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ABSTRACT — We present a simple model for a system of static bare 

nucleon and bare delta, coupled linearly to a non-self-interacting pion cloud. 

The model space for the boson cloud consists of states with arbitrary number 

of [=1 pions, having all the same radial wave function. Both axially 

symmetric and hedgehog coherent states of pions are studied, in order to 

compare their behaviour as a function of the coupling strength and to look 

at the relevance of the variation-after-projection method. The model may 

be used as a test of different approximations commonly applied in realistic 

calculations for meson clouds. 

1 — INTRODUCTION 

Several chiral invariant models have been proposed to describe 

the pion cloud around the nucleon: the chiral bag [1], the little 

bag [2], the cloudy bag [3] and the chiral soliton [4]. A fully 

quantum mechanical treatment of these models is possible only 

in the framework of perturbation theory. On the other hand, in 

the non-perturbative regime the solutions are obtained in the 

mean-field-approximation, assuming the so-called hedgehog form 

for the fields. These solutions are not eigenfunctions of the angular 
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momentum and the isospin operators and, therefore, they cannot 

directly describe the physical states. However, as it is well known 

from nuclear physics, the states with good spin and isospin quan- 

tum numbers may be obtained from them by means of the Peierls- 

Yoccoz projection technique [5]. 

In this paper we refer to a system of static bare nucleon and 

bare delta, coupled linearly to a non-self-interacting pion cloud, 

e.g. the cloudy-bag model [3]. We present a very simple model 

which is suitable for testing the validity of different approximation 

schemes to the meson cloud. In a given realistic model one should 

estimate the number of pions n and then, one can get some 

insight from the simple model, how different approximations 

behave in that range of n. 

The contents of this paper are as follows. In section 2 the 

model is presented. The regimes of weak and strong coupling 

strengths are considered in section 3. Angular momentum and 

isospin projections from axially symmetric coherent states and 

hedgehog coherent state of pions are performed in sections 4 and 5. 

Section 6 contains the discussion of the different approximate 

solutions and the conclusions. The technical details of the spin- 

isospin projection are presented in the appendices. 

2-—THE MODEL 

For a system of p-wave pions interacting with static bare 

particles, the Hamiltonian can be written in the form [6] 

H’= 3 «,cfe, + % {o(K) af, (K) am(k) 
a tmk 

(2.1) 

—~GPe(K) Bun [am (K) + (-1)™ atm (kD) f 

where c; is the creation operator for the bare particle and e, its 

energy; the operator a{,(k) creates a pion with momen- 

tum (magnitude) k, angular momentum one and (spherical) 

angular momentum and isospin components m=0,+1 and 

t = 0, + 1, respectively. We consider a model with bare nucleon 
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and bare delta. ex = e, = 0 will be assumed. In (2.1) the opera- 

tor Bi, is given by [6] 

Bim = NN oNN + 79725 (NA GNA, AN o AN ) 

+ (4/5) EO om 2) 
where 7NN and oNN are the Pauli matrices acting on the isospin 
and the spin of the bare nucleon in the source; the operators 

74 and oS do the same on bare delta; NA GNA converts a bare 
det in bare nucleon and 7h ze vice-versa. 

We shall not specify ihe spherically symmetric source den- 
sity p(k) in (2.1). However, for a given p(k), the one pion 
radial wave function F(k ) can be determined by a self consistent 
mean-field calculation of the intrinsic state or, in a more reliable 
calculation, it can be determined variationally for a projected 
coherent state. 

The creation operator a,*,(k) can always be written in the 
form 

tm(k) = F*(k) at = Fi(K) be,(m) (2.3) ar 

where a; and bi,(n) form a complete orthonormal set. Here, 
ay. creates a pion with angular momentum and isospin compo- 
nents m and t, respectively, and radial wave function F(k); 

bi,(n) creates a pion with the same angular momentum and 
isospin quantum numbers but with radial wave function F,, (k ). 

