.001 

in A, starting at \ = 0. 

We shall consider separately the results for surface energies 

and for evaporation energies. 

146 Portgal. Phys. — Vol. 16, fasc. 3-4, pp. 137-160, 1985



  

  

J. B. CorrEIA et al. — Surface and evaporation energies of monoatomic crystals 

6a — SURFACE ENERGIES 

Unrelaxed surface energies, y, were calculated for a large 

number of planes and for the three potentials used (6|9, 6| 12 
and 9|12). In Table 2 are shown the values of y for the more 

closely packed planes up to (135) and for a selected number of 

TABLE 2— Surface energies, y (e,/r2 units). 

  

  

    

Potential 

Plane 

6|9 6 | 12 9|12 

111 0.4831 0.4315 0.3283 

002 0.4938 0.4480 0.3564 

022 0.5137 0.4690 0.3798 

113 0.5172 0.4717 0.3805 

133 0.5181 0.4709 0.3763 

024 0.5238 0.4811 0.3955 

224 0.5172 0.4693 0.3735 

115 0.5176 0.4717 0.3799 

135 0.5259 0.4817 0.3933 

100 100 102 0.4848 0.4333 0.3301 

50 52 54 0.4890 0.4377 0.3350 

500 502 520 0.4863 0.4348 0.3318 

2 2 100 0.4980 0.4520 0.3601 

2 100 100 0.5147 0.4699 0.3801 

2 500 500 0.5139 0.4693 0.3798 

0 2 40 0.5016 0.4559 0.3644 

0 2 100 0.4971 0.4513 0.3597 

0 30 38 0.5226 0.4784 0.3901 

2 20 400 0.5017 0.4560 0.3645 

1 15 19 0.5238 0.4794 0.3907 

1 75 95 0.5229 0.4787 0.3903       
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high index planes, most of which are vicinal to one of the lower 
index planes. From these data it is possible to calculate the con- 
tribution to the surface energy of edges and kinks in close packed 
planes. This will be discussed in detail in the companion paper. 
The y values are expressed in units of ¢,/r?, where e, is the 
cohesive energy per atom and r, is the interatomic distance. The 
values for the 6| 12 potential are in excelent agreement with those 
that can be found in the work of Nicholas [2], but differ from 
those of Shuttleworth [1]. The 6|9 values are about 10 % larger 
than the 6| 12 values and these are ~25 % larger than the 9| 12 
values, for the same surface planes. The data is conveniently 
displayed in y-plots for individual zones, as shown in Figs. 5a-c 
respectively for the <100>, <110> and <112> zones. The 
cusps at the lower index planes are clearly seen. 

The fact that the relative values of y for the three potentials 
are fairly independent of the surface orientation, suggests that if 
the y values are expressed in another unit, characteristic of each 
potential, it might be possible to obtain values of y fairly inde- 
pendent of the potential. Various attempts were made in this 
direction, using the data of Table 1, but without success. The 
energy depends on the interaction of a large number of atoms and 
it is not possible to write simple relations between the surface 
energy and properties of the interatomic potential. 

The surface energy is least for (111) for all potentials. The 
largest » found was for the plane (3 13 25) for the 6|9 and 6| 12 
potentials and for (1 7 13) for the 9| 12 potential. These results 
on the maximum contrast with the conclusions drawn from a 
broken first-neighbour bond model [3, 4], according to which the 
maximum y occurs for (024). The anisotropy, measured by the 
ratio of the two extreme y’s, is 1.207, 1.120 and 1.091 respectively 
for the 9/12, 6|12 and 6|9 potentials, in agreement with the 
general effect of the potential range on the anisotropy of y [4]. 

Table 3 gives the equilibrium potential energy e* of an atom 
in a topmost plane, in the field of the atoms below that plane. The 
unit is «,. The values for each potential vary by a factor of ~1.6 
between the maximum and minimum; they are slightly larger for 
the 6|9 potential and smaller for the 9| 12 potential. 

The calculated relaxations, expressed in r, units, vary between 
1.2 and 2.5 % for the 6|9 potential, between 0.7 and 1.5% for 
the 6 | 12 potential and between 0.2 and 0.5 % for the 9| 12 poten- 
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tial. The smallest values are for (111), while (024) has values of 

the relaxation close to the maximum (which in fact occurs for a 

high index plane). 

The corrections to the surface energy due to relaxation of 

the top plane, i.e. the values of «*—e*, are also indicated in 

Table 3. The values are per atom, in , units. 

TABLE 3—Energy of atoms in top plane, ee? and energy 

correction, «—e%, per atom 

  

  

  

— re Ge units) es —e% (e, units) X 10? 

Plane 

6|9 6| 12 9/12 6|9 | 6| 12 9|12 

Lt 0.6490 | 0.6143 | 0.5468 0.2672 | 0.1177 | 0.0086 

002 0.7115 | 0.6940 | 0.6636 | 0.7535 | 0.3731 0.0634 

022 0.8358 | 0.8302 | 0.8247 | 0.8843 0.4201 0.0602 

113 0.8713 | 0.8607 | 0.8448 | 0.8104 | 0.3818 0.0515 

133 0.8956 | 0.8797 | 0.8523 | 0.6892 0.3197 | 0.0391 

024 0.9427 ! 0.9501 0.9722 1.1403 0.5435 0.0822 

224 0.8994 | 0.8825 | 0.8529 | 0.6417 0.2960 0.0354 

115 0.9927 | 0.8845 | 0.8533 | 0.8329 | 0.3990 0.0587 

135 0.9781 | 0.9807 | 0.9923 | 0.9872 | 0.4623 0.0634 

100 100 102 0.9014 | 0.8846 0.8531 0.2875 0.1251 0.0094 

50 52 54 0.9898 | 0.9912 | 0.9962 0.3234 0.1404 0.0115 

500 502 520 1.0030 1.0013 1.0001 0.3030 0.1311 0.0100 

2 2 100 0.9063 0.8872 | 0.8537 | 0.7756 0.3810 0.0633 

2 100 100 0.9072 | 0.8875 | 0.8536 | 0.8681 0.4128 | 0.0589 

2 500 500 0.9073 | 0.8875 | 0.8536 0.8760 0.4170 0.0599 

0 2 40 0.9697 | 0.9714 | 0.9801 | 0.8398 0.4078 | 0.0668 

0 2 100 0.9694 | 0.9713 0.9800 | 0.8072 0.3928 0.0650 

0 30 38 0.9715 |; 0.9721 0.9800 1.0140 0.4799 0.0691 

2 20 400 1.0083 1.0040 1.0007 | 0.8231 0.4051 0.0660 

1 15 19 1.0091 1.0042 1.0006 0.9870 0.4662 0.0657 

1 75 95 1.0100 1.9047 1.0007 1.0043 0.4760 0.0680               
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TABLE 4— Surface energy corrections using TLK decomposition (e,/0? units) 

  

  

  

              

‘dant ot Ay ( X 10?) 
Plane Terrace | Ledge nae . _ 

6|9 6 | 12 9|12 

111 111 —_ 0.3085 | 0.1359 | 0.0099 

002 002 — 0.7535 | 0.3731 | 0.0634 

022 022 — 0.6253 | 0.2971 | 0.0426 

113 113 — 0.4887 | 0.2302 | 0.0311 

113 002 110 1.1703 | 0.5677 | 0.0884 

113 111 110 0.7572 | 0.3485 | 0.0397 

133 022 O11 0.9248 | 0.4358 | 0.0594 

133 111 O11 0.6023 | 0.2727 | 0.0271 

024 002 200 1.1839 | 0.5768 | 0.0935 

024 022 200 1.1032 | 0.5249 | 0.0771 

224 002 110 1.1392 | 0.5463 | 0.0807 

224 111 110 0.5529 | 0.2490 | 0.0238 

115 002 110 1.0456 | 0.5126 | 0.0836 

135 111 121 0.6047 | 0.2757 | 0.0302 

135 022 211 0.9316 | 0.4403 | 0.0621 

100 100 102 111 110 0.3118 | 0.1373 | 0.0100 

50 52 54 111 121 0.3156 | 0.1390 | 0.0102 

500 502 520 111 110 100 100 102 | 0.3154 | 0.1389 | 0.0102 

2 2 100 002 110 0.7842 | 0.3882 | 0.0659 

2 100 100 022 011 0.6498 | 0.3087 | 0.0442 

2 500 500 622 O11 0.6302 | 0.2994 | 0.0429 

0 2 40 002 200 0.7945 | 0.3930 | 0.0667 

0 2 100 002 200 0.7695 | 0.3809 | 0.0647 

0 30 38 022 200 0.7886 | 0.3743 | 0.0537 

2 20 400 002 200 0 2 40] 0.8028 | 0.3970 | 0.0673 

1 15 19 022 211 1 3 5) 0.8378 | 0.3969 | 0.0564 

1 15 19 022 200 0 30 38] 0.8694 | 0.4125 | 0.0591 

1 75 95 022 200 0 30 38] 0.8051 | 0.3822 | 0.0548 
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The smallest correction per atom is for (111) and the largest 
is for (024); these corrections differ by a factor of ~4 for the 
6 |e’ potentials and by a factor of ~8 for the 9| 12 potential. The 
correction is very small for the 9|12 potential and largest for 
the 6 | 9 potential, but even for this potential does not exceed ~1 %. 

Corrected surface energies were obtained with the values 

of Table 3, using eq. 8 and an appropriate TLK description of the 

TABLE 5— Corrected surface energies, y, (TLK corrections) 

  

  

  

ve (e/2 units) 
Plane 

6|9 6|12 9| 12 

111 0.4800 0.4301 0.3282 

002 0.4863 0.4443 0.3558 

022 0.5074 0.4660 0.3794 

113 0.5096 0.4682 0.3801 

133 0.5121 0.4682 0.3760 

024 0.5128 0.4759 0.3947 

244 0.6117 0.4668 0.3733 

115 0.5071 0.4666 0.3791 

135 0.5199 0.4789 0.3930 

100 100 102 0.4817 0.4319 0.3300 

50 52 54 0.4858 0.4363 0.3349 

500 502 520 0.4831 0.4334 0.3317 

2 2 100 0.4902 0.4481 0.3594 

2 100 100 0.5082 0.4668 0.3797 

2 500 500 0.5076 0.4663 0.3794 

0 2 40 0.4937 0.4520 0.3637 

0 2 100 0.4894 0.4475 0.3591 

0 30 38 0.5147 0.4747 0.3896 

2 20 400 0.4937 0.4520 0.3638 

1 15 19 0.5151 0.4753 0.3901 

1 75 95 0.5148 0.4749 0.3898         
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surface. The terraces were chosen among (111), (002) and (022) 
and the ledges among the directions [011], [002] and [112]. For 
each decomposition, the correction to the surface energy is given 
in Table 4 in ¢, /r, units. When the plane has no kinks, 0, = 0, the 
correction Ae, is the value found in Table 3 for that plane. If there 
are kinks, Ae, is taken from Table 3 for a plane (indicated in 
Table 4) vicinal to the surface plane and with a TLK decomposition 
with no kinks; Ae, is then the correction per atom for the sur- 

face plane. 

Also included in Table 4 are the corrections to the four most 
close packed planes, calculated directly from the correction per 

atom for these planes, given in Table 3. 

The corrected energies are given in Table 5 for the planes 
listed in Table 4. For planes with two TLK decompositions in 
Table 4, the correction corresponding to the decomposition with 
more close packed terraces (or ledges, in the case of (1 15 19)) 

was used. It is apparent that the correction slightly reduces the 

anisotropy of the surface energy (reduction of 1.5% for the 
6|9 potential). It also reduces the increase of y» for a given 
deviation away from a close packed orientation. 

6b — EVAPORATION ENERGIES 

The calculated potential energies es of an atom in a crystal 
plane due to the other atoms in the plane are indicated in Table 6, 
in e, units. The values for the high index planes such as 
(2 100 100), (0 2 100) and (50 52 54) are very nearly those 
contributed by atoms in the lattice row, parallel to <001>, <002> 
and <112>, respectively, where the reference atom is located. 
This is because in these planes, the rows indicated have inter-row 
spacings much larger than the repeat distance along the row. For 
similar reasons, the atoms in planes such as (1 75 95) are so far 
apart that the potential energy ey is negligible. Combining these 
results with the «* values of Table 3, corrected evaporation 
energies from the topmost planes can be calculated (eq. 8). The 

results are shown in Table 7. 

As expected, the evaporation energy decreases as the com- 
pactness of the surface plane decreases, for the more close packed 
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TABLE 6 — Potential energy, ep per atom due to atoms in the same plane 

  

Plane 

* . 
Ey (e, units) 

  

    

100 

50 

c
o
 
C
o
O
 

N
M
 

NM
 

O
N
 

500 

2 

1 

1 

lll 

002 

022 

113 

133 

024 

224 

115 

135 

100 102 

52 54 

2 100 

100 100 

500 500 

2 100 

30 38 

502 520 

20 400 

15 19 

75 95   

6|9 6| 12 9| 12 

0.7073 0.7737 0.9065 

0.5919 0.6193 0.6741 

0.3459 0.3479 0.3518 

0.2734 0.2861 0.3114 

0.2224 0.2470 0.2961 

0.1374 0.1107 0.5729.10-1 

0.2140 0.2409 0.2948 

0.2112 0.2390 0.2945 

0.6343.10-1 0.4784.10-1 0.1666.10-1 

0.2029 0.2333 0.2940 

0.2671.10-1 0.2040.10-1 0.7790.10-2 

0.2029 0.2333 0.2940 

0.2029 0.2333 0.2940 

0.2029 0.2333 0.2940 

0.7722.10-1 0.6523.10-1 0.4126.10-1 

0.7722.10-1 0.6523.10-1 0.4126.10-1 

0.7722.10-1 0.6523.10-1 0.4126.10-1 

0.1123.10-5 0.7491.10-6 0.1960.10-8 

0.2320.10-6 0.1547.10-6 0.1007.10-9 

0.1437.10-2 0.9812.10-8 0.6878.10-4 

0.2477.10-4 0.1658.10-4 0.1890.10-6       

planes (from (111) to (135)). The (024) plane has a slightly lower 

value, which can be attributed to the low «* for this plane. 

