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ABSTRACT — Computer calculations of various properties related to the 

behaviour of perfect crystals at high strains were undertaken using a pairwise 

potential approach. Three tensile deformation modes were considered, two 

of uniform deformation (constrained and unconstrained) and one of localized 

deformation, and the effect of the orientation of the tensile axis was studied. 

The emphasis was put on the maximum stress that can be supported in each 

deformation mode. 

The potentials used were of the Mye type with three combinations of 

the exponents in the attractive and repulsive terms. In this way conclusions 

were drawn on the effect of potential ranges on the anisotropy of the elastic 

constants and maximum stresses, in each deformation mode. The anisotropy 

is found to increase as the ranges increase, in contrast with the effect on 

the anisotropy of surface energy. 

Correlations between tensile properties and between these and surface 

energy were investigated and their accuracy assessed. 

1 — INTRODUCTION 

The subject of the ideal strength of crystals was recently 

reviewed by Macmillan [1]. In the calculations of the ideal strength, 

the atoms are assumed to interact by a pairwise central potential 

and the energy of the crystal is calculated as a function of the 

imposed strain: the maximum (or ideal) strength is simply related 

to the slope of the energy curve at the inflection point. Ideal 

strengths of simple crystals in uniform tension and in uniform 
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shear have been calculated by this method for various directions 
of the applied stress, both for constrained and unconstrained 
deformation, e. g. [2-6], leading to values that are in all cases of 

the order of 0.1M, M being the relevant elastic modulus. 

Calculations of ideal stresses for non-uniform deformation 

have not been attempted in these studies, although they would 

be relevant to the understanding of fracture by the usual mecha- 

nism of crack propagation. Attemps at computer modelling of 

cracks have nevertheless been made recently, e.g. [7,8], based 
on a lattice dynamics approach. 

In this paper we report on results of computer calculations 

of ideal strengths in tension under various regimes. Results were 

obtained for several orientations of the tensile axis, allowing a 

detailed study of the anisotropy of the ideal strength. Three Mye 

type potentials have been used, with the purpose of studying the 

effect of the potential range on the ideal strength and on its 

anisotropy. 

In uniform constrained tension no transversal relaxation of 

the atomic positions is allowed, implying that stresses must be 

applied in transversal directions. In the unconstrained mode of 

uniform deformation, the equilibrium positions of the atoms in 

each plane perpendicular to the applied tension are calculated; 

the crystal is now stress-free transversally. Calculations of this 

type were only undertaken for tension applied along symmetry axes. 

The special, simple mode of non-uniform deformation that is 

analysed in this work is such that the interplanar distances remain 

unaltered except for a pair of planes perpendicular to the ten- 

sile axis. 

All calculations were made for a f.c.c. monoatomic crystal 

using three Mye potentials, with exponents 6|9, 6/12 (Lennard- 

Jones) and 9| 12. The stored elastic energy for each potential and 

each deformation mode is found by calculating the appropriate 

lattice sums which will be derived in the paper. Equations that 

enable the calculation of the rests of the lattice sums were also 

derived with which we were able to avoid the necessity, common 

to all previous calculations, of considering a crystal of finite 

arbitrary dimensions. The results obtained for the 6/12 potential 

are compared with those available in the literature [1, 5]. 
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For each deformation mode and each potential we calculate 

the maximum tensile stress oma,, the elastic energy stored at 
maximum stress and Young’s modulus, Y, for various directions 

of tension. A correlation between these properties and also a 

correlation with the surface energies, y , previously determined [9], 

was attempted. In particular, we calculate the values of a, in the 

equation, e. g. [1, 10, 11], 

omax = &o CY 7 / To aon (1) 

where r, is the interatomic spacing in the crystal (*). 