These states are not occupied in the model space and therefore 

all b(n) can simply be ignored in the Hamiltonian. 
In this paper we shall study the properties of approximate 

solutions for the Hamiltonian 

a > { at, atm — G Bim Lin at (- -1 om as. m ' (2.4) 
tm 

with 

G=Gx e(k) F(k) (2.5) 

in energy units in which 3, o(k) F*(k) F(kK) =1. 
The Hamiltonian H is schematic in the sense that it contains 

no radial degree of freedom. It may be viewed as an effective 
Hamiltonian which is replacing (2.1). 
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3— WEAK AND STRONG COUPLINGS 

In the limit of small G, the second term in (2.4), 

Heoup = —G & Bem (atm + (-1)*t™ + at (3.1) 
tm ~t-m. 

may be considered as a perturbation to the first one. In this regime, 

the physical baryon states are superpositions of bare baryon, 

| 6) >, and bare-baryon-plus-one-pion states, | ¢; >. Up to second 
order in the coupling constant, the energy is 

Eo Bh ao, + 5 (3.2) 

where E, is the bare baryon energy, 

ag=< o| Heoup | go > (3.3) 

and 

e2 = & | <$0/ Heoup| #1 > |? / (Eo - Ei) (3.4) 

In our simple model no chromomagnetic interaction is considered 

and for simplicity we have taken as zero both bare nucleon and 

the bare delta energies. Moreover, for the Hamiltonian (2.4), 

E, = 1. From (3.1) and (3.3) it follows that the first order con- 
tribution for the energy, «,, vanishes. The evaluation of (3.4) 

yields for the energies of the physical nucleon and delta states 

the following results: 

Ey = —20.52 G? (3.5) 

and 

E, = — 11.88 G? (3.6) 

where all these factors are exact fractions (multiples of 1/25). 

In the other limit, i.e. in a regime of very strong coupling 

strength, the cloud around the static source contains a large number 

of non-self-interacting pions and therefore the mean-field-approxi- 

mation (MFA) is totally adequate. This consists in describing the 

pions by quantum mechanical coherent states [7]. In the MFA, 

the minimal energy for the Hamiltonian (2.4) is obtained for the 

hedgehog baryon configuration [8] and, as we shall see in section 5, 

is given by 
E = —9.72 G’. (3.7) 
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In a regime of very large G, this is the leading term for the 

energy of the nucleon and its isobars. The quantum fluctuations 

are very small and all these states have the same energy. 

As a starting point to the description of the pion cloud around 

the static source we shall consider the mean-field or coherent 

state approximation. The total trial wave function of the baryon 

reads as 

|¥> = WCE) exP(S fm ain) |B > (3.8) 

where %(é) is a normalization factor, |B > is the bare baryon 

state and é,,, are amplitudes to be determined variationally. The 

state (3.8) has the following important property: 

Bing, | = Baw | (3.9) 

In the MFA, the energy is the expectation value of H in the 

state (3.8). Using (3.9) this ‘intrinsic energy’ is readily evaluated 

yielding 

(intr.) (intr.) (intr.) 

= Eu  Eosan 5 (3.10) 

where 
(intr.) * 

Ein => fim en (3.11) 
tm 

and 

(intr.) P t+m * 

E.oup = —G Pel (étm + (-1) Et-m) Vim» (3.12) 

are respectively the intrinsic kinetic and interaction energies. 

Here, Vim is the matrix element: 

Yin = <B|By,|B>, (3.13) 

where B,,, is the operator (2.2). We notice that for the Hamilto- 

nian (2.4) the kinetic energy is equal to the number of pions in 

the cloud. 
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The amplitudes é,,, are obtained performing a Ritz’s variation 
d EGntr) / 9é* = 0, yielding 

’ 

Sen =.(-1 ae G Vie (3.14) 

The solutions obtained in the MFA clearly violate the rota- 
tional symmetry of the Hamiltonian (2.4) both in coordinate and 
charge spaces. The trial coherent state (3.8) does not have the 
spin and isospin quantum numbers of the nucleon or its isobars. 
These physical states may be obtained by means of a Peierls-Yoccoz 
projection of the trial wave function onto states of good spin and 
isospin [5, 6, 9-11]. 

4— PROJECTION FROM AXIALLY SYMMETRIC STATES 

In this section we consider the projection from axially 

symmetric coherent states of pions. We assume the bare baryon 

state to be a mixture of a bare nucleon and bare delta, each 

having spin component 1/2 and charge +1: 

|B(3) >, =coss |Ni,>+sin8 |A,,> (4.1) 

Here, the mixing angle 8 is another variational parameter. Now 

the amplitude (3.14) reads as 

Etim = é Sto 8mo (4.2) 

where 

é=G [cos?8 + (8V 2/5) sins’ cos8+(1/5) sin?8] (4.3) 

From (3.10-12) and (4.2-3) the kinetic, coupling and total intrinsic 

energies are given by: 