The evaporation energies for the following high index planes 

(from (100 100 102) to (0 30 38)) correspond to atoms which 

are located at atomic ledges separating low index terraces. The 

ledges are, depending on the cases, along <110>, <200> and 
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TABLE 7— Evaporation energies, Egy 

  

  

  

Eey (e, units) 

Plane 

6|9 6| 12 9/12 

lll 1.3563 1.3880 1.4534 

002 1.3035 1.3134 1.3377 

022 1.1818 1.1781 1.1765 

113 1.1448 1.1468 1.1563 

133 1.1181 1.1267 1.1485 

024 1.0800 1.0608 1.0295 

224 1.1134 1.1234 1.1478 

115 1.1139 1.1235 1.1479 

135 1.0415 1.0285 1.0090 

100 100 102 1.1043 1.1179 1.1471 

50 52 54 1.0166 1.0116 1.0040 

2 2 100 1.1092 1.1204 1.1476 

2 100 100 1.1101 1.1208 1.1476 

2 500 500 1.1102 1.1208 1.1476 

0 2 40 1.0470 1.0367 10213 

0 2 100 1.0467 1.0365 1.0213 

0 3 38 1.0487 1.0374 1.0213 

500 502 520 1.0030 1.0013 1.0001 

2 20 400 1.0083 1.0040 1.0007 

1 15 19 1.0105 1.0051 1.0007 

1 75 95 1.0100 1.0047 1.0007       
  

<112> directions (see Table 4). It is noticeable that the evapo- 
ration energies of such ledge atoms are fairly constant, i. e., nearly 
independent of the low index terrace associated with the ledge, and 
decrease as the atomic density in the ledge decreases. 

The evaporation energies per atom in top planes which do not 
contain close packed rows (the last four planes in Table 7) are 

Portgal. Phys. — Vol. 16, fasc. 3-4, pp. 137-160, 1985 155



  
J. B. CorrEIA et al. -— Surface and evaporation energies of monoatomic crystals 

also fairly constant. They correspond to atoms at kink sites. It is 
interesting to note that the evaporation energies of such atoms 
can be as much as 1 % larger than the cohesive energy for the 
9|6 potential. 

It is apparent from the values of Table 7 that there is no 

systematic effect of the potential on the evaporation energies 

expressed in «, units. This contrasts with the marked effect on 
the y values expressed in e«,/r? units. 

Finally, it is noted that the energies «* in Table 3 for the 

low index planes are the evaporation energies for isolated ad-atoms 

sitting on these planes. Such energies increase as the atomic 

density in the plane decreases. 

APPENDIX — CALCULATION OF LATTICE SUMS 

The sums C,, D, and P, are calculated term by term up to 
a chosen value of n = |n|: 

ne =F n2 ent M? 

and the number, N, of terms in the sum, is counted. The region 

within which these atoms are located is then determined (e. g. a 

hemisphere or a circle). The rest of the series is calculated 

assuming that the remainder of crystal C is replaced by a con- 

tinuum with the appropriate atomic density. 

The correct assignment of the volume where the N atoms 

are located is crucial, if precise results are wanted. Shuttleworth 

assumed that this volume, in the case of the series C,, is a 
hemisphere in crystal C of radius R,a/2, centred at atom 0’, in 

the first plane 0’ of C’ (Fig. 6) and such that (27/3) R? = 2N. 

Using this criterion we have obtained incoherent results: for 

example, the surface energy for (2 500 500) is smaller than that 

for (022). Since among the N atoms there are no atoms in the 

plane through 0{, it is apparent that the volume in crystal C 

where the atoms are located is the volume of a hemisphere centred 

at 0{, minus the volume of a layer adjacent to the plane 

through 05 and of thickness d/2 = (a/2)-(1/p) (see Fig. 6). 
This is consistent with the procedure that will be adopted to 
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evaluate the rest of the series. Therefore the radius R,a/2 of 

the sphere is given by 

(27/3) Rj—aR, (1/p) = 2N 

The difference between the R, determined by this equation 

and by Shuttleworth’s equation tends to zero as the interplanar 

distance d— 0, but for lower index planes the differences are 

significative leading to changes of about 0.2% in the surface 

energy of (002), with the 6|12 potential. This results mostly 

from the change in C, which is the slowest convergent sum. 

° ° ° ° O Ip 0 ° ° ° 

0 === 0o- -9-—-0- —A-- o- —04-0,— walle allel d/y 
  

  

  

YUL 

AN Sn gan ANCA C 
LALLA ALLL ALLL ALLEL LLL 
  

Fig. 6—TIllustration of the method used to obtain the rest of the lattice 

sums C, (see Appendix). The half-crystal C is replaced by a continuum 

outside a hemisphere of radius R, a/2. 

The atomic planes (p) outside the hemisphere are replaced 

by continuous lamella of thickness d/2 centred in each plane 

(Fig. 6). The integration domain for the integrals that give the rest 

of the series is the difference between the following two regions: 

i) the volume below plane 0’ outside the hemisphere; ii) a lamella 

of thickness d/2 limited by that plane, outside the hemisphere. 

Shuttleworth wrongly assumed that region ii) was a lamella 

outside a cylinder of radius R,. 
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Using spherical coordinates, (9, ©, 6) and expressing all 

linear dimensions in units of a/2 (volume per atom = 2), we have 

(cf. eq. 16a) 

m’ = pcose/d 

and the integrals that have to be calculated are of the form 

ssf @ sino coso dp do d¢ 

For the integral over region (i) the integration limits are: 

¢(0, 27); O0(0, 7/2); p (Ro, ©), with the result 

  

For the integral over region (ii) the integration limits are: 

); 8 (cos a, , 7/2) with the result: $(0, 27); 9 (Ro, 
p coso op 
  

7 1 
wv? — 

° 4p (e—2) Re 
  

The series C, is then calculated from 

+ C= Cl; r= > ne < M? 
i 

In the case of the series D, the sum is calculated term by 
term up to 

= nj? < M? 

The corresponding N atoms are within a hemisphere of radius 

R, a/2 centred at 0, with (Fig. 2). 

(2n/3) R83—7R2-(2.+1)/p = 2N 

The second term in the left corresponds to a layer of thickness 

d/2 + Ad where no atom centres lie. This integration volume 
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is again the difference between: i) the half-space below 

plane 0 outside the hemisphere; ii) a lamella of thickness 

(1/2 +2») d=(1-+ 2d)/p-a/2 outside the hemisphere and adja- 

cent to plane 0. The integrals for the rest of the sum D, are 

rrp gp ® sind do do d¢ 

For the integral over region (i): ¢(0,27);0(0,7/2),9 (Ro, 0) 

with the result 

. 7 1 

Oe es RE 

For the integral over region (ii): ¢(0, 27);p(Ro, ATS 5, 
p cose 

8 (cos iain 5 =e ) with the result 
p Ro 2, 

=, Ot oe ; 1 “i 

ep Ls d) (e—2) Re 

The series D, is then calculated from 

od _ : 
D. = > ‘ne = Bs DL— Dg n”? == - ni? < Me 

Finally in the calculation of P, the direct sum is determined 

for N atoms within a circle of radius R, a/2 such that 

aR? = Np 

The atoms outside this circle are replaced by a continuum with 

atomic density (pa?/4 )-!. The rest of the sum is 

P 1 i on oe d 2r 1 1 
y= — yi-e <> 
e p Re w ® p p e—2 Re2 

  

Portgal. Phys. — Vol. 16, fasc. 3-4, pp. 137-160, 1985 159



  
J. B. CoRREIA et al. — Surface and evaporation energies of monoatomic crystals 

[1] 
[2] 
[3] 

[4] 
[5] 

[6] 
[7] 
[8] 

[9] 
[10] 
(11) 

[12] 

[13] 

160 

REFERENCES 

R. SHUTTLEWoRTH, Proc. Phys. Soc., A62, 167 (1949). 

J. F. NicHoias, Aust. J. Phys., 21, 21 (1968). 

J. K. MACKENZIE, A. J. W. Moore and J. F. Nicuoas, J. Phys. Chem. 

Solids, 23, 186 (1962). 

M. DRECHSLER and J. F. NICHOLAS, J. Phys. Chem. Sol., 28, 2609 (1967). 

J. TH. M. DE Hosson, in Interatomic Potentials and Crystalline Defects, 

ed. J. K. Lee, The Metallurgical Society of AIME, 1981. 

P. WYNBLATT, Surface Sci., 136, L51 (1984). 

R. G. LinForp and L. A. MITCHELL, Surface Sci., 2%, 142 (1971). 

V. O. YESIN, V. N. PorozkKov and V. I. DANILYUK, Phys. Met. Metall., 53, 

149 (1982); english translation of Fiz. metal. metallowed., 53, 361 (1982). 

J. VAN DER VEEN, Z. Metalkde., 82, 120 (1981). 

C. HERRING, Phys. Rev., 139, A179 (1951). 

M. A. Fortes and J. Briro Correia, Portgal. Phys., following paper in 

this issue. 

J. O. HIRSCHFELDER, C. F. Curtis and R. B. Birp, in Molecular Theory 

of Gases and Liquids (Wiley, 1954) p. 1040. 

R. P. Gupta, Phys. Rev. B, 25, 6265 (1981). 

Portgal. Phys. — Vol. 16, fasc. 3-4, pp. 137-160, 1985 

 



  

ENERGIES OF SURFACE LEDGES AND KINKS 

M. A. FortTEs and J. BRITO CORREIA 

Departamento de Engenharia de Materiais, {nstituto Superior Técnico, 

Av. Rovisco Pais, 1000 Lisboa, Portugal 

(Received 3 October 1985) 

ABSTRACT — The description of the surface of a crystal in terms of 

terraces, ledges and kinks (TLK) is discussed , and equations are derived 

that determine the TLK content of the surface for any choice of terraces and 

ledges. The surface energy can be obtained as a sum of contributions of 

terraces, ledges and kinks. The form of the lattice sums that give these 

contributions in terms of a pairwise interaction potential is derived. 

The accuracy of the TLK decomposition of surface energy is assessed 

by comparing the TLK energies with those calculated directly. Calculations 

were done for a f.c.c. crystal using three Mye potentials (6|9, 6|12 and 

9|12) and limiting the choice of terraces and ledges to the more closely 

packed planes and directions, respectively. A very accurate method for 

calculating the lattice sums was developed, with which terrace, ledge and 

kink energies were determined. From these results it is concluded that the 

accuracy of the TLK decomposition of energy decreases as the range of the 

potential increases, but is never worse than one percent for the poten- 

tials used. 

The analogy of the TLK description with the coincidence site lattice 

model of interfaces is emphasized. 

1 — INTRODUCTION 

At the atomic level, the simplest solid surfaces are those 

obtained in a monoatomic crystal by a cut parallel to a lattice 

plane, followed by removal of the atoms in one side of the cut. 

The atomic distribution of the atoms is then periodic in each of 

the planes parallel to the cut, even if relaxation of the atomic 
positions is taken into account. The surface atoms may be defined 
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as those with potential energies, « (in the field of the other atoms), 

exceeding a specified value, for example |«| < 0.99 «,, where «, 

is the cohesive energy. If the plane of the surface is a low index, 

high atomic density plane, the surface atoms will be, if the 

interaction is of short enough range, only those in the topmost 

plane. In this case, there is only one type of surface site (see 

example in Fig. 1a). However, for high index surfaces (Fig. 1b), 

the surface atoms will belong to a number of planes parallel to 

the topmost plane, although the thickness of the surface region 

should be comparable in both cases. For a high index surface, the 

properties (e. g. the energy) of the atoms vary slightly from plane 

to plane, in the surface region, so that, strictly, there are as many 

types of surface sites as parallel planes in the surface region. 

However, the change in energy from plane to plane is not in 

general uniform (broken bond model!), and it is formally con- 

venient to group the atoms with similar properties in the same 

class. This then leads to the terrace-ledge-kink (TLK) description 

of the surface [1], which essentially recognizes only three types 

of surface atom sites (marked 1, 2 and 3 in Fig. 2a). The terraces 

are low energy, high atomic density planes. The ledges (or steps) 

are parallel to close packed directions and uniformly spaced; they 

can be regarded as monoatomic steps from one terrace to the 

next. The kinks are arranged in a planar lattice (that of the 

surface plane) and can be described as steps in the ledges. The 

energy of the surface atoms increases in the order terrace sites, 

ledge sites, kink sites. 

This is the essence of the TLK model of a crystal surface, 

which has proved very useful in discussing properties such as 

surface and evaporation energies [2-4] and phenomena such as 

adsorption, surface diffusion and crystal growth [5]. Real surfaces 

do contain ledges and kinks, but not regularly distributed, and in 

general other types of atom sites will be found in them. In this 

paper, we shall consider only regular ideal surfaces obtained by 

a cut through a lattice plane, for which the TLK decomposition 

is periodic. 

Formally, the TLK description can be applied to any orienta- 

tion of the surface and to any choice of the plane of the terraces 
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Fig. 1 — Different orientations of the surface ‘‘plane’’ P in a two-dimensional 

crystal: (a) low index, high atomic density; (b) high index, low atomic 

density. The interplanar spacings are indicated. 

  

  

  

  

  

Fig. 2— An arbitrary surface orientation (p) showing a TLK decomposition. 

The unit vectors normal to the surface plane (P) and to the terraces (T) are 

shown. L is a unit vector along the ledges and I a unit vector parallel to 

the intersection of planes P and T. Atoms 1, 2 and 3 are respectively at 

terrace, ledge and kink sites. Diagrams (b) and (c) are sections of (a) through 

planes perpendicular to I and T, respectively. Diagram (d) shows the vectors 

used in the text; U, L, T define a triorthogonal direct reference system. 
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and of the direction of the ledges. The spacing between ledges and 
that between kinks is then determined to give the specified orienta- 
tion of the surface plane. However, as the orientation of the 
surface deviates more and more from that of the chosen terraces, 
the density of ledges and kinks increases so that their interaction 
becomes strong [6] and their individuality may become ques- 
tionable. On the other hand, if the terraces are taken as high 
index planes, it is no longer legitimate to consider only one type 
of surface sites in the terraces. These limitations to the applicability 
of the TLK model will have a repercussion when one attempts to 
calculate overall surface properties, e.g. the surface energy, in 

terms of contributions due to terraces, ledges and kinks. 