In unconstrained uniform deformation it may happen that 

the crystal reaches a state of unstable equilibrium before the 

maximum stress is reached. The problem of stability under load 

was first discussed by Born ([12]; see other references to Born’s 

work in ref. [13]) and is reviewed in refs. [1] and [13]. The 

difficulty with Born’s stability criterion is that it is not coordinate 

independent, as first pointed out by Hill [14]. Furthermore, the 

criterion defines stability with respect to a homogeneous pertur- 

bation and not with respect to a general perturbation. At any 

rate, the stress at the onset of instability is an alternative and in 

principle more correct definition of the ideal stress. But several 

ideal stresses can then be defined. Various papers on the problem 

of stability under load have been published in recent years, par- 

ticularly by Hill and by Milstein; they are reviewed in ref. [13]. 

A remarkable finding in these studies [15, 6,13] is that a defor- 

mation path under load may bifurcate leading to different crystal 

structures. These stress-free structures are reached along paths 

that go beyond the maximum stress. 

Considering the difficulties in assessing stability under load, 

we identify, in this paper, the ideal strength with the maximum 

stress attained under unconstrained deformation. This is equivalent 

to assume that all deformation states up to the one at maximum 

stress are stable. Consequently, we shall not attempt to address 

the problem of crystal structure transformations induced by stress 

or strain. 

    

() In the original form of eq. 1 (see ref. 1), r, is the interplanar 

spacing of planes perpendicular to the tensile axis. However, as will be shown, 

nearly constant values of @ in eq (1) are obtained only if r, is the interatomic 

spacing (or proportional to it). 
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2—UNIFORM DEFORMATION 

Consider a crystal with an atom per lattice point, in which 

the lattice planes (p, p.p,) = (p) are at a variable but uniform 

spacing, equal to pwd (u>1), d, being the spacing in the 

unstressed crystal (Fig. 1). In the unconstrained mode of defor- 

  

r 

Fig. 1—A crystal under uniform deformation in tension. The direction of 

tension is perpendicular to the lattice planes (p, p, p,). The interplanar spacing 

of these planes is .d,, d, being the unstrained value. 

mation, the atoms in each plane (p) relax to new equilibrium 

positions which can be calculated by minimizing the energy of 

the crystal, for fixed ».. The nominal strain is (»—1). A general 

method to find the minimum energy configuration for each strain 

is as follows. 
We take a vector basis in the crystal lattice, e:,e2,e; (not 

necessarily a primitive basis), in relation to which we define the 

Miller indices (p). The unit vector perpendicular to (p) is 

denoted by P. 

Let t; be a vector between adjacent unstrained planes (p) 

and perpendicular to them 

t,=d, P (2) 
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and t,, t. two vectors in the plane (p) defining a convenient 

basis (not necessarily primitive) for the planar lattice in (p). 

The set t, is related to the e, by a matrix T 

[ t: te ts J = [e:e.es] T (3) 

or, in a more condensed notation, 

f= tet (4) 

where [e] = [e:e.e; ], for example, is to be regarded as a row 

matrix. When the crystal is stretched, t, changes to 

t's = yb ts (5) 

and t,, t. are transformed into t,, t2: 

FAs lo es (6) 
a 

We can always take a non-diagonal element of this transformation 

matrix as zero, without loss of generality. The atomic positions 

in the planes of the strained crystal are given by linear combina- 

tions of t’;, t With the same coefficients that define, in terms 

of t,, t, the positions in the unstrained crystal. In the con- 

strained deformation mode the matrix in eq. 6 is the identity 

matrix. 

The two sets tj and t (i=1,2,3) are then related by a 
matrix D such that 

  

  

] ay, as 0 T 

[¢(] =[t]D; D=]0 a0 (7) 

The general form of a vector n between two atoms is 

n=> Nn ej =[e] (n) (8) 

where (n) denotes a column matrix with elements n;. The n; 

satisfy certain selection rules, dependent on the crystal structure 
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and vector basis e,; chosen. For example, if the e, are a lattice 
basis, the n, are any integers. Eq. 8 can be written as 

A = [t] T* (9) (9) 

When the crystal is deformed, this vector changes to n* 
given by 

n* = [t']T* (n) =[e]TDT" (n) (10) 