= S=¢=G f(8), (4.4a) 

Bed it V#(8) = “ft 4.4b) coup =—2Gé f(s) =—2G (8) ’ (4. 

pat) _ 2 £(8) , (4.4¢) 

54 Portgal. Phys. — Vol. 17, fasc. 1-2, pp. 49-74, 1986



  

M. FroLnais et al.— A simple model for the pion field around a static source 

where 

f(3) = [cos?s + (8V 2/5) sin’ cos8 + (1/5) sin?s]? (4.5) 

Here and in the sequel S denotes the average (intrinsic) number 

of pions in the cloud. This quantity is plotted in Figure 1, in 

dependence of G. The function (4.5) is plotted in Fig. 2 of ref [10]. 

  S r T r r r - T 

INTRINSIC NUMBER 

i OF PIONS : T 

        
Fig. 1—The average number of pions in the cloud of the non-projected 

axially symmetric state. The values are given in dependence of the coupling 

constant for different mixing angles. 
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It has an absolute maximum (a minimum for the energy) for 
8 = arctg(1/V 2) ~ 35°, and the corresponding total energy is 

(intr.) = 

E“™ — 394 G’. (4.6) 
(intr.) 2 onan Other values of E /G , for several mixing angles, may be 

read directly from figures 3 and 5. 
Let us use the following ansatz for the total trial wave function 

of the baryon: 

\y > =cosd |¥y > + sin’ |y, > ; (4.7) 

where 

+ + 
| Yn > = EXP (Ea) | Nij. > (4.8a) 

and 

+ + 
|W, > = eXP (£ a) | Arye > (4.8b) 

The state with the quantum numbers of a nucleon is extracted 
from (4.7) according to 

| 1/2, 1/2> = Pippin ly > (4.9) 

where P,,,,/. is used as an abbreviation for the operator PT), 4). 1/0 
Poye1/21/23 here, Pig projects out of a state with good third com- 
ponent e«’ of isospin (angular momentum), the state with good 
quantum number of isospin (angular momentum) t and rotates 
the third component into «. The norm (square) of the state (4.9) 
is F = cos? § Fy + sin? 8 Fy» where Fy = < gy! Pajoiy| Yn > and 

FP. = <¥q/ Papi! v, >. The details of the calculation of 

these quantities are shown in Appendix A. 

The number of pions in the cloud — see (A. 15) — is 

n=-SF"(S)F(S). (4.10) 

F’ denotes the derivative with respect to S. Using the property (3.9), 

the interaction energy is readily evaluated and the total projected 

energy for the nucleon reads as 

Ey /2 1/2 = SF2 F’ --2GF" é [ cos? 8 Fy 
(4.11) 

+ (4V2/5) sins cos8 (Fy + F,) + (1/5) sin? 8] 
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The energy of the physical nucleon is a function of the two varia- 

tional parameters. Now, the appropriate procedure is to search for 

a minimum of E,,,,,. in the plane (£, 8). This is nothing but 

the variation-after-projection (VAP) method. Another procedure, 

the variation-before-projection (VBP) method, would be to insert 

in (4.11) the self-consistent values for the variational parameters 

obtained in the MFA. We shall study the behaviour of the solutions 

obtained in both methods. 

  

NUMBER OF PIONS 

V B P -FROM ‘AXIAL 

        G 

Fig. 2— The number of pions in the pion cloud of the nucleon, for several 

mixing angles. The projected states have been obtained from axially symmetric 

coherent states of pions. 

Portgal. Phys. — Vol. 17, fasc. 1-2, pp. 49-74, 1986 57



M. FIOLHAIs et al.— A simple model for the pion field around a static source 

4.1 — Variation-before-projection 

We have taken the self-consistent £, given by (4.3), and have 

considered the solutions for different values of $8. 

The number of pions and the total energy of the projected 

state have been evaluated numerically from (4.10) and (4.11) using 

the power series expansions derived in Appendix A, for the norms 

of the projected coherent states. Figure 2 and 3 show the projected 

  

  
   

  

_— 

  

V BP-FROM ‘AXIAL 

  
  

al ae i 
LF 

|. Ii 

a ----— INTRINSIC 
er 7 PROJECTED 6 =0 “ 

=e w 6235 
| | on .. , $=60 

— i $= 88,5 

10H 4 
| 

i 

tI 
i 

i 
124 , : 7 

1 2 3 4G 

Fig. 3 — For the nucleon, E/G? is plotted versus coupling constant for various 

values of §. The projected states have been obtained from axially symmetric 

coherent states of pions. 
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number of pions and E,,, ,,, /G’, in dependence of G, for several 

mixing angles. A comparison between figures 1 and 2 shows that 

the number of pions gets reduced with the projection. The only 

exception is observed for angles close to 90°: the source is mainly 

bare delta and at least one pion is necessary to construct a state 

with the quantum numbers of a nucleon, whereas for the physical 

delta the main contribution comes from the zero pion state. 