The present paper concentrates on this topic and contains a 
detailed study of the surface energy decomposition in terms of 
TLK, from which conclusions on the applicability of the TLK 
model can be drawn. We first write down the equations that give 

the TLK content of an arbitrary surface and for arbitrary orienta- 
tions of the terraces and ledges. We then derive the lattice sums 

that give the contributions to the surface energy of ledges and 

kinks, assuming a pairwise interaction between the atoms. The 

properties of the sums are discussed and their actual calculation 

is done for a f.c.c. crystal using three potentials of the Lennard- 
Jones type (Mye potentials). The results are used to calculate 

surface energies of various planes from their TLK content. These 

surface energies are then compared with those obtained by a direct 

method [7], in order to assess the range of applicability of the TLK 

decomposition from the point of view of surface energy. No cor- 

rections associated with relaxation of the atoms to their equi- 

librium positions have been included in our calculations. As shown 

in the preceding paper, these corrections are always very small for 

the potentials that will be used here. A recent example of cal- 

culations of relaxed ledge energies in ionic crystals can be found 
in ref. 8. 

The problems that we discuss are formally similar to those 

found in the coincidence site lattice (c.s.1.) model of grain 

boundaries [e.g. 9, 10]. In this model, the concept of special (or 

favoured) c.s.]. boundaries is the equivalent to low index sur- 

faces, and the grain boundary dislocations are the equivalent to sur- 

face ledges and kinks, which can, in fact, be regarded as surface 
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defects. On the other hand, the range of applicability of the c.s. 1. 

model is limited by similar questions and can be assessed in 

similar grounds. 

2—DETERMINATION OF THE TLK DECOMPOSITION 

Consider a surface in a crystal with one atom per lattice 

point, parallel to an arbitrary crystallographic plane with Miller 

indices (p) =(p:P2Ps) referred to a vector basis e1 e2 es (not 

necessarily a lattice basis). The unit normal to the plane is P and 

the interplanar spacing is d (Figs. 1 and 2). 

The plane of the terraces is (t) =(tit.t,) with unit nor- 

mal T. The ledges are parallel to the crystal direction [1] = [Uhl] 

with unit vector L. The height h,, of the ledges is the interplanar 

spacing d> of (t) 

hy = dy (1) 

and the height h, of the kinks is the distance between adjacent 

rows [1] in the plane (t). Let i; be the repeat distance along 

the ledges and v the volume per lattice point (atom). Then 

Vv 
  hy =~ 

“dy ip 
(2) 

The angle 0,(0 <0, < 7/2) between the plane of the sur- 

face (p) and the plane of the terraces (t) is given by 

cos. 6,, = P.-T (3) 

The intersection of these two planes is a crystal direction [i] of 

unit. vector | at an angle 6, with the direction of the ledges 

(0 <0, < 2/2): 

cose; =1-L; 1-P=I1-T=0 (4) 

The spacing between ledges, measured in the direction perpen- 

dicular to | in the plane (p) is w = h,/sino,. The width wy of 

the terraces ( distance between ledges measured in the plane (t) ) 

can be related to h,, (Fig. 2c): 

wr = hy, cotg Op Cos 0;, (5) 
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The distance between adjacent kinks in the same ledge, Wr, is 
measured along the ledge and is given by 

Wx = hx cotg 6, (6) 

All the quantities defined above are indicated in Fig. 2. 
If P defines a lattice plane, as we are assuming, the distri- 

bution of ledges and kinks is periodic. The period corresponds 

to a unit cell in the plane (p), defined by the kink sites. The 

area of this unit cell is ww,/cos 6, . The corresponding area of 
terrace is obtained by multiplying by cos0,. The length of 

ledges in the period is wx, and there is one kink per period. 

Let y be the surface energy of (p), yp the surface energy of 

the terraces (both per unit area), ,; the ledge energy per unit 

length and cx the energy of a kink. Then 

WWx WW 
—— = ¥p ——— 008 Oy + ey, Wa + ex (7) 
cos Oy, COS Oy, 

Using eqs. 5 and 6 we finally obtain 

eK hh, Sin Or sin Or (8) 
EL 

= ym CoSO,,+ ~— sine, cose, + ¥= Yo T ly, T LU" hyuhe 

with h;, and hx given by eqs. 1 and 2, respectively. 

In this approach, ledges and kinks are treated as line and 

point features on the surface, respectively. The surface itself is 

treated as a geometric surface. The approach is macroscopic in 

this respect. For example, the specific surface energy, yp», should 

be regarded as an average surface energy of the actual terraces, 

and possibly affected by their width. The TLK decomposition of the 

energy is acceptable for those planes such that the terrace and 

ledge energy is negligibly different from that of a wide terrace 

or of a ledge with no kinks, respectively. 

We will now show how these limitations to eq. 8 can be put 

in more precise terms. This will be done by using an atomic 

approach to the surface energy, through which we are able to 

obtain the lattice sums with which terrace, ledge and kink energies 

can be calculated. 
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3 —LATTICE SUMS FOR LEDGE AND KINK ENERGIES 

The derivation of the lattice sums for y , e;, and ex is 

based on the equation for the energy of a surface of arbitrary 

orientation in terms of the pairwise interaction between the atoms. 

For a potential «( ), where ¢ is the distance between two atoms, 

the surface energy y for the orientation defined by a plane 

(P: Pp» ps ) of unit normal P, is [7] 

y= <3 (n-P) (0): n-P>O (9) 
2vV un 

where v is the volume per atom and n defines the positions of 

the atoms relative to a reference atom; the sum is for all n such 

that n-P>0. 

We define a unit vector U by the vector product 

UHLAT (10) 

L, T and U define a triorthogonal direct reference system (Fig. 2d). 

The vector P makes an angle 0, with T and its projection in the 

plane of U and L makes an angle with U which is equal to the 

angle 0;,, between | and L. Therefore 

P=T cose, + U sine, cose, + L sind, sin ©, (11) 

with both ©, and 0, in the interval (0, 7/2). Combining eqs. 9 

and 11 yields 

ye-= [cos Om %(n-T) ¢«(n)+sinO, cos Oy, X(n-U) « (n) 
Vv n n 

+ sinOp sine; X (n-L) e(n)] ; n-P>0 (12) 

The sums in eq. 12 are for all n such that n-P>0. 

When ©, and ©,;, tend to zero (the density of ledges and kinks 
tends to zero), the condition n-P > 0 is equivalent to the fol- 

lowing three alternative conditions: (i) n-T>0; (ii) n-T=0 

and n-U>0; (iii) n-T=n-U=0 and n.L>O. In this limit, 
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the sucessive sums in eq. 12 are calculated for the n that satisfy 

the sucessive conditions (i) to (iii). Comparing eq. 8 with eq. 12 

we obtained the lattice sums for yp, «1, and ex. The first has 
the expected form, analogous to eq. 9: 

ai 

yT=— oy =X (n-T)e(n)in-T>0 (13) 

The ledge energy is given by 

ey = —h,/(2v) X (n-U)e(n); n-US0,n-T=0- (14) 
n 

and the kink energy by 

=~ Bye ey) 2 (n-L)e(n); n-L>0, n-T=0, n-U=0 

(15) 

The series for e;, is a double sum (two subscripts) and that for cx 

is a simple sum (one subscript). Eqs. 14 and 15 give the energy 

of isolated ledges and kinks, respectively. Eq. 15 shows that the 

energy of a kink depends on the ledge where the kink is located, 

but not on the associated terrace. 

A simple interpretation can be given to these equations. Eq. 14 

is the expression that one would write to calculate the energy, 

per unit length, of a ‘‘surface’”’ created in a crystal plane (t), of 

normal T, by a cut along a direction L. This energy is, apart from 

the sign, one half the potential energy of one half-plane in the 

field of the other half-plane, the two half-planes being separated 

along a direction L. Calculating this energy by a process similar 

to that used to obtain surface energies, Eq. 14 would result, since 

the repeat distance along L multiplied by the inter-L direction 

spacing is v/h;,. Similarly, Eq. 15 gives the “surface” energy 
per atom of a row L, the “‘surface’’ being created by separating the 

row into two halves. These interpretations of «;, and ex could 
have been used to derive Eqs. 14 and 15. For example, two 

isolated parallel ledges can be created on the surface by separating 

the topmost plane into two half-planes, while keeping the half- 

planes at the same distance from the next plane. Eq. 14 would 

then result for the energy of an isolated ledge, per unit length. 

It is then apparent that the energies yp, «ez, and ex obtained from 
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Eqs. 13-15 are exact for the isolated or “pure” terraces, ledges and 

kinks, respectively. If those energy values are used to calculate 

energies of surfaces of any orientation, an error will result, which 

increases as the density of ledges and kinks increases, and, as will 

be shown below, as the atomic density in terraces and ledges 

decreases. An evaluation of these errors will be described in the 

following sections. 

4— APPLICATION TO F.C. C. CRYSTALS, 
MYE POTENTIALS 

Taking a orthormal basis e,, e., e,, with !e,! = 1, parallel 
to the cube edges of a f.c.c. cell, the general form of n is 

a 
— Sn, e,; » n;—even integer (16) 

i 

n=— 3 
24 

where the n, are integers with an even sum and a is the lattice 
parameter. For a plane with Miller indices (p,p.p;) = (p) we 

have 

—_
 

a= ; P=—ipe; P= z-Pi (17) a 
p us)

 

provided the p, are chosen as all odd (coprime) integers or all 

even integers (g.c.d. equal to 2). The indices [1, 1,1, ] of a lattice 

direction are chosen such that their sum is even; the repeat 

distance i,, along the direction is given by 

= —!1 P= I: fe
ar
) (18) 

aa 
Ne
 

The interaction energy between two atoms will be described 

by a Mye potential e| e’: 

wo] 
with e, e’ = 6, 9 and 12; « can be related to the cohesive energy 

per atom in the crystal, «,, and o to the near-neighbour dis- 

tance, r, (see Table 1 in ref. 7). Eqs. 9 and 13 for the surface 

energies take the form that has been derived in ref. 7. 
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The ledge energy (eq. 14) becomes 

V2 £0 7 
eL= tu Ty (one Ae o8e Ae) (20a) 

where 

of =F —; Was; => t (20b) 
Ly i i 

and 

m 
A. = x 7 (20c) 

with 

m=1/2in,u>0; 3 n, t,—0; P=> nj (20d) 

The u, are the indices of the lattice direction parallel to U. 

For the energy of a kink we obtain from eq. 15 

ex =~" (oF Vy—ot? He); P=XR (21a) 

where 

_— m’ 

¥,= 3 me (21b) 

with 

m = 1/2%n,,> 0; in, t= sn u,— 0; n? = dni (21c) 
1 1 1 1 

l, are the indices of the direction of the ledges. The sum ¥, can 

be written in a simpler form. Since rf is parallel to L andn-L>0 

we write 

n, = kl, k>1 

where k is an integer. This leads to 

= 2-e ¥ a Bazi 2   = V2 [2-e de (22) 

The actual calculation of the lattice sums A, and ¥, is 

discussed in the Appendix. 
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5. RESULTS 

5.1— Ledge and Kink Energies 

| Ledge and kink energies were calculated for f. c.c. Lennard- 

Jones crystals (potentials 6|9, 6|12 and 9|12) by the method 

described in the Appendix with M = 10 and k, = 10, respectively. 

Values of the calculated ledge energies are indicated in Table 1, 

TABLE 1 — Ledge energies (¢, /%, units ) 

  

    

  

  

Ledge energy 

Terrace Ledge 

6|9 6| 12 9|12 

(111) [110] 0.1467 0.1500 0.1566 

[112] 0.1594 0.1658 0.1785 

(002) [110] 0.1075 0.1038 0.0962 

[200] 0.1179 0.1188 0.1207 

[130] 0.1208 0.1202 0.1192 

(022) [011] 0.0376 0.0299 0.0145 

[200] 0.0526 0.0536 0.0555 

[211] 0.0548 0.0537 0.0513 

[222] 0.0531 0.0494. 0.0421 

(113) [110] 0.0184 0.0138 0.0044 

[121] 0.0397 0.0413 0.0443 

[031] 0.0371 0.0368 0.0361       
  

in «./r, units. The values are fairly similar for the three 

potentials. These data also show the effect of the associated ter- 

races on the ledge energy. The ledge energy tends to decrease as 

the atomic density in the associated terrace decreases. 
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Table 2 gives the energy of kinks located in the more close 
packed ledges, in e, units. The energies are again not too different 
for the three potentials used and decrease as the atomic density 
in the ledge decreases. 

TABLE 2— Kink energies (e, units ) 

  

  

  

Kink energy < 10 
Ledge —— —— 

6|9 6| 12 9| 12 

[011] 0.5447 0.6101 0.7409 

[002] 0.1980 0.1665 0.1034 

[112] 0.0683 0.0520 0.0195 

[013] 0.0161 0.0114 0.0021 

[222] 0.0095 0.0066 0.0010       
  

Surface energies, y, including terraces energies, y,~, were 

calculated in the preceding paper [7]; they are shown in Table 2 

of that paper. 

The method that we use to calculate the lattice sums is quite 
accurate. It is described in the Appendix. For example, when the 

number of terms in the direct sums is increased by changing M 

from 10 to 15 (respectively ~10* and ~15* terms in the direct 

sums), the resulting relative change in e«,;, is at most 10- for 

the 6|9 and 6/12 potentials and at most 10~ for the 9 | 12 poten- 

tial. A similar precision can be obtained for ex and yp (cf. ref. 7). 

5.2 — Applicability of the TLK Decomposition 

From a purely geometrical point of view, the TLK decom- 

position can be applied to any orientation of the surface and for 

any choice of the terraces and ledges. However, the surface energy 

calculated from eq. 8 using the energies of ‘pure’ terraces and 

ledges of the same crystallography as that of the actual terraces 

and ledges, may deviate more or less from the true surface energy. 
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This is because, as the ledges become closer or the kink spacing 

decreases, the actual contribution of ledges and kinks to the surface 

energy will change, since they will interact with each other. 