Consider an arbitrary atom for origin. The other atoms are at 

distances p, which, in the deformed crystal, are the moduli of 

the n* vectors. If we denote by «(9 ) the pairwise potential, the 

potential energy per atom, in the field of all other atoms in the 

deformed crystal, is given by 

E( m3 a%,0,0,) = % e(n*) (11) 
n+0 

with n* given by eq. 10. The sum is for all values of n+ 0. In 

the unstrained crystal — E ='2«,, where «, is the cohesive energy 
per atom. For each »,, the lattice sum (11) is minimized in relation 

to the a,. We denote this energy by E (,») and the volume per 

atom by v. The applied (nominal) tensile stress, o, for each p, 

is then obtained from 

o =(1/v) dE/du (12) 

because the strain increment is du. 

Young’s modulus, Y,,, can be determined from the slope of 

o(u) aS p> 0. However it is easier and more accurate to obtain 

the modulus from the elastic constants (see section 4). 

When the deformation is constrained, the vectors n* are 

simply related to » through 

n*=nt+(w-1) (n-P) P (13) 

and the elastic energy is obtained from eq. 11. In this case, 

Young’s modulus Y, was calculated directly for each direction P 
by the following method. Since 

¥Yo=(1/v¥) (@ECu) / Gy?) | (14) 
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and noting that (eq. 13) 

dn*? /du =2(n-P) (n*-P) (15) 

we find upon simple calculations 

yea 24 = (n-P) (my) $28 (n-P) MN) 18) 
0 n.P>0 n.P> 

where «’ and e” denote derivatives of «(p) with respect to p’, and 

the sums are for all n such that (n-P) >0. From the values 

of Y, determined in this way for a number of tensile directions 

it is possible to obtain the elastic constants of the crystal, as ‘we 

exemplify in section 4. From the elastic constants we then calculate 

the unconstrained moduli. 

3 —LOCALIZED DEFORMATION 

Suppose that the distance between two, and only two, crystal 

planes (p) is changed from d, to d, + 8 as shown in Fig. 2. 

The displacement is §P. The strain will be defined as 5/1 

  

  

  

Fig. 2—A crystal under localized deformation in tension. The direction of 

tension is perpendicular to the lattice planes (p,p,p,). The interplanar 

spacing between a pair of these planes is d, + §, while the other planes 

remain at the unstrained spacing d,. 
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where r, is the interatomic spacing (‘). The two half-crystals 

C and C’ limited by these two planes are rigid. Let E* (8) be the 
interaction energy between C and C’ per unit area in the 

plane (p), as a function of 5. The applied stress is 

o = dE*(8)/d3 (17) 

The potential energy E* (8) is easily derived from the well-known 

equation [e.g. 9] for the potential energy of interaction, E* (0), 

of two half-crystals separated by a plane P through an unstrained 
crystal (8 =0): 

] 
E*(0)=~~% (m-P) e(n) 5) n-P>O (18) 

where the sum is for n-P > 0. The quantity (n-P) is propor- 

tional to the number of pairs of interacting planes at a given 

spacing and is unaltered when the two half-crystals suffer a 

relative translation 5P, in which case n in e(n) changes to 

no=n+s5P (19) 

Therefore 

1 
E*(8) =~~ = (n-P) e(n’) ; n-P>0 (20) 

Young’s modulus is defined as the stress increment for a unit 
increment of the strain 8 /r, as 8—0O. Therefore 

d? E* (3) 
= eee 21 

a= Bh ( d 3° Yao “ 

Using a procedure similar to that described in the derivation of 

eq. 16 we find 

Y= 27 [5 (n-P) Cn’) +23 (n-P) eM (n")| 22) 

where the sums are, again, for all n such that n-P> 0. 

(‘) The strain has to be defined in relation to a reference length in the 

crystal, the same for all orientations of the tensile axis. It is misleading to 

define strain in relation to the interplanar spacing d, . 
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4— APPLICATION TO F.C.C. CRYSTALS, 

MYE