Regarding the total energy, for very small values of the coupling 

constant, the best angle is also around 90°: the minimal energy 

in the limit G— 0 is 

lim E,/. 1/2 /G? = — 12.02, (4.12) 
G0 

with § = 88.5°. This value is very far from (2.5), which is exact 

in this limit. 

4.2 — Variation-after-projection 

This procedure is more reliable, since it assumes that the 

eigenstate of the Hamiltonian is approximated by the trial wave 

function (4.9) which has already the quantum numbers of the 

nucleon. 

For the projected energy (4.11), the variation with respect 

to £,d0 Eyjoiy /0& = 9, yields 

G=éT(S) (4.13) 

where 

T(S) =(FF’—SF’?+SFF”) -{(F—2SF’) - 

[ cos? § Fy + (4V2/5) sin § cos 8 (Fy + F,) + (1/5) sin? 8 F.] + 

2SF [ cos? 8 Fy + (4 V 2/5) sin 8 cos 8 (Fx + F) 

+ (1/5) sin?3 FY]. (4.14) 

The numerical evaluation of the projected energy has been 

carried out in the following way: First é (ai 2a was fixed; 

then, using (4.13-14) the coupling constant 'was determined; finally 
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the number of pions and the total projected energy were evaluated 
making use of the expressions (4.10-11). 

Fig. 4 shows the number of pions in the cloud as a func- 
tion of coupling strength, for different values of the mixing angle. 
In Figure 5 the quantity E,,.,,./G* is plotted against G. This 
figure should be compared with Figure 3, where the curves have 

     

    
  

n ' T ‘ : 

LE = 

NUMBER OF PIONS 

V A P - FROM ‘AXIAL ; 

3K 

2:  wwsmeae 

aL 

a 

i 
ae 

a 10 G 

Fig. 4— The number of pions in the pion cloud of the nucleon. The projected 

states have been obtained from axially symmetric coherent states of pions in 

a variation-after-projection calculation with respect to the pion amplitudes. 
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been obtained in a VBP calculation, in order to see the importance 

of the VAP procedure, for small values of the coupling constant. 

The determination of the optimal parameters é and 8 and, 

afterwards, the evaluation of E,,, ,,./G’, may be done analytically 

for G0. The minimization of E,,, ,,, with respect to é and 8 

yields 8 = arctg (4V 2/5), €= 9 G and the energy is 

  

  

  

Exe 1/2 = — 20.52 G?. (4.15) 

0 T T T 4 T 

l5=0" 7 

§=49° _ ntl etre 

  

   
V A P- FROM ‘AXIAL’ 

    
  

-10 4 

——— _ INTRINSIC 

seeeee PROJECTED §=0 
Sates " § =35 

15}. ——— " §=49 

—--—- PERTURBATION 

20 “ 

I | L | 
0 10 20 30 40 G 

Fig. 5——- The quantity E/G? for the nucleon is plotted versus coupling constant 

for different values of the mixing angle. The physical states have been 

obtained from axially symmetric coherent states of pions. Here a scale 

different from the one of fig. 3 is used. 
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This agrees with (3.5), given by the perturbational calculation. 
Therefore one is led to the conclusion that the VAP from axially 
symmetric coherent states of pions should be a good approximation 
in the regimes of weak coupling strength. In regimes of very 

large G, the axially symmetric state considered in this section 

seems to be not so good: the energy (4.6) obtained in this limit 
is only one third of (3.7). 

5 — PROJECTION FROM HEDGEHOG 

In this section we consider a projection similar to the one 

presented in section 4, now from the hedgehog coherent state 

of pions. 