A first method for assessing the accuracy of the TLK decom- 

position is to compare the actual surface energies (see ref. 7) 

with those calculated by the TLK equation (eq. 8). Examples are 

given in Table 3 for planes vicinal to (002) and containing [110] 

TABLE 3 — Surface energies by TLK and by direct sum of planes 

with (002) terraces 

  

  

  

Surface energies (Ce, jf re units ) * 

Plane 
6|9 6| 12 9|12 

113 4 0.5115 0.5172 0.4678 0.4717 0.3803 0.3805 

024 b 0.5163 0.5238 0.4758 0.4811 0.3951 0.3955 

1152 0.5166 0.5176 0.4710 0.4717 0.3799 0.3799 

22 50a 0.5016 0.5025 0.4556 0.4563 0.3635 0.3640 

2 2 1004 0.4979 0.4980 0.4520 0.4520 0.3601 0.3601 

02 40% 0.5015 0.5016 0.4558 0.4559 0.3644 0.3644 

0 2 100% 0.4971 0.4971 0.4513 0.4513 0.3597 0.3597 

24 50a 0.5069 0.5069 0.4611 0.4611 0.3694 0.3694 

46 504 0.5122 0.5123 0.4664 0.4665 0.3747 0.3747 

26 506 0.5113: 0.5115 0.4658 0.4659 0.3747 0.3747 

46 20a 0.5202 0.5231 0.4760 0.4779 0.3874 0.3875       
  

* The values in italic were obtained by direct sum. 

a — [110] ledges; b — [200] ledges. 

or [200] ledges. The TLK values are calculated from eq. 8 using the 

energy contributions of ledges and kinks given in Tables 1 and 2 and 

the values of y, obtained in the preceding paper for (002). The 

correct values are written in italic; they are always larger than 

the TLK values. The agreement is excellent, even for planes 

deviating as much as ~25° from (002), for which the ledge 

separation is of the order of r. 
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Table 4 refers to the errors in different TLK decompositions 
of the (6 8 10) plane, which makes similar angles with (002), (022) 
and (111). The smallest error among the various decompositions 
is always smaller than 1 %. Of course better descriptions, leading 

to smaller errors, would be possible for the (6 8 10) plane, 

including one in terms of (6 8 10) terraces for which the error 
would be zero. 

TABLE 4—Effect of the TLK decomposition on calculated surface energy 

of (6 8 10) plane 

  

y Ce, / ¥? units ) 
  Terrace Ledge |0,p (degrees) OL (degrees) 

    

6|9 6|12 | 9/12 

(111) [110] 28.61 7.59 0.5139 | 0.4712 | 0.3856 

(002) [110] 26.57 8.13 0.5143 | 0.4715 | 0.3859 

(022) [200] 27.69 35.26 0.5058 | 0.4652 | 0.3839 

(022) [211] 27.69 0 0.5054 | 0.4649 | 0.3839 

(6810)*| — 0 = 0.5222 | 0.4769 | 0.3862             
  

* Direct sum. 

An alternative method of showing the accuracy of the TLK 

values consists of plotting the correct surface energies of a family 

of planes containing (only) ledges of a given type and terraces 

of a given type, as a function of the angle between the plane and 

the terraces, 0,. From eq. 8 (with 6, = 0) 

Pd 

COS Oy 

  = yg + — tg oy (23) 
hy, 

Fig. 3a shows a plot y/cosO, as a function of tg oe, for planes 
vicinal to (002) and containing [110] ledges. Similarly, Fig. 3b 

applies to (002) terraces and [200] ledges. The curves are very 

nearly linear, deviating from linearity only at large angles. For (113) 

with 0,, = 25°, the difference between the two terms of eq. 23 

is at most 1 % (for the 6| 9 potential). 
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A direct calculation of the error in the TLK equation is also 

possible. The method consists of comparing the correct eq. 12 with 

the TLK equation (eq. 8), in which the energies yz, e,, eq are 

calculated from eqs. 13-15. Consider, for example, the terrace term 

in the two equations. The difference results from the fact that in 

(a) (b) 
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Fig. 3 — Variation of surface energy with orientation (Op) for planes vicinal 

to (002): (a) in the [110] zone, [110] ledges; (b) in the [200] zone, [200] ledges. 

The surface energy is in fs units. Potentials: 6 -6|9; V-6|12;0 -9| 12. 

the TLK equation the atoms that enter in the lattice sum are those 

with n-T > 0, whereas in the correct equation all atoms with 

n-P > 0 are considered. The following result for the difference 

between the two sums is easily obtained, noting that for any 

atom n there is an atom -n : 

S (n-T)e(n)— 2, (n-P) «(n) = 2 zo De@) + 
n-T>0 n-T> 

n-P<0 

>» -T n seg (24) 
n-P=0 

The first sum in the right-hand side is for all atoms in a wedge 

formed by the two planes P and |: this term has a factor 2. The 

other sum is for atoms in the plane P to one side of its inter- 
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section with T. The difference (24) is expected to be always 

negative thus explaining why the TLK surface energies are always 

smaller than those obtained by direct sum. The error in the other 

terms can be obtained by similar equations. 

6 -- DISCUSSION 

The fundamental equations derived in this paper are the 

equaticn for the surface energy in terms of contributions of the 

energies of terraces, ledges and kinks, and the lattice sums that 

give the specific energies of terraces, ledges and kinks. 

As already noted, from a purely geometrical point of view, 

any TLK decomposition of a surface of arbitrary orientation is 

legitimate. From the point of view of energy, however, the TLK 

decomposition leads to an error which, in broad terms, increases 

as the spacing of ledges and the spacing of kinks decreases, and, 

on the other hand, as the atomic densities in terraces and ledges 

decrease. 

The energy per unit area of a surface obtained from eq. 8 is 

always larger than the terrace specific energy. This points to the 

conclusion that the terraces should be chosen as planes for which 

pointed cusps occur in the y-plots. These are in fact the more 

closed packed planes. In the f.c.c. crystals studied (Mye poten- 

tials) these planes are (111), (002) and (022). For similar reasons 

the ledges should be taken along directions, in each of these 

planes, corresponding to cusps in the «,-plot for that plane. Cal- 

culations show that these cusps occur in <110> and <112> 

directions in the (111) plane, in <110> and <200> directions 

in the (002) planes and in <011> and <200> directions in (022) 

planes. Decompositions using such terraces and ledges are therefore 

those compatible with the observed cusps in the y-and «,,-plots. 

A problem that can be raised concerns the range of applica- 

bility of the TLK decomposition using these low index terraces 

and ledges, and more generally any other set of terraces and 

ledges. The problem can be solved by finding the region in the 

stereographic triangle corresponding to planes for which the error 

in the TLK equation is smaller than a given amount, e.g. 1%. 

Our calculations show that for the three more close packed terraces 
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and for the two more close packed ledges in each of these planes, 

the error for the best TLK decomposition is at most ~1 %. 

Clearly, the accuracy of the TLK decomposition of energy 

depends on the type of potential, particularly on its range. As the 

results (of Table 3, for example) show, the accuracy decreases . 

as the ranges of the attractive and repulsive terms in the potential 

increase. 

The analogy with the coincidence site lattice (c.s.1l.) model 

of grain boundaries is worth a few comments. Formally any grain 

boundary can be described in terms of a reference c. s. !. boundary 

where a certain distribution of grain boundary dislocations is 

introduced. The good descriptions are those for which the dislo- 

cations are widely spaced, although a more sound test would be 

in terms of an energy criterion. For example, one could decompose 

the energy per unit area of any grain boundary as a sum of the 

energy of the c.s.1. boundary with terms due to the families of 

grain boundary dislocations [9]. The energy so calculated could be 

compared with that obtained directly, e.g. by computer calcula- 

tions, and the error used as a test to the applicability of the model. 

Unfortunately, it is not easy to obtain the energy terms associated 

to the dislocations, and the range of applicability of the c.s.1. 

model has so far been evaluated simply from the spacing of the 

dislocations [e. g. 10]. 

APPENDIX — CALCULATION OF LATTICE SUMS 

FOR LEDGE AND KINK ENERGIES 

The sum A, (eq. 20c) is calculated term by term up to 

ne + ng + ne = MP 

and the number, N, of atoms (terms) in the sum is counted. These 

atoms are within a half-circle in the plane (t), limited by a 

row [1] and centred in an atom 0, in that row (see Fig. 6 of 

preceding paper). The half-circle is in the half-plane C and its 

radius R,a/2 is given by 

T t 
— R?—- — R,=Nt 

2 eT 
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since the area per atom in (t) is (a?/4) t. The subtractive term 

corresponds to a rectangular region adjacent to the diameter 

through 0, , of thickness equal to one-half of the interrow spacing, 

which is (a/2)-(t/l); no atom centres occur in this region. The 

rows [1] in C, outside the semi-circle, are replaced by continuous 

layers of thickness equal to the interrow spacing and centred in 

each row, and with an atomic density equal to 4/( a°*t ). The region 

outside the half-circle is the difference between: (i) the area of the 

half-plane C outside the circle; (ii) a layer of thickness (a/4 ) (t/l) 

adjacent to the diameter of the semi-circle and outside it. 

The integrals that give the rest of the sum A, are calculated 

in polar coordinates: p (in a/2 units), 0. They have the form 

  

since the number of rows m is 

iv 
n= 0 1 cos 0 

For the integral over region (i) defined above, the integration 

limits are: »p (Ro, ©), 0(0, 7/2) leading to 

A. = [l(e—-3) RY 

For the integral over region (ii), the integration limits are: 

pe (R.,t/(2lcos © )), 6 (cos* t/( 2IR, ), 7/2). Using the approxi- 

mation cos 06 ~ 7/2 — 0, we obtain 

  
tz 1 1 

AY” = — 

e PF 8(e-1L) Re 

The value of A, is 

A == hai + A =A 

ec n<M n e e 
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The series ¢, (eq. 22) is calculated directly up to k= k,. 

The rest of the sum is 

  pe dk 
Pe ~ rn ket = [(e-2) (k + 1/2)e2}° 
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CHARGE DENSITY STUDY OF VF, 
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(Received 16 October 1985) 

ABSTRACT — X-ray diffraction data from two single crystals of VF,, 

obtained with two different wavelength radiations, Ag-Kz and Mo-K7, are 

compared in this paper. 

The corrections applied to the observed data and the reproducibility 

of the results are analysed. The main features of the electron density in this 

compound are discussed in terms of Fourier difference maps. 

1 — INTRODUCTION 

The study of rutile type structures has been undertaken in 

our Laboratory in order to investigate the main features of the 

electron density of these compounds. 

Previous results of X-ray diffraction from a single crystal of 

VF, (crystal I) at room temperature have already been reported [1]. 

These were based on intensity data collected on a CAD4 dif- 

fractomer at the Enraf-Nonius, Delft, using Mo-Ke radiation. In 

order to test the reproducibility of these results, the data collection 

was repeated in our Laboratory under identical conditions, using 

the same crystal and the same type of radiation. 

The corrections applied to the observed data were those 

described in reference [1]. Position and temperature parameters 

(Table 1) were refined from a set of 190 independent reflection 

intensities, using a least-squares technique. Comparison with simi- 

lar parameters obtained from the previous data set showed that: 
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i) the position of the fluorine atom agrees within the experi- 
mental error; 

ii) the anisotropic temperature parameters agree within 2 

standard deviations; 

iii) difference Fourier maps, (9,1.-Pcae)» e@Vidence similar 
features. 

Similar experiments were carried out on a second crystal (II) 

with different dimensions; in this case, two wavelengths were 

used, in order to investigate the extinction effects, as will be 

discussed. 

2— DATA COLLECTION 

A single crystal of VF, (cristal II) with prismatic shape and 

approximate dimensions (0.06 X 0.07 X 0.12) mm®* was selected 

from a large single crystal (from which specimen I had been cut) 

and used in the present work. 

The lattice parameters were determined using the standard 

technique developped for X-ray diffractometry, as: 

a — b = (4.806 + 0.010) A, c = (3.237 + 0.007) A. 

Two independent experiments (A and B) were performed on 

a CAD4 four-circle diffractometer using Ag-Ka and Mo-Ka 

radiations, respectively. This was suggested by a comparison of 

data obtained from crystals I and II: no evidence for extinction 

was found when Ag-Ka radiation was diffracted by crystal I]; 

however, when crystal I, which is significantly smaller (‘), was 

irradiated with a longer wavelength radiation (Mo-Ka), some 

degree of extinction was detected as will be mentioned later. 

Experiment B (Mo-Ka) was hence carried out as an attempt 

to decide whether this effect should be attributed to the difference 

in wavelength of the incident beam or to a distinct mosaic spread 

in crystals I and II. 

(:) The volume ratio for both crystals is V,,;/ V, = 2.5. 
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Integrated intensities of reflections out to (sino )/A = 1.02 A 

in experiment A and (sine )/X = 1.08 A* in experiment B were 

measured in » - 2 © scans. Each reflection hkl was considered to be 

“observed” only if the corresponding integrated intensity, I,,,, was 

such that I.) > 3 ong, One being the standard deviation of Ing - 

For each hkl, up to 16 symmetry-equivalent reflections were 

measured in order to correct for absorption of the beam inside 

the crystal. 

A set of 1361 reflections were observed in experiment A and 

1895 in experiment B. These will be referred to as sets A and B, 

respectively. 

A few reflection intensities (five in experiment A and eight 

in B) were periodically measured and used as a standard against 

which all the other intensities were checked. 

A plot of the standard intensities against time of measurement 

showed that their variation was in all cases smaller than 0.03 %. 

3— DATA ANALYSIS 

Integrated intensities in sets A and B were corrected in the 

usual way for Lorentz and polarization effects [1]. Two different 

absorption corrections were calculated: 

i) one which is based on the observed shape of the crystal 

from which the pathlengths of the incident and diffracted 

beams inside the crystal are derived; 

ii) an empirical correction suggested by North et al. [2], 

which is based on the intensity variation for a few reflec- 

tions occurring at high 7'-angles (70° <‘/< 90°) when 

the crystal is rotated around the scattering vector. 

The latter method was found to yield the best agreement 

between the intensities of equivalent reflections; hence, the 

empirical absorption correction was applied to the data in 

both sets. 

Least squares refinements including the 143 independent 

reflections of set A and 212 of set B were carried out. A plot 
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of the calculated structure factors against the observed ones 

placed on the same scale (Fig. 1 a)) showed that a few reflections 

    

Fobs 

A 
L 45 

* 

L si 

y 

” 
+ 35 wa 

%? 