Let us consider the following bare baryon state: 

IB>,= (12) ([N>p+]4>y) (5.1) 

with the bare nucleon and delta states given by 

[IN >n=(1/V2) (|Nap>—|Nip>) (5.2a) 

and 

Sa + 0 - 

| A >h = (1/2) (| A572 a | A_1/2 2 aT | Ai/2 a | As/e > ) (5.2b) 

Taking (5.1) as the bare baryon in the coherent state (3.8), the 

self-consistent amplitudes (3.14) are given by 

fim = (£/V3) (841 dma + 81 8m1—8t0 3mo) > (5.3) 

where 

£= (9V 3/5) G. (5.4) 

The average number of pions in the cloud and the intrinsic interac- 

tion energy are obtained from (3.11-12) and (5.3-4): 

S=Eun” = £ = (243/25) G’; (5.5a) 

Ev, = —(18V3/5) Gé = — (486/25) G . (5.5b) 
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The coherent state (3.8) now reads as 

|Hh > =4(£) exp[(£/V3) (artan—aw)] |B>, (6) 

This state is known under the name ‘hedgehog’ and its energy, 

the sum of (5.5a) and (5.5b), is given by (3.7). 

One should notice that the coherent state (5.6) contains bare 

nucleon and bare delta components exactly in the same proportion. 

It is interesting to study a generalized hedgehog coherent state 

which, like (4.7), allows different weights for the bare nucleon and 

the bare delta: 

| Hh (8) > ="(E) exp [(£/V3) (ary t aay ao)]/B(3) >n» 
(5.7) 

where 

|B(8) >,»=cos&S |N>,+ sins |A>, . (5.8) 

The self-consistent pion amplitudes (3.14) are identical to (5.3) 

but now 

é=G V3 (1+ (8/5) sinS cos8) . (5.9) 

The total intrinsic energy is 

(intr.) ES"? — 3G" (1+ (8/5) sins coss)’. (5.10) 

Minimization with regard to § yields § = 45°, i.e. the result (3.7) 
is recovered, according to ref. [8]. Obviously, if (5.7) is projected 

onto states with good isospin and angular momentum quantum 

numbers and, afterwards, the projected energies are varied with 

respect to the mixing angle, then § will take values in general 

different from 45°. 

The generalized hedgehog coherent state has grand spin zero, 

i.e. it only contains components with J=T and M=~—M,. 

Therefore it is enough to perform the projection restricted to one 

space [8,11]. The spin and isospin eigenstates are 

|J; T=J; M;—M>=P,y|Hh(38) >, (5.11) 
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with Ps, the projector defined in Appendix B. There, the norms 
of the projected states are evaluated and the general expression 

for the kinetic energy of the projected states is derived. The 

evaluation of the expectation values for the coupling Hamiltonian 

is straightforward and the total projected energies read as 

Eye = (2/3) [1+ frye (8: )/fin (Be DI 

~2GV3E [f,,.(8,€) + (4/5) sind cosd (fry + fy )]/fi» (8 £) 

(5.12) 

Eas = (£/3) [1+ (fin (8£) + frye (8 €)) foe (88) 

~2GV3E [fan (8,€) + (4/5) sind cosd (fy + £4.) V/fye (3,€) 

(5.13) 

N 
where f,, f; and ey are given by (B. 6,14). 

For § = 45° these are the projected energies obtained from 

the normal hedgehog (5.6). 

5.1 — Variation-before-projection 

In a VBP calculation from the normal hedgehog, one gets the 

projected numbers of pions and energies, putting § = 45° in (B. 20) 

and (5.12-13) respectively, and substituting & by its self-consistent 

value (5.4). For the nucleon, the projected number of pions is 

shown in Fig. 6, in dependence of G. The dashed curve in Fig. 7 

refers to the quantity E,,, /G* in a VBP from normal hedgehog. 

Figs. 6 and 7 also display the number of pions and E,,, / G* 

obtained in the MFA and VAP. 

In the limit G > 0 one gets E,,, /G? = — 14.58, a value which 

is very far from the one given by (3.5) and well recovered in the 

VAP-from ‘axial’. 
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5.2 — Variation-after-projection 

In a VAP from normal hedgehog, the amplitude é is determined 

by means of a Ritz’s variation of the projected energies (5.12-13) 

with s = 45°. For the numerical evaluation of the projected 

quantities we have used the procedure already explained in the 

previous section when the VAP-from ‘axial’ was considered. 

  

      
n r . T = . T 

ine 
NUMBER OF PIONS / 

0b (PROJECTION FROM HEDGEHOG) J 

9 L. 
= 

al | 

/ 
7b ——+— INTRINSIC ; 

A 

0 i , L ‘ s 1 1 . 

0,0 Q5 40 G 
        

Fig. 6— The number of pions in the pion cloud of the nucleon. The curves 

refer to the intrinsic hedgehog state and to the projected nucleon obtained 

from the hedgehog in VAP and VBP calculations. 
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The projected nucleon energy and number of pions are shown 

in Figs. 6 and 7 (solid lines). In the limit GO one gets 

E,/. = — 19.44 G® for the nucleon and E,,. = —9.72 G* for the 
delta, i.e. the perturbative results given by (3.5-6) are almost 

reached. However, a full VAP calculation using the delta dependent 

hedgehog coherent state (5.7) improves the results obtained from 

  

a\
 ss of 

     
  

PERTURBATION (NUCLEON) 

PERTURBATION (DELTA) a 

INTRINSIC 

V B P (NUCLEON) | 
VA P(NUCLEON); [h] 
V A P(DELTA) 

V A P (NUCLEON) 
{gh} 

- VAP (DELTA)   
0 0,5 1,0 15 2,0 25 G 
  
  

Fig. 7— For the nucleon and the delta, the quantities E/G? obtained in a 

projection from the hedgehog state (5.6), [h], and from the general 

hedgehog (5.7), [gh], are plotted versus coupling constant. 
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normal hedgehog, as it is shown in Fig. 7, in the whole range 

of G. In particular, the energies of the nucleon and the delta in 

the limit G— 0, turn out to be exactly the perturbative values 

(3.5-6), for mixing angles § = 58° (nucleon) and § = 68.2° (delta). 

In the limit G — o», when a large number of pions is present 

in the cloud, the best value for 8 is 45° in both cases. In this 

region the projection does not alter the MFA results, i.e. the 

nucleon and its isobars form a rotational band with a very large 

moment of inertia. 

6 — CONCLUSIONS 

In this paper we have studied different approximation schemes 

to the Hamiltonian for a system of non-self-interacting pions 

coupled to a static source with bare nucleon and bare delta. 

In a realistic calculation, the approximation more suitable 

depends strongly on the size of source and the strength of the 

pion field. Here, the number of pions is a decisive parameter. We 

emphasize the usefulness of the simple model: for a given number 

of pions obtained in a realistic calculation one can read the bare 

coupling constant G from Figs. 1, 2, 4 or 6 and then, from 

Figs. 3, 5 and 7 one may compare the behaviour of the different 

approximations studied in this work, for that range of G. 

We shall briefly discuss and compare the approximations 

considered in this work. The VAP is the right procedure to 

introduce quantum fluctuations in the mean-field or coherent state 

description of the pion cloud. The importance of this method is 

clearly demonstrated comparing the curves displayed in Figs. 3 

and 5 (axial symmetric coherent state), on the one hand and Fig. 7 
(hedgehog coherent state), on the other hand, for small values 

of G. From Figs. 3 and 5 one also concludes that the inclusion of 

bare delta in the intrinsic states, allowing for some nucleon-delta 

transitions, is very important. 

The perturbative energy for the nucleon is exactly reproduced 

in the VAP-from ‘axial’ calculation, but a similar agreement with 

the energy (3.7) is not observed for G > o. The hedgehog appar- 

ently is a much better ansatz. We reemphasize the following 

remarkable fact: using the generalized hedgehog one obtains the 

exact results (3.5-7), which refer to both the limits of very weak 

and very strong couplings, either for nucleon or delta. 
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Finally we refer a technical aspect: all projected quantities 

(energy, number of pions, etc.) may be expressed as functions of 

the norms, or their derivatives, of the projected states. For the 

axial state, these norms are given in terms of power series 

expansions which converge very fast. For the hedgehog they are 

expressed as functions of the modified Bessel functions I, (z), 

which are easily evaluated numerically by rapidly converging series 
in z or 1/z. 
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APPENDIX A— THE NORM OF THE PROJECTED COHERENT 

STATE (AXIAL SYMMETRY) 

From the intrinsic kets 

lv > = exp(VS an) |Nije> (A.1) 

and 

Ivy > =exp(VS ay) [Ain>, (A.2) 

states with the quantum numbers of a nucleon are obtained 

according to 

Prye val yw > = [fd (cos) d(cos 8) dyes (8) 

dijeie(B)R(B) RB) low > (A.3) 

and 

~ 1/2 

Pyjo aye | Wa > ind [[-4(cos@) d (cos 8) djs sj. (8) 

dijsy2 (BR (8) R(B) |v. > (A.4) 
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P,/21/2 is a projector with the properties: P¥j. 4/2 = Pyyoij2 = Payoiys 

The operator R(f) rotates the unprojected state by an angle 8 

around the y-axis and R(f#) performs a similar rotation in 

isospin. 