V7 
, x 

L 7 / 
F 

L 25 Fd 

ee 

ee 
e 

e L ? 

eo 

°° 
io rg 

a 

J 
e 

i Fealc 

L 1 1 1 1 1 1 1 1 — 

5 1 15 25 35 45 

Fig. 1 a) — Plot of SF, against Be for crystal II (Mo-Ka radiation ) 

e before the extinction correction 

* when an extinction correction is applied (only reflections 

significantly affected by extinction are represented) 

of data set B were affected by extinction; this is indicated by the 

deviation of the curve from a Straight line. 
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No evidence for extinction was found in data set A (Fig. 1 b)). 

An extinction parameter was hence included in the refinement 

carried out for set B and the corresponding correction applied to 

these data. 
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12 

cale   
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Fig. 1 b) — Plot of SF, against B. for crystal II (Ag-Ka radiation ) 

According to Stevens and Coppens [3] a refinement based on 

high order reflection data should yield a more reliable value for 

the scale factor, S. In fact the low angle reflections are the most 

likely to be affected by extinction and asphericity in the electron 

distribution; therefore, their inclusion in a refinement is liable to 

mask the results. 

Hence, a second refinement was carried out, based on reflec- 

tions with (sino )/A > 0.6 A“, already corrected for extinction. 

The results are shown in Table 1; the scale factors can be compared 
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with those obtained from a refinement including all the reflections, 

namely: 

S; (Mo-Ka ) = 0.1924(7) , Sq; (Ag-Ka ) = 0.2124(8) , 

Sy; (Mo-Ka ) = 0.1007(7) 

TABLE 1 

  

  

  
  

  

Parameter Crystal I ( Mo-Ka ) Crystal II ( Mo-Ka ) Crystal II ( Ag-Ka ) 

Atom: V 

Bis = Bos 0.00549 (3) 0.00528 (2) 0.00565 (4) 

Bag 0.01073 (11) 0.01001 (10) 0.01037 (17) 

Bye -0.00005 (4) -0.00065 (12) -0.00076 (28) 

Atom: F 

x 0.30509 (15) 0.30533 (10) 0.30536 (20) 

Bar = Boe 0.01054 (14) 0.01038 (9) 0.01088 (16) 

Bos 0.01609 (48) 0.01522 (32) 0.01397 (46) 

Bis -0.00993 (44) -0.00961 (38) -0.00965 (59) 

g (1.12+1.05) * 10-5 | (0.955+0.144) x 10-6 

S 0.1936 (7) 0.0998 (5) 0.2174 (10) 

R 0.014 0.007 0.017 

Ry, 0.015 0.012 0.023         

An attempt was also made to measure the absolute scale experi- 

mentally. It is well known that the integrated intensity of any 

reflection (Ew) is related to the absolute value of the corre- 

sponding structure factor, F,,,: 

where 

186 

(Eo) = S | Faps|? 

  
e2 2 

S = I, N28 ( ) V. 
mc?” 
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where I, is the intensity of the primary beam, N the number of 

unit cells per unit volume, »X the wavelength of the incident 

radiation, V, the volume of the crystal used in the experiment 

and the remaining symbols have their usual meaning. 

The measurement of I, was carried out using a method 

developped in our Laboratory [4] in which the use of absorbers is 

avoided; the dead time of the detector was measured and the 

corresponding correction applied to I,. 

Values of 0.2310 and 0.09675 were obtained for sets A and B, 

respectively. The estimated accuracy in S is of the order of 4 %; 

the main source of error (which may have been overestimated) 

is the determination of the crystal volume, V,. This was calculated 

by careful observation of its shape and measurement of the length 

of its edges under a powerful microscope. The origin of the error 

in I, (~1%) is the unhomogeneity of the beam in the region 

occupied by the crystal; the dead time of the counter was measured 
with a precision better than 2 %. 

In either case the experimental value of S was found to be 

closer to the value obtained from refinement of high order data. 

Final structure factors (F..).) were calculated for reflections 

in sets A and B, using the parameters obtained from the latter 

refinement and assuming spherical distributions of the atomic 

electrons. 

4— FOURIER DIFFERENCE MAPS 

Fourier analysis of the differences (S Foy. - Fear ) enabled 
difference density maps to be drawn for two sections of the unit 
cell, namely [001] and [110]. These are shown on Figs. 2), b) 

and 4a), b) for crystal II and on Figs. 6a), b) for crystal I. The 

results of Fourier syntheses of the corresponding standard 

deviations can be seen in Figs. 3, 5 and 7, which show that the 

error is only significant at or near the atomic sites. On each map 

one curve corresponds to 0.17 e/A’*. 

A few significant features can be observed in all maps: 

i) a positive density near the vanadium sites along the 

directions joining two vanadium atoms (which are second 

nearest neighbours) on the z = 0 plane; 
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2—Fourier difference maps, SF,-F,., for crystal II (Ag-Ka radiation). 

Contour levels at 0.17 e/A®. Broken lines represent negative contours. 

e: position of V atoms; *: position of F atoms 

a) Section [001] of the unit cell; b) Section [110] of the unit cell 

3—Fourier maps representing the distribution of errors, for crystal II 

(Ag-Ke radiation ). Contour levels at 0.17 e/ Aes 

a) Section [001] of the unit cell; b) Section [110] of the unit cell 

4—Fourier difference maps, SF.-F,, for crystal II (Mo-Ka radiation ). 

Contour levels at 0.17 e/A®. 

e: position of V atoms; *: position of F atoms 

a) Section [001] of the unit cell; b) Section [110] of the unit cell 

5 —Fourier maps representing the distribution of errors, for crystal II 

(Mo-Ka radiation ). Contour levels at 0.17 Te Ae 

a) Section [001] of the unit cell; b) Section [110] of the unit cell 

6— Fourier difference maps, SF.- Bo for crystal I (Mo-Ka radiation ). 

Contour levels at 0.17 e/A®*. 

e: position of V atoms; *: position of F atoms 

a) Section [001] of the unit cell; b) Section [110] of the unit cell 

7—Fourier maps representing the distribution of errors, for crystal I 

(Mo-Ka radiation ). Contour levels at 0.17 e/A®. 

a) Section [001] of the unit cell; b) Section [110] of the unit cell
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ii) a positive density near the fluorine sites delocalised 
towards the vanadium atom; 

ili) a negative density across the line joining the vanadium 

atom at the center of the unit cell and the fluorine atoms 

on the XY planes above and below. 

Assuming that only the 3d electrons of the transition element 

contribute to the observed difference densities, 9... - cai, an 
attempt will be made to deduce from these the degree of 

asphericity in the distribution of such electrons. 

We are indebted to the Cultural Service of the German Federal 

Republic Embassy, the Deutscher Akademischer Austauschdienst 

(DAAD) and the German Agency for Technical Cooperation 

(GTZ ) for their interest that made possible the offer of a CAD4 

automatic diffractometer used for the experiments described in 

the present work. 
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MAGNETORESISTIVITY IN MAGNETIC METALS 

Theoretical principles and a high accuracy method 
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ABSTRACT — The paper reviews basic physical mechanisms underlying 

magnetoresistivity in normal and magnetic metals. It describes an experimental 

high accuracy system implemented in our laboratory and discusses some 

typical results of magnetoresistivy measurements in magnetic metals; brief 

comments on their interpretation are also presented. 

1 — INTRODUCTION 

When a magnetic field H is applied to a metal, small changes 

occur in the value of the electrical resistivity, originating the so 

called magnetoresistivity coefficient at temperature T, 

Ap/p =[ p(T, H)—p(T, 0)]/pC(T, 9) (1) 

In a non-magnetic metal the change in resistivity is caused 

essentially by the curvature of the electron trajectories produced 

by the magnetic field (Lorentz force) [1-3]. The magnetoresistance 

then increases with the sample purity (larger electron mean free 

paths), as confirmed by experiment. 

In a magnetic metal, besides the curvature effect (normal 

magnetoresistivity), two extra contributions are usually observed 

in Ap/p : 

Taking a simple ferromagnetic metal with localized magnetic 

moments m, below the Curie point (T < T,), the first extra con- 

tribution arises from an orientational effect of H in the spon- 

taneous magnetization (M,), as the scattering of an electron 

( wavevector k ) with a magnetic ionic moment m; usually depends 

on the angle between k and m, [4,5]. Since the thermal average 

<m,> has a definite direction in each magnetic domain, the 
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change of such directions produced by the applied field slightly 

modifies the intrinsic electric resistivity of each domain, therefore 

the sample resistivity. This effect is easy to observe in soft 

magnetic metals, for which M, rotates easily under the applica- 

tion of H (low magnetic anisotropy). 

Besides this orientational effect, the field H also reduces the 

(thermal) spin fluctuations in the system. The resulting increase 

in the magnetic order usually produces a decrease in the electrical 

resistivity (fluctuation effect) (*). This magnetoresistivity should 

be bigger in the vicinity of a magnetic transition point, where 

the spin fluctuations dominate [5, 6]. 

Magnetoresistance data can be usually related to fundamental 

aspects of the electronic and/or magnetic structure of the metal 

under investigation. 

In normal metals, direct information can be obtained on the 

Fermi surface structure (open and closed electron orbits; shape 

and connectivity) when the measurements are performed at low 

temperatures and in high purity samples [2, 7, 8]. 

In magnetic metals, magnetoresistivity measurements enable 

the study of fairly diverse problems, ranging from magnetic 

anisotropy constants [11] and spin reorientation transitions [12], 

to critical phenomena and corresponding exponents near the Curie 

or Néel transition points [13]; when magnetic interactions compete, 

magnetoresistance studies may give fairly detailed information 

on the succession of different magnetic structures under the 
application of an increasing magnetic field [14, 15]. 

The magnetoresistivity effects are usually fairly small, both 
in normal and magnetic metals, corresponding to variations in the 

electrical resistivity of the order of 10-*°— 10 Q.m per 10° Am 

applied field (corresponding to B ~ 1 Tesla). The smallness of the 

effect puts stringent conditions on the experimental technique, and 

corresponding accuracy, particularly for detailed studies of the 

structure of Ap/p curves, either as a function of H or temperature. 

In section 2 of this paper a brief account is presented on the 

basic physical mechanisms underlying the behaviour of the 

magnetoresistivity in normal and magnetic metals. In section 3 

(*) In ferromagnetic metals with large conduction electron wavelengths, 

the increase in magnetic order may produce an increase in », due to 

coherence effects in the electron. scattering by different magnetic 

moments [9, 10]. 
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we describe in detail an experimental system implemented to 

measure Ap/p with great accuracy, with an automatic recording 

unit. In section 4 we present various applications of the 

magnetoresistivity measurements in magnetic metals, making brief 

comments on the physical information provided in each case. 

2—PHYSICAL ORIGIN OF THE MAGNETORESISTIVITY 

2.1 — Phenomenological equations 

Normal metals 

In general, the electrical fields causing transport phenomena 

are sufficiently weak to be valid a linear approximation, 

Ei= pix Jx (2) 

between the components E, of the electrical field (E) and the 

components j, of the electrical current density (j). The quan- 

tities ¢,, define the generalized electrical resistivity tensor for the 

material under consideration. Isothermic conditions are assumed 

here and repetition of the k-index indicates a sum over the 

values (1, 2,3). In the presence of an internal magnetic induc- 

tion (B ) caused by the applied magnetic field (H ), the resistivity 

tensor obeys the Onsager relations ¢,,(B) =p, (-B). 

Separating ;, into a symmetrical and an antisymmetrical 

part (in B ), and having in mind that the effect of a magnetic field 

is usually fairly small, we can expand the resistivity tensor 

components in power of B,, obtaining, to second order in B, 

the result [16, 17], z 

px (T, B) = pu (T, 0) + ei aim (T) By + Bikim (T ) B, B,, (3) 

where «;,; = +1 for.i,k,l1=.1,2,3 (or any even permutation), 

ej) = —1 for odd permutations, and zero otherwise. 
In a standard measurement of the electrical resistivity one 

determines the electrical field component along the current direc- 

tion (say n), i.e. 

E-n=E, n;= px 0; Jy (4) 
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with j = jn,|n|=1. We then have for the electrical resistivity 
measured at temperature T, in the n-direction and under a magnetic 
induction B: 

e(T, n, B)=(E-n)/j = px ny mh (5) 

Introducing p;, given by eq. (3), we obtain: 

e(T, n, B)=px(T, 0)njn, + [ eng 1) My] aim (T ) By, 

TL Rikim (CT) 204] BB, = p(T, n,0)+Am(T, n) BB, (6) 

where Ap, (Tn) = Bim(T) njn,, and the first order terms 
in B do not contribute to the electrical resistivity (ex 7nj)n, = 0). 

We can then define a magnetoresistivity coeficient (eq. 1) 
corresponding to an electrical current along n and a magnetic 

induction along b (B=B b, |b|=1): 

(4p /e),, 6 =[e(T, n, B)—p(T, n, 0)]/p(T, n, 0) 

=[Aim(T, 1) / p(T, mn, 0)] BB =[ rim (T, 1) 8,8, 1B (7) 
where 

Yim (T, A= Aig GT n)/p(T, n, 0). 

The quadratic field dependence of the magnetoresistivity, obtained 
at the present level of approximation, is well reproduced by the 
experimental result in most metallic systems investigated [1-3]. 

Magnetic metals 

In this case, because of the existence of magnetic moments mi, 
the curvature effect associated with the Lorentz force is enhanced, 
due to the increase of the internal magnetic induction: 

B= »,.(H+M+H,) (8) 

M is the technical magnetization produced in the sample by the 
applied magnetic filed, M=%,<m,>/ (© is the sample 
volume), and Hq is the demagnetizing field, H, = —DM 
(D = demagnetizing factor; we assume, for simplicity, an 
ellipsoidal sample) [5, 18]. 
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Besides the curvature effect, we must also consider carefully 

the scattering between the conduction electrons and the magnetic 

moments m;. The corresponding contribution to the electrical 

resistivity depends on the degree of magnetic order present in the 

sample, i. e. on the value of the spontaneous magnetization at each 

temperature, M,(T) (mean field effect), and on the magnetic 

moment correlations e.g. < m,+mj; >, particularly near the criti- 

cal points (fluctuation effects) [19]. 
Furthermore, since each electron collision with a magnetic 

moment is in general anisotropic (angle k, m;), the electrical 

resistivity also depends on the angle 6 between the electrical 

current and the technical magnetization M (or, equivalently, of 

the applied field H) [5]. 
Putting these effects together (curvature, degree of magnetic 

order and scattering anisotropy) we can write: 

px ( T, H) = 3,.(T, By pecl; M, 9,<m,-m, >) (9) 

where %, contains the normal magnetoresistivity effect (with the 

trivial inclusion of M effects in B, eq. 8) and op represents the 

new magnetic contributions, associated with magnetic order 

(M, + correlations between fluctuations ) and with the electron 

scattering anisotropy (angle 6). 