The overlap integrals are defined and evaluated as in 

ref. [5, 6, 9, 10]: 

Fy(S) = < dn] Pajoaye| Yn > 

= [fd (cose) d (cos A) dijo sje (8) diyese (B) die v2 (8) 
S cos B cos B , 1/2 Fe 

djs 1/2 (6) e ? (A.5) 

F,(S) = <¥y/Pipiel dy > 

= [fd (cos 8) d (cos B) diese (B) dijere (B) diye re (8) 
a ; 

disse (B) © SOR 8, (A.6) 

The most practical way is to evaluate these integrals by power 

series expansion which converges rapidly for S <50. By calling 

cos 8 = x and cos # = y, we get 

+1 +1 

Fy($)= fo f° dxdy(1+x)/2-(1+y)/2-[1 + Sxy + 

  

(Sxy )?/2!+...)=f£(8) + £(S) (A.7) 

where 

f(S)== al (A.8) 
n=0¢9n.) !(2n'+ 1) 

and f’(S) denotes derivative with respect to S. Similarly we get 

+1 pti 

2 a ie dxdy (1+ x)/2-(l1+y)/2-(3x—-1)/2- 

“(3y=1)/2 - [1 - Sxy + CSxy 2/2) 

= (1/4) f(S) +f (S) + 9/4) f”?(S)+g8(8S), (AY) 
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where 

x S2n 

g(S)=-—3/2 x -.  (A.10) 
n=0 (2n)!(2n+1)(2n+3) 

For the state 

\y > = cosd|yy > + sind|y, >, (A.11) 

the overlap integral is 

F= <¥| Pajeiye|¢ > = cos?8 Fy + sin? F,  (A.12) 

In order to calculate the number of pions in the projected 

state, we take into account the relation 

  d|¥> 1 1 
a came avs ai ly> = os fe Abo. Ss (A.13) 

to evaluate the derivative of the overlap integral F. This gives 

GF/dS =d<y¥|Pipip| py >/dS 

= (1/5) SPP ata |y>. (A.14) 1/2 1/2 ~ 00 ~ 00 

The projected number of pions is easily obtained: 

N= Peo Wy | Pi; 12 ain atm Pip 1/2 | y > 

= Pe | Papin & ain Atm| Y > 

=F <y|P y >= (S/F) dF/dS, (A.15) + 

1/2 1/2 aoo a, 

since only ay |¥ > in non-zero. 

APPENDIX B—THE NORM OF THE PROJECTED COHERENT 
STATE (HEDGEHOG) 

The generalized hedgehog coherent state is defined by 

|Hh(8) > =coss8|N>,+sins|A>, (B.1) 
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where 

\N >, = exp[VS/3 (at, tat, ay IN >, ae) 

and 

lA >, = exp [VS/3 (at, + at,—az)]|4>,) (B.3) 

|N >, and |A >), are defined by (5.2). The state (B.1) has grand 

spin zero: 

(J+T)|Hh(8)>=0, (B.4) 

i.e. it only contains components with J = T and M; = —M. Thus, 
separate projections for spin and isospin are not required. The 

eigenstates of spin and isospin are obtained from (B.1) accord- 

ing to [11] 

|J, T=J; M,—-M> = Pyy |Hh(8) > 

= (23 + 1)/8r* [4° 2 D yyy (2) R(@) | Hh (3) S. (B.5) 

Here © represents the three Euler angles «a, 8 and "7 

and R(Q) stands for the rotation operator. The operator P;y is 

a projector: P?,, = Pi, = Pm.- 

We shall always consider M = J; the norm of this state is 

f5(8, S) = <Hh(8) |Ps3|Hh(8) > 

2 ON 2 A 
=cos §f,;(S)+ sin 8 fy (S), (B.6) 

where 

f(S) =(23+1)/8r [ da D5,(a) Un, S) (B.7a) 

2 

fA(S) =(23+1)/8r [do Dy,(2)M, (2,8). (B7) 

In these expressions, the kernels %y and % a are given by 

Mx (2, S$) =n<N|R(@)|N>n 
= Un(2, S) cos B/2 cos (a+ y)/2 (B.8a) 
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and 

M,(2, 8) =n<A|R(OQ) [Ady 

= Uy (2, 8S) (2cos? B/2 cos? (a+ y)/2—1), (B.8b) 

where 

Ua (O,S) = exp{ S/3 [(1 + cos @) cos(a+y) +cosg]} (B9) 

refers to the overlap between rotated pion clouds. To calculate 

the norms (B.7) we use the expression 

a+ 
Dr (2) =e‘ (cos 8/2) 7 (B.10) 

and define the following new variables: z = 2S/3, x = cos? 8/2, 

k = J-1/2 and »=a+y (dady = dady, and the integral over 
N 

« is trivial, giving 27). The expressions for f; and fo reduce to 

f; = (k+1) ete dx xt e 
0 

oT 

be | 
-Z, # z ] 27 

fo a f, 4 “Zo - “f ax aie ¢ x ; J dy — 2 

0 T 3 

. zx cos P 
dp [cos ky + cos(k +1) ye "| (B.11a) 

0 

-[cos(k—1)¢+ 3coskg + 3cos(k+1)¢+cos(k+2) 9] 

(B.11b) 

and we recognize the integrals over » as the modified Bessel func- 

tions of integer order Iy (t) (see (9.6.19) of ref. [12]): 

2 -(k+2) 
Z 

Z t k+1 foal Ort) + h(t] 
(B.12a) 

N -2/ 

f;=(k+l)e 

N k+1 -«/2 ~k+3) pz t k+2 f+ =~—f, ate ee Z f dtet. 
0 

[Iya (t) + 3K (t) + 384i (t) + Ipye(t)],  (B.12b) 
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where t = xz. Defining the function Suyv(Z) (see (11.3.1) of 

ref. [12], with p = — 1) as 

Sujv(Z) = 

the above expressions for the overlaps read as 

“ dte t" I, (t) (B.13) 
ie) 

N -2/2 =(k+2) 
fy =(k+1l)e z [Sx+1e(Z2) + Setint1(Z))] (B.14a) 

A N -2/2 -(k+3) 
fs =—-f; +(kt+l)e z [8x+2%41(Z) + Sxtonsze (2) 

+ (K/2) Sean (2) FICK AY)/2 Ses zi1(2Z))- (B.14b) 

In order to write cy in this form, we have used the recursion 
relation for the modified Bessel functions ((9.6.26) of ref. [12]) and 

the definition (B.13) of the g-functions. 

The expressions in brackets in (B.14) can be written as func- 

tions of I, (z). Using the formulas (11.3.3,6,12) and (9.6.26) of 

ref. [12], one gets 

f3(S) =(1/z) exp(z/2)-(k +1) Iia(2) (B.15a) 

ff (S)=1/(2z) exp (2/2) [kIk(Z)+(k+2) Ixy2(Z)] (B.15b) 

where k = J—1/2 and z = 2S/3. 

The modified Bessel functions I, (z) are evaluated by rapidly 

converging power series in z, or, for z > 3.75, by the asimptotic 

series in z~ (see ref. [12]). 
In order to evaluate the kinetic energy one should note that, 

for the state (B.1) the property (3.9) reads as 

od —— t+1 

“Hh (3) |aun =V 8 Se C1) “<mns) |. (B.16) 

The projected kinetic energy is 

J -—1 + 

Eun = fy (8,8) < Hh(8) | Pas 2 Atm tm Psz|Hh (8) >, (B.17) 

where f;(8, S) is defined by (B.6). The first projector can be 

commuted to the right of the kinetic energy operator and dropped. 

Next we use the property (B.16) and take into account the com- 
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mutation relation of P;; with the operator ay, (see Appendix B 

of ref. [6]): 

JJ 2 
a4 Pap = 2, Pyy+ act [Oy 5414] + other terms, (B.18) 

where the sum is over all values of J’ such that 

[= Ll <J< [7 +1. (B.18a) 

In (B.18) the ‘other terms’ contain the operator a;,, with 

t #-m which gives zero acting on the hedgehog ket accord- 

ing to (B.16) and therefore can be ignored. Noticing that 

< Hh(8)|P;;,|Hh(8) > is independent of J-t and using the 
property of the Clebsh-Gordan coefficients 

JJ 2 

= [@yseit] =1, (B.19) 

one gets 

J -1 

Eyin = (8/3) fy (8, 8) 3 fy (8, 8). (B.20) 
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