In the following section we focus attention on some basic 

microscopic mechanisms which can contribute to the magneto- 

resistivity term p™. Within the scope of this paper, such 

treatment will be mainly illustrative rather than exhaustive. 

2.2— Thermal disorder and fluctuation effects. Microscopic 

mechanisms in magnetic metals 

a) Zero field case (H= 0) 

In a perfect crystal with the moments m, fully ordered at 

T= 0K, the conduction electrons travel through a_ periodic 

potential ( electrostatic + magnetic ), with no damping in the cor- 

responding wavepackets; we then have » = 0 (*). In a simpie 

(*) In an ideally pure crystal, no d.c. conductivity exists at T= 0K; 

the conduction electrons simply oscillate under the action of a d.c. electrical 

field, due to the caracteristic periodicity of the energy bands [20]. 
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approximation the motion of a conduction electron through the 
lattice can be described by the Hamiltonian: 

N N 

=—he/(2m) VF + SX vCr—Ri) + ¥ G(r—Ri)s-J; (10) 

where the first term represents the electron kinetic energy, the 
second term the electrostatic electron-lattice interaction ( R; refers 
to the i ion in the lattice and r to the electron position ), and 
the third one gives the magnetic interaction between the electron 
spin s and the ionic magnetic moment m; = (g;—1) upd; (gy is 
the Landé factor and wg, is the Bohr magneton ); J, is the total 
angular momentum of the ion i and G(r—R;) measures the 
strength of the magnetic interaction. 

At finite temperatures and below the Curie point (assuming, 
for simplicity, a ferromagnet), thermal disorder breaks the 
periodicities of the last term in eg. 10, with the consequent 

appearance of a magnetic resistivity contribution. Standard trans- 

port theory leads to the following expression for the magnetic 

resistivity measured along the i crystal direction [21, 22]: 

N 

Pin T)/ Pin co 2h C RT) 9° (Ri) (11) - 

where p,,,, is the saturation value of the magnetic resistivity 
(T>>T,), 1'(R;, T) is the correlation function between ionic 

moments at distance R;, 

PCR, T)=<)-§>/[I(I+1)] (12) 

and ¢“) (R; ) is the interference function for the electron scattering 

from different ions, which has the electron wavelength A, as a 
characteristic parameter for each metal. For an arbitrary crystal 

lattice, ¢%) (R;) is generally anisotropic, always satisfying the 
two conditions: 

3 g(R,)=0, 6(0)=1 (13) 2 
Notice also that 1(0,T) = 1. 

Introducing these conditions in eq. 11 we obtain: 

p?(T) N <i et 4 3 ae OCR sa po i0 J(J+1) * Re 
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Using the angular momentum thermal averages <J, >, <J;> 

and the thermal fluctuations 8J,, 8J; we can write: 

j=<h> +8, j= <)> + 5), (15) 

and thus 

£4,-h> = <i>. 2) >t (16) 

In a single domain ferromagnet, < J, > = <J; > =<J> z and 
< J > —=Jo(T), where o(T) is the reduced spontaneous mag- 

netization at temperature T, o(T) =M,(T)/M,(0); we then 
have 

<4-4> =I [o(T)] + <8h,-8);> (17) 
Introducing these results in eq. 14, and using the properties of 

6 (Rj), we obtain: 

p(T) J 2 J s 2 = 1—-— [6(T)] + = & <-> 9 CR) 
Pm oo I+] J(J+1) ix0 

(18) 

The [o(T I term represents the mean field effect on ¢“), asso- 

ciated with the temperature variation of the spontaneous mag- 

netization. The last term gives the effect of the correlations 

between the thermal fluctuations in different ions. 

If the system is not too close to the Curie point, the 

fluctuations 8J; and 8J; are usually fairly small and p(T) is 

dominated by the mean field term. Close to the Curie point 

«(T)— 0, the thermal fluctuations grow very rapidly, and the last 

term in eq. 18 may become important (*). The correlations between 

the thermal fluctuations (8J; and 8J,) therefore determine the 

critical behaviour of the electrical resistivity near T,. 
For temperatures not in the immediate vicinity of T,, the 

correlations between fluctuations can be described in terms of a 

mean field treatment (Landau type [16]; |(T—T.)/T.| > ee 
where «, is the so called reduced Ginzburg temperature [23], 

usually of the order of 10° for many magnetic metals). 

(*) The fluctuations may be large, but if they are uncorrelated, the 

corresponding term < 8J,- 8 F > could still be neglected. 
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For temperatures in the range |(T—T,)/T.| < ec, a full 
treatment of the fluctuations is necessary, within the context of 
the modern theories of critical phenomena [24], namely renorma- 
lization group treatments [25,26]. Inside such critical region, 

scaling laws apply, and the critical exponents depend only on the 

lattice dimensionality (d) and on the number of components (n) of 

the order parameter; in particuiar, they are independent of the 

symmetry of the crystal lattice and of the direction in which the 

electrical resistivity is measured [27]. 

b) Magnetic field effects 

When a magnetic field (H) is applied, two distinct effects 

arise, in connection with the terms discussed in eq. 18. First, the 

progressive alignment of the magnetic moments m, produced by H 

increases the value of the sample magnetization, reducing there- 

fore p,,(T) (negative magnetoresistance arising from the mean field 

term in eq. 18). Second, the field H modifies the correlations 

between the different magnetic moments (i, j), an effect which 

becomes increasingly important as T approaches T,. This leads 

to characteristic critical features in the magnetoresistance near T,, 

both in terms of the temperature and of the magnetic field. The 

sign of the corresponding magnetoresistance depends on the par- 

ticular system under study, through the interplay between 

o0 (Rj; Aw) and < 8J,-8J; >, in the lattice sum of eq. 18. 
An extended summary of such effects of H (on thermal 

disorder and fluctuations) has been given recently in the litera- 

ture [13], including the critical indices theoretically expected for 

the magnetoresistivity in the vicinity of the Curie point, within 

different temperature and magnetic field ranges [6, 28, 29]. 

2.3 — Anisotropy of p,, versus M, (H = 0) 

2.3.1 — Phenomenological approach 

a)’ Single domain ferromagnetic crystal 

Quite generally [30], the electrical resistivity of a single 

domain monocrystalline ferromagnetic metal, besides the depen- 

dence on the temperature due to spin disorder (section 2.2), also 
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depends on the direction of the electrical current | with respect 

to the crystal axes ¢, (lattice anisotropy, e.g. due to different 

dynamical properties of the conduction electrons travelling along 

different crystal directions) and on the angle between | and the 

spontaneous magnetization M, (magnetic anisotropy, e.g. due to 

spin-orbit effects on the scattering of the electrons by the ionic 

magnetic moments). Normally we can write [31]: 

p(a, b) =F (a;, Bi, T) (19) 

where a, and 8; are the cosines of the angles (M,, c;) and 

(Il ¢,) respectively (*); a, b are the corresponding unit vectors. 

The general form of F depends on the symmetry of the crystal 

under consideration, as it must be invariant with respect to all 

its symmetry operations. For example, in the case of hexagonal 

symmetry and to a fourth order approximation, one can show, 

in analogy with similar formulae for the magnetostriction [32] 

(a physical property with the same tensorial character as the 

electrical resistivity): 

p(a, b)=a,+k, ( 62-1/3) +k, («2-1/3) +k, ( 3-1/3) (2-1/3) 

+k, [ ( a’ -a’,) (p,-B)+4 a, A By B,]+k, ( Qa 8, tea, B, ) a, Bs (20) 

where a, is the non-orientational contribution to the resistivity 

(given in 2.2) and k, are the anisotropy constants for the elec- 

trical resistivity. 

b) Multidomain ferromagnetic crystal 

The direction of the current with respect to the crystal axes 

continues to have a single value b. However, because of the 

domain magnetic structure, the direction of M, with respect to 

the crystal axes changes from one domain to the next. In each 

domain M, selects one of the (n) easy directions in the crystal, 
which we characterize by the unit vector 4, (1 = 1,2,...n). 

Since the orientational anisotropy of the resistivity is fairly 

small, the p-differences between different domains are small 

(*) We include explicitly the angles between M, and the crystal axes, 

since the crystal anisotropy is always operative, and may distinguish different 

directions of M, with respect to ¢,, e.g. through magnetoelastic effects. 
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compared with the domain resistivities ¢ (a, b). The effective 
resistivity of such multidomain structure can then be approximated 
by [33], 

re (b) ~fe (a, b)} (21) 

where {...} means a spatial average over the sample, and a fine 
domain structure is assumed. We then write: 

N 
5 D d Pe B 

Pp (b)=C1/2) & = Cup Cay, b ) of? (22) 

where © is the sample volume, o{) is the volume of the r mag- 
netic domain (r = 1, 2,...Nq), and c,, are occupation numbers: 
C,,; = 1 if the domain r has M, along the | easy crystal direction, 
and c,; = 0 otherwise. A complete description of the domain 
structure means therefore the knowledge of all the individual 
domain volumes o{") and of the corresponding easy direction (Cy 
coefficients). 

Performing first the r sum we get, 

Na 
p(B) = (1/2) % pCa, b) S cof (23) 

l= r=1 

Na 

Notice that > C,, of gives the total domain volume corre- 
r=1 

sponding to the | orientation, which we call qa (l); we then have 

pee(b) = (1/2) ¥ pCa, b)og(L) (24) 

If the magnetic domains are equally distributed over the easy 
directions, »{ = Q/n; and the simple result appears: 

pa(b) =(1/n) % pCa, b) 5) 

c) Multidomain polycrystalline ferromagnet 

We assume the sample as an assembly of N, crystallites 

oriented at random, each one numbered by an index j, with 

volume ©;, and with its own magnetic domain structure. Due 

to the polycrystalline structure, the current | makes in general 

different angles (1, c\) with the crystal axes of the different 
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crystallites, c{. The direction of | inside each crystallite can 

then be associated with a corresponding unit vector b“. Due to 

the domain structure, we can first calculate the effective resisti- 

vity of each crystallite, using eq. 24: 

Pee (b®) = (1/9,) & pCa, b®) o(1) (26) 
1=1 

The spatial average over the crystallites can now be written: 

N 

per (sample ) = (1/9) pe (b?) 2, (27) 

Introducing the explicit form of Ger (b® ), eq. 26, we obtain: 

N 

Pe (Sample) =(1/2)% & p(a,, b®) (1) (28) 
j=1 1=1 

If we assume that the crystallites have similar volumes (0, ~ 2/N, ) 
and that M, is equally distributed over the n easy directions, we 
then get the simple result: 

N 

pec (sample) = 1/(N.n)- ¥ % pCa, b?) (29) Sie 

2.3.2 — Microscopic approach 

Physical origin of the (i, M,) anisotropy; Smit mechanism. 

Experiment shows that the anisotropy of the electrical resisti- 

vity with respect to the direction of the spontaneous magnetization, 

M,, is present in most magnetic metals, ranging from heavy rare 

earths [12,34] to 3d transition elements [5] (localized, quasi- 

localized or itinerant magnetism), either isolated or in the form of 

alloys, compounds or pseudocompound systems. Furthermore, the 

anisotropy is present even in the cases when the crystal lattice 

has cubic symmetry. This shows that the observed anisotropy has a 

magnetic origin, and must be a consequence of an anisotropic scat- 

tering mechanism. In the case of cubic crystals, the anisotropy could 

result from some lower-than-cubic-symmetry scattering potential 

(e. g. magnons) with cubic-symmetry initial and final states, or 

from an isotropic scattering potential with lower-than-cubic- 
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symmetry wavefunctions [30, 35, 36,37]. The latter mechanism is 

generally considered the more likely one in the case of 3d transition 

metals, and was successfully applied, for the first time, by Smit [4] 

to discuss the intriguing resistivity anisotropy in cubic transition 

metal ferromagnets. To illustrate the subtle mechanisms underlying 

the magnetic anisotropy, we will concentrate here only on the 

Smit mechanism, following closely the review of McGuire and 

Potter [30], which assumes an isotropic scattering potential V(r). 

As observed by Smit, in 3d cubic crystals the symmetry of 

the electronic wavefunctions associated with each lattice ion can 

be lowered by the spin-orbit interaction, 

H, = KL:S (30) 

provided the electrostatic potential is radial; L and § are the ion 

total orbital momentum and total spin, respectively, whereas k 

measures the strength of the spin-orbit coupling. 

In the absence of such interaction, the five 3d atomic 

orbitals are degenerate (9, = xzf(r), 9: = yzf(r), os = xyf(r), 

gs — (X?—y?)f(r)/2, 95 = (1? — 3z*) f(r) /(2V3) ), and such degen- 
eracy remains even when we switch the (cubic symetry) crystal 

field interaction. Recalling that in transition metals the main 

resistivity mechanism results from the transitions of electrons 

from the s-conduction band (¥, ~ e'*" ; high mobility; low effective 
mass ) to the d-band (4, wavefunctions; appropriate linear com- 

binations of »; functions, with the crystal field (cubic) symmetry; 
low mobility; high effective mass), no anisotropy exists in the 

absence of spin-orbit coupling (within the model under discussion). 

The spin-orbit interaction makes a contribution to the energy 

of the d-states that depends on spin or magnetization direction, 

making it favourable for M, to point along certain crystallo- 

graphic directions. Thus the d-electron spin is coupled to its 

orbital motion, ‘which in turn is coupled to the lattice by the 

crystal field. In the presence of H,,, the degeneracy in the 4; 
functions is lifted, and new wavefunctions #{” then result, asso- 

ciated with each 3d ion. Due to the direction effect of M,, the 

functions ®( exhibit symmetry lower than cubic and are not 

eigenfunctions of S, because H,, mixes states of opposite spin. 

Because the levels associated with different # functions 

have not all the same energy, a particular combination of », functions 

is therefore energetically favoured. If some functions »; predomi- 
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nate over the others in such particular combination, the resistivity 

anisotropy immediately results. To illustrate this in simple terms, 

let us choose an extreme case in which the spin-orbit interaction 

selects, as dominant, the function », = xyf(r) (in this case, M, 

points along OZ, by symmetry). 

The transition probability of a conduction electron (k vector, 

vy, ~ er) to the 3d band (¢, state), produced by the scattering 
potential V(r), is proportional to the usual Born approximation 

factor, 

  Pa(te>es) &| fe '*'v(r) ¢, dr]? (31) 

Since k, ~ a' (a = atomic spacing ) and ¢g, is localized in the 

vicinity of the scattering ion, the dominant contributions to the 

integral correspond to |k.r|<<1, which justifies a_ series 

development of the exponential. We then have, after trivial cal- 

culations, 

Poa (vx > os) % keke| [ (xy)? V(r) f(r) del? (32) 

The s-d transition probability is in this case highly anisotropic, 

P.q « ki kj , depending on the particular direction of the elec- 
tron (k). For example, for an electron moving along OX or OY 

(k, =0, k, = 0, respectively) no scattering occurs, whereas 

collisions occur when both k, and k, are different from zero. 

We recall that the reference axes have been imposed by the M, 

direction, along OZ in the particular case just discussed. Therefore, 

the anisotropy with respect to the crystal axes is primarily due 

to the anisotropy with respect to M,. 

2.4 — Anisotropy of 0,, v. technical magnetization M(H +0) 

2.4.1 — General expressions 

For the general case of a polycrystalline (N, crystallites ) 

multidomain ferromagnet we have seen that the zero field electrical 

resistivity is given by the expression, 

N 

pa (T, 0)=(1/2)% & pCa, b®)oP(1,0) — (33) 
j=1 l=1 
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where o() (1, 0) represents the total volume of the domains in 

crystallite j orientated along the l-easy direction (for H=0). 

When a magnetic field is applied, the first effect is a redistri- 

bution of the domain pattern, through domain wall motion, so as to 

increase the domains oriented in favourable directions (with 

respect to H) at the expense of the domains oriented in 

unfavourable directions. Provided no magnetic domain is extinct 

in such initial process, the sum over I is still complete, and the 

only field effect will be the change in the individual magnetic 

domains. We can then write for the corresponding magnetoresis- 

tivity: 

N 
Ap if ] ¢ an 7 ha 

= = —— -— 3» 3 a,, b®) Ao (1, H 34 

— p(T, 0) Q j=! =, Po 1 ) Aol) ( ) (34) 

where Ao) (1, H) = 09 (1, H)—o(1, 0) . 

When some of the easy directions cease to be represented by 

magnetic domains, the sum over I| is progressively restricted. 

Ultimately, at higher fields, only a single easy direction survives 

in each crystallite (monodomain situation), not necessarily the 

same for all crystallites. Representing such particular crystallite 

easy direction by a unit vector 4);, we then have: 

be a ra(T) H) = 2S o(a, BP) PCL H)8,, BS) 
j 1=1 j j=1 J 

When the field produces this situation, no further domain 

wall motion exists inside each crystallite, and the magnetization 

process can only proceed through rotation of the spontaneous 

magnetization inside each crystallite, towards progressive align- 

ment with the magnetic field H. 

The above expressions, although physically adequate to 
identify the various effects associated with the magnetoresistive 

process, are not in a simple form appropriate to analyze the 

experimental results. Such formulae can be obtained through an 

adequate averaging process over the sample, restricted to the 

case of saturation resistivity, i.e. Ap is calculated between an 

initial demagnetized state (random domain distribution) and a final 

state where M, is everywhere aligned with H. 

204 Portgal. Phys. — Vol. 16, fasc. 3-4, pp. 191-220, 1985



J. B. Sousa et al. — Magnetoresistivity in magnetic metals 

As shown in next section, the following general expression is 

obtained for the orientational dependence of the magnetoresistivity, 

(Ap / p)sat = ACT) + BCT ) cos? 0 (36) 

where @ is the angle between the electric current and H, and A,B 

are temperature dependent quantities, which can be related with the 

magnetoresistivity anisotropy coefficients k, (defined in 2.3.1.a)). 

2.4.2 — Averaging processes 

(i) Single crystal samples 

To illustrate this averaging process, let us take a hexagonal 

single crystal, with the electric current flowing along b. 

When the applied field H (along an @ direction) produces 

magnetic saturation, we have M,||H everywhere in the sample, 
i.e. A = G. We can then calculate the saturation resistivity, 9 sat , 

using eq. 20 for single crystals, 

Psat =P ( u, b)=a,+k, ( 62-1/3)+k, ( u2-1/3)+k, ( 62-1/3) (2-1/3) 

+k, [(up-a) Chl) 4, 0,6, 8, 1+ k, ( u, fb, +u, Bet; B, (37) 

When H = 0, we assume the sample to be fully demagnetized, 

with the magnetic domains equally distributed over the easy 

directions. The result of the necessary averaging process depends 

on the particular easy directions imposed by the magnetic 

anisotropy of the sample. For example, if we have a basal plane 

ferromagnet, the easy directions lie entirely in this plane and we 

can take a, a. +0, a; = 0 (taking the c-axis along Ox; ). For 

this case we have the following zero field domain resistivity, 

p(a, b)=(a—k,/3) +k, (62- 1/3) - 1/3 k, (63 - 1/3) 

+k, [ (0? - a3) (8% - B32) +4 0.028182] (38) 

Because the domains are assumed equally distributed in the basal 

plane easy directions, when we average o over such directions we 

obtain a simple result (using <a? > = <a>, <a,a>=0): 

<p(a, b) >n2o = (a.—k./3) + (ki —k,/3)(83—-1/3) 39) 
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The non-normalized saturation magnetoresistivity is then given by, 

Apsar CH | u ) = Psat — <p ( a , b)>= k, ut, + k,( 83 - 1/3 ) us, (40) 

+k, [Cuz a us CB - B3)+4u,u,8,8,] Ty ( U, pyru, B,) Uy B, 

If H is applied along the c-axis (u,=u.=0, u,;=1) we obtain: 

Apsar CH || ¢) = (kK, —k,/3) + k, 63 (41) 

Noticing that @; is, in this case, the cosine of the angle (06) 

between | and H, ‘we arrive at eq. 36, in the explicit form: 

Apsat CH || ¢) = (k, —k,/3 ) + k, cos? 9 (42) 

(ii) Polycrystalline samples 

For this case we have to calculate an average of 0 (a, b) 

over a large number of randomly oriented crystallites. Following 

McGuire and Potter [30], the polycrystalline average can be per- 
a 

formed by choosing 4 to lie within a cone about an arbitrary 

current direction b, with 4-b == cos@, and evaluating 

poy = (802) [dy (" dy (-" p(a, 6) dy (43) 
0 . oO 

where ¥ is an angle that locates 4 within the cone as shown 
in Fig. 1. The final result gives again an expression with a cos? 

dependence for the magnetoresistivity (eq. 36). 

3 —HIGH ACCURACY METHOD FOR MAGNETORESISTANCE 

MEASUREMENTS 

3.1 — Requirements on the experimental resolution 

As referred in 1, the magnetoresistive effects are fairly small, 

the relative change Ap/p under an applied magnetic field rarely 

attaining a value of 10° at saturation. If we want to measure such 

magnetoresistivity with a relative error of 1%, one should have 

5(Ap/p) _ 8 Ap) _ 8p = 10-2 (44) 
Ap/p Ap Ap 
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where 6 stands for the absolute errors. Putting Ap = 10°», we 

obtain the following requirement on the relative accuracy for 

resistivity measurements, 

5p/p = 10-4 (45) 

This estimate refers to the (favourable) measurement of Ap at the 

maximum field. If we want to study in detail the structure of 
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Fig. 1— Geometry and notation used to calculate the polycrystalline average 

of the magnetoresistivity (eq. 43). 

the magnetoresistivity curves (at field values from 0 to H,, ) 

one should measure the resistivity with higher resolution, at 

least one or two orders of magnitude better. We then conclude 

that high accuracy magnetoresistivity measurements require an 

experimental set-up which ensures, with confidence, 1/10° — 1/10° 

relative resolution in resistivity. The method here described fulfills 
this requirement. 

3.2 — Experimental technique 

The electrical resistivity, thus the magnetoresistivity, was 

measured with a four-wire potentiometric method, using a highly 
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stabilized de current (0-1 A; 1/10° stability per hour), the sample 

voltage (V) being measured with a few nV resolution ( V ~ 10° nV). 

The sample resistivity (p ) is given by the usual expression, 

p=f-(V/1) (46) 

where f is a constant geometric factor. 

Under strictly isothermal conditions, we then have the 

following limit for the relative error in p: 

| 8p/p|<|8V/V| + | aI/1| (47) 

From the figures quoted above for 5V/V and 8I/I, we just obtain 

the appropriate resolution in the » measurements. 

In practice the temperature is not strictly constant in the 

course of the measurement, when the field is gradually sweeped 

from 0 to H,,; usually a complete measuring cycle lasts for 

about 2-3 min. One should then ensure that the change in 

resistivity (8¢.) due to a change in temperature during the 

measurement ( ST ) is kept within the required limits. If one recalls 

that in most metals the relative changes in », per degree change 

of temperature, are of the order of 10° (or below), we can write 

Spy / p = 10-* ST (48) 

which restricts the allowed temperature variation during the 

measuring process to a maximum value 6T,,,,-=1 mK, for 

09,/¢* 10°. One then concludes that, in order to measure 

accurately the magnetoresistivity, it is crucial to implement an 

efficient temperature controller; such unit was projected and 

implemented in the course of our studies, and will be described 

in 3.3. 

Fig. 2 shows the block diagram of the experimental set-up 

constructed to measure the magnetoresistivity. 

The temperature was measured using a copper-constantan 

thermocouple, the corresponding emf being measured to within 

a few nV. 

The low magnetic fields were obtained with a copper wire 

solenoid locally constructed [38] (0 < H < 1 kOe; 1:10* homoge- 

neity over 10cm axial length), powered from a stabilized dc 

current supply (1:10* stability). The solenoid calibration is 
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263 Oe/A. The solenoid is refrigerated with a water cooled coil, 

the ensemble being immersed in a large capacity oil bath. 

The high fields ( up to 10 kOe ) are obtained with a commercial 

iron core electromagnet with an adjustable gap. The current 

is provided by a stabilized power supply (0-30A) with 1:10° 

stability. 
In each case the field was automatically increased from 

0 to H,, by means of a ramp sweep unit, which controlled the 

output of the magnet current supply (rising times adjustable 

between 10s and 80h; usually we adopted about 2 min). 

  

CURRENT CURRENT SWEEP 

SOURCE —s SOURCE GENER. 
  

  
      

  

                      

  

      

      
  

  

  
  

ae 

POTENT. i POTENT. DIGITAL VOLT. 

; L_ 

DIGITAL MICROP. 
VOLT. 

PRINTER     
Fig. 2—Block diagram of the experimental unit for magnetoresistivity 

measurements. 

Automatic data acquisition was obtained with a microprocessor 

unit locally constructed [39], which prints the relevant data 

(p,H,T) every 2 seconds, if necessary. 

3.3 — Temperature controller 

In order to ensure the necessary stability in temperature, an 

automatic temperature controller was designed, using a high 

precision digital lock’in phase sensitive detecter. Fig. 3 shows 

the block diagram of such temperature controller. 
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The lock’in internal oscillator provides, besides the internal 

reference signal, the excitation voltage for the Wheatstone bridge. 

In two adjacent arms we use fixed resistances of 200 2, whereas 

in the other arms we put the controller resistance thermometer 

(thin copper coil; r ~ 2009 at room temperature, about 6009 at 

nitrogen temperatures) and a 4 decade resistance box with 0.19 

resolution. 

  

  

      
    

            
0 
a CURRENT 

P.S.D. SOURCE         
                

Fig. 3— Block diagram of the temperature controller for magnetoresistivity 

measurements. 

The unbalance signal from the bridge is accurately detected 

by the lock’in detector and, after suitable internal amplification, 

is used as the input of an unidirectional power supply. This source 

provides the current for the controlling heater of the experimental 

chamber (R= 2002; 5W maximum heating power ). 

This temperature controller enables quick temperature 

adjustments (e.g. a 10K variation in the setting point can be 

achieved in 5min), with a guaranteed subsequent stability better 

than 1mK/min. In order to ensure such degree of efficiency, 
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adequate attention has been paid to the design of the experimental 

chamber and the sample holder, as we describe next. 

  

   
     

H=20 2 

/ 
TL I. 

t 
r=200 2, 
nom. 

Fig. 4— Details of the sample holder: A-sample, B-copper basis, H-heater, 

r-resistance thermometer, T. I.-inox tube. 

3.4— Sample holder (and controller basis) 

In order to optimize all the thermal links in the system 

‘sample-controller thermometer-heating coil’, a special design 

was adopted for the supporting copper basis, as shown in Fig. 4. 

The coils of the controller copper thermometer and of the heater 

(constantan) are wound in narrow flat grooves in the immediate 

vicinity of the copper basis where the sample is attached with 

low temperature, thermal conducting, GE varnish. The ensemble 

is suspended inside the experimental chamber by two thin wall 

inox tubes, in order to increase the thermal resistance between the 

controlling copper basis and the external environment. 

A limited account of the method described in this section 

has been given elsewhere [40]. 
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4 —ILLUSTRATIVE EXPERIMENTAL RESULTS 

Experimentally, two distinct field orientations are usually 

adopted in magnetoresistivity measurements, either with the 

magnetic field perpendicular to the electrical current (Fig. 5a), 

4p, /p=[p.(T, H)—p(T, 0)]/p(T, 0) (49) 

or with H parallel to | (Fig. 5b), 

Ap, /p=[py (T, H)—p(T, 0)]/p(T, 0) (50) 

Here p (T,0) is the sample resistivity in zero field. 

x t ; 

: 
(a) (hee 

Fig. 5— Distinct field orientations used for magnetoresistivity measurements: 

a) Transverse Ap. /p, b) longitudinal Ap, / p 

  

In order to eliminate from Ap/p spurious odd effects in H, we 

should always take the average, for each T, of the results obtained 

with the two opposite directions of the field (+H). 

The results shown below illustrate some of the potentialities 

of the experimental method described in 3 and, at the same time, 

constitute selected examples of the behaviour of the magnetoresis- 

tivity contributions theoretically described in section 2. 

4.1—Critical phenomena (ferro-paramagnetic transition in 

Tbgs - Gd3. single crystal). 

Fig. 6 shows the temperature dependence of the longitu- 

dinal magnetoresistivity of an hcp single crystal Tbys - Gds. 

(current | in the basal plane) in the vicinity of the Curie point, 

T, = 253 K, and at a constant applied field H = 526 Oe. 
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A pronounced negative dip occurs in Ap, /p just at the 

Curie point, which we associate with the characteristic strong 
reduction (by the field) of the spin fluctuations near a ferro- 
paramagnetic transition, as discussed in 2.2. Notice that both 

sides of the AP, /p curve exhibit critical behaviour near Teyea 

full analysis of such behaviour, with the estimation of the cor- 
responding critical exponents, will be done in due course. 

  T T ai 

245 250 255 T(K) ee 

bP 
e(0) 

a0*) | 

' Tb gg Gdg2 
H3=526 Oe 

t- -10 { 

L 
Fig. 6 — Temperature dependence of the longitudinal magnetoresistivity in a 

Tbe, - Gd,, single crystal. 

      

Notice also that sufficiently above T, (when the correlations 
between fluctuations are virtually absent), the magnetoresistivity 
is fairly small, attributable to just the non-magnetic (normal) 
magnetoresistivity. 

On the other hand, for temperatures sufficiently below Ti, 
the magnetoresistivity exhibits an almost constant negative value. 
Since fluctuations are then drastically damped, such result is 
attributed to an orientional effect of H on the basal plane 
spontaneous magnetization, for which the low magnetic anisotropy 

readly enables directional changes in M, . 
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4.2 — Orientational effects (Pr. (Co,_, Fe, )47 intermetallic 
compounds ) 

Fig. 7 shows the field dependence of the longitudinal magneto- 

resistivity (H = 0—9.7 kOe) for a Pr. ( Coo. Feo.2 )1; polycristalline 

sample (Th, Ni,; hexagonal structure ), at different values of the 
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Fig. 7—Field dependence of the longitudinal magnetoresistivity of a 

Pr,(Co, .Fe,..),; polycrystalline sample, at several constant temperatures. 

measuring temperature, with the sample always in the ferro- 

magnetic phase (T <<T,). The magnetoresistance is now posi- 

tive, and entirely attributed to an orientational effect (Smit 

mechanism [5, 36, 37]; see 2.3.2). 

‘In all the isothermal Ap, /p curves shown in Fig. 7, we 
distinguish three distinct regions, underlying characteristic domi- 

nant effects. In the first portion, at low fields, the curvature is 

positive and is associated with the growth of domains in favourable 

directions, at the expense of decreasing domains in unfavourable 

directions (wall domain motion). The second portion of the curve, 

with a noticeable negative curvature, is associated with the rotation 

of the magnetic domains inside the sample ( towards the direction 

of H ), a process which is particularly difficult for those crystallites 
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where H points in hard magnetic directions. Finally, a third region, 

at high fields ( where saturation is almost achieved in Ap /o), is 

the final aligment stage of M, with H (*). 

4.3—Field effects on helimagnetic structures (Gd,_,- Yx 

single crystal ) 

Fig. 8 shows the field dependence of the longitudinal 

magnetoresistivity (H = 0-520 Oe) for a hcp Gdbo.ss- Yo.s2 single 

crystal (1//c axis) at several measuring temperatures, cor- 

responding either to the ferro or to the helimagnetic phase, in 

zero field. 

The crystal under investigation is ferromagnetic just above 

T* = 208.15 K, with M, along the c-axis, and helimagnetic just 

below this temperature. In the latter phase the magnetic moments 

lie in the basal plane (ferromagnetically ordered), exhibiting 

however an helical modulation along the c-axis, associated to a 

characteristic q vector [42, 43]. 
(i) Let us start with the curve taken with the sample 

initially in the ferromagnetic phase (T = 208.55 K ). 

At low fields (H < 50 Oe), no measurable change is detected 

in p, a fact which we associate with the absence of field pene- 

tration in the sample. This is achieved by domain motion (**), so 

as to produce a technical magnetization M = H/D in the sample, 

which ensures a zero value for the internal magnetic field, 

H; = H—DM. An estimate of the maximum value of H com- 

patible with the absence of field penetration, Hy, = DM,;(T) 
(using information on M,(T) and D for our sample) confirms 

the explanation referred above. 

At higher fields we observe a progressive reduction of the 

electrical resistivity, up to the maximum field used. This is 
attributed to the gradual suppression of the spin fluctuations, 

since the measuring temperature is only about 2K below the 

Curie point of this crystal. 

(*) In practice, the total alignment of the magnetic moments with H is 

not exactly achieved under finite fields, except for the principal symmetry 

directions in the crystal [41]. 

(**) In uniaxial ferromagnets, the growth of domains of one type (+ z), 

at the expenses of the other type (- z), does not change p (even function 

of cos @). 
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(ii) For the other curves, obtained with the crystal initially 

in the helimagnetic phase, the field penetration occurs immediately 

100 300 500 0 =i ' | | _H(Oe) 

Ra Ps, 

a =20 ¥, ’ Q v * ° 

‘A ane “ag, 208,55 

; 208.06 

t--40 

: 207.94 

4e gs i 

a ae oi 207.88 
(10°") ~ Ry 

r~-60 

Gdeg' 39 
Y%y 207.51 K       

Fig. 8—Field dependence of the longiutdinal magnetoresistivity of a 

Gd) ¢s- Yo,3. Single crystal, with Ij|/¢ axis, at several constant temperatures. 
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at low fields, as expected for an antiferromagnetic structure [44]. 

A pronounced negative magnetoresistance is first observed in 

the Apo, /p curve, as a result of the gradual distortion of the 
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Fig. 9— Normalized field derivative (1/ Ap, )-(de/dH), as a function of 

the applied magnetic field (H), for a Fe,,Ni,,P,,B, amorphous sample 

(1||H), at two distinct temperatures. 

helimagnetic phase (*). The final extinction of the helimagnetic 

structure is clearly associated with the kinks observed in our 

experimental curves, marking the onset of the ferromagnetic phase. 

(*) When the helimagnetic order exists, the associated magnetic 

periodicity (modulation vector q; period generally different from the lattice 

one) originates new energy gaps (less conduction electrons), thus higher elec- 

trical resistivity. 
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The subsequent increase of H only originates a small enhance- 

ment of the negative magnetoresistivity, due to the gradual 

suppression of the spin fluctuations in the system. One should 

notice the almost perfect parallelism between these Ap, /» curves 

at high fields and the one described in (i) (corresponding to an 

intrinsically ferromagnetic situation). 

4.4 — Magnetoresistance of amorphous metals ( FejoNioPi:Bs ) 

Although we did not consider this case in the previous sec- 

tions, the magnetoresistance measurements can be very informative 

in the study of amorphous metals. 

Fig. 9 shows the normalized field derivative (1/A¢9;)-(do /dH) 

as a function of H, at two distinct temperatures well below the 

Curie point; Ap, is the saturation value of Ao in high fields [45]. 
The pronounced differences between the two experimental 

curves have been associated with important changes (with tem- 

perature) of the direction of the easy magnetization in the 

amorphous metallic ribbon. This assumption is compatible with 

the recent interpretation of Méssbauer data in Fe. NioPi,Be 

amorphous samples [46], assuming that the easy magnetic direction 

changes from the ribbon plane (T > 220K) towards a tilted 

configuration with respect to the ribbon plane (about 20°; 

T < 220K). 

The authors acknowledge with pleasure financial support given 

by INIC (Portugal). Thanks are also due to P. P. Freitas for the 

contribution given in a preliminary stage of the implementation of 

the experimental method. 
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ABSTRACT —A study of pottery samples belonging to different periods 

is undertaken employing an energy dispersive high resolution X-ray fluores- 

cence spectrometer and 30 mCi 2*8Pu source. The ratios of Manganese to 

Cobalt and Iron to the 17.28 keV coherent line intensity are found to vary 

from period to period. It is found that these ratios are high for the present 

pottery samples when compared to the earlier periods. 

1 — INTRODUCTION 

A study of archaeological samples is of interest from the 

view point of the advancement of civilization and technology 

adopted during different periods of history. There are several 

analytical methods employed in this direction. Radio-active carbon 

dating, thermoluminescence [1] and X-ray fluorescence method 

(XRF) [2], [3] are a few popular techniques to carry out these 

studies. Each method is being used with varying degrees of success. 

The energy dispersive X-ray fluorescence method (ENDXRF) [4], [5] 

is non-destructive, fast and permits a simultaneous multielement 

analysis. In recent years, it has become a useful tool for approxi- 

mate dating of archaeological samples [6]. It makes possible the 

analysis of rock paintings, glazed surfaces, the determination of 

elemental concentrations and elemental ratios. It also helps 

distinguish between genuine and fake samples. There are three 
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types of X-ray fluorescence methods [7], namely, 1) Radioisotope 

excitation 2) X-ray tube excitation and 3) particle induced X-ray 

fluorescence (PIXE). The first two methods are referred to as 

photon induced excitation. The sensitivity limits depend on the 

mode of excitation used in the analysis of archaeological samples. 

Several studies [2], [3], [8] on archaeological samples have been 

carried out employing radioisotopes like Cd-109 and Am-241. The 

radioisotope excitation method is cheap and the system convenient 

to handle . However, with this method the sensitivity limits are 

low when compared to tube excitation. The PIXE method is very 

expensive and really not necessary for the analysis of archaeo- 

logical samples inasmuch as the concentration levels of different 

elements are high and can be easily detected using the first two 

methods. The present work concerns analysis of archaeological 

samples belonging to Telangana region of Andhra Pradesh, India 

and periods ranging from 2500 BC to 600 AD. We have used a 

30 mCi ***Pu radioisotope sample as source of exciting radiation 

and a high resolution XRF spectrometer for the detection and 

measurement of X-rays. The relative ratios of Mn/Co and 

Fe/coherent scattered peak intensity, are reported in this paper 

and the results are discussed. 

2—XRF METHOD 

For the present studies, a high resolution XRF spectrometer 

was used. The spectrometer comprises a 30 mm? Si( Li) detector 

coupled to a low noise FET type preamplifier kept at liquid nitrogen 

temperature and a 4096 channel analyser with a computer facility. 

The computer allows data storage and analysis of X-ray spectra. 

The block diagram of the XRF system used for the present 

studies is shown in Fig. 1. The energy resolution (full width at 

half maximum) is found to be 160 eV at an energy of 5.89 keV — 

the K-line of **Mn. The energy standardisation was accomplished 

by using standard lines from different sources as shown in Fig. 2. 

The energy calibration plot helps identification of different 

elements present in any sample. The intensity of a particular 

X-ray line is measured in terms of the X-ray counts (area under 

the X-ray peak distribution), the two words being used synony- 
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Fig. 1 — Block diagram of the experimental set-up. 
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mously. Suitable computer programmes were used for the 

identification of peaks and the corresponding elements, spectrum 

stripping, backround correction and for obtaining the net peak 

intensities. Having obtained the individual elemental intensities, 

the ratios Mn/Co and Fe/17.28 keV intensity can be obtained in a 

straightforward way. The parameters Mn/Co an Fe/Coherent peak 

intensity typically label the pottery samples of different ages 

inasmuch as they decide the colour of the sample and iron is one 

of the major components of any sample. Also, when one considers 

ratios, the matrix effects tend to cancel for similar types of 

samples. 

3 — COLLECTION OF ARCHAEOLOGICAL SAMPLES 

A total number of about 25 archaeological samples belonging 

to the Telangana region of Andhra Pradesh were provided by the 

Department of Archaeology, Government of Andhra Pradesh, India 

for the present studies. They are pottery samples, have different 

shapes and surface texture, belong to early historic times and are 

of neolithic and megalithic types. The depths at which they were 

collected range from 0.25 meters to 1.7 meters. The samples were 

used as they were, without any further preparation, for collecting 

the experimental data, using the XRF system. 

4—RESULTS AND DISCUSSION 

Two typical XRF spectra, one from neolithic and one from 

megalithic samples, are shown in Figs. 3 and 4, respectively. In 

these figures, the X-ray peaks are identified and labelled by the 

elements to which they belong. The primary ***Pu source emits 

X-ray lines ranging from 13 to 17 keV. When X-rays interact with 

matter, they get scattered by the sample and show up in the XRF 

spectrum as coherent and incoherent peaks. In the case of coherent 

peaks, the incident and scattered peak energies are the same, while 

in the case of incoherent peaks, energies of incident and scattered 

peaks will be different. For the present purpose the coherent 

peaks are used in the analysis and the corresponding lines in the 
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XRF spectrum are labelled by the energies 13.6 and 17.28 keV. 

The ratio of Fe/coherent peak intensity using the 17.28 keV line 

was determined for each sample. To look for the matrix effects 

three pottery samples of different shapes and sizes belonging to 

the same period were studied. It was found that the Mn/Co and 

Fe/17.28keV line ratios were consistent within experimental 

errors. This suggests saturation of matrix effects for thick samples. 
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Fig. 3— A typical X.R. F. spectrum from a Neolithic sample 

(Period 2500-1000 B.C.). 

The results on the Mn/Co and Fe/coherent peak intensity 

ratios for the different periods characterising the pottery samples 

are summarized in Table 1. It can be seen, from table 1, that the 

Mn/Co ratio is very high for present pottery samples as compared 

to the earlier ones; that being also the case with the Fe/coherent 

peak intensively ratio. The figures reported in table 1 help to 
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distinguish between present and ancient pottery samples. Table 1 

also helps to distinguish between neolithic and megalithic samples. 
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Fig. 4— A typical X.R.F. spectrum from a Megalithic sample 

(Period 1000-300 B.C.). 

TABLE 1—Mn/Co and Fe/17.28 (Coh.) Intensity Ratios 

RE Period Type Mn/Co Fe/17.28 keV 
Samples 

2500-1000 B. C. Neolithic 0.584-0.793 0.906-0.914 

1000- 300 B.C. Megalithic 0.385-0.475 1.379-1.407 

300- 600 A. D. Historical 0.351-0.405 1.292-1.318 

(Vishnukundan) 

10 Present —_ 0.905-1.290 1.688-1.722         
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5 — CONCLUSION 

It is thus illustrated that the energy dispersive X-ray fluores- 

cence method offers a good tool to label pottery samples belonging 

to different periods. 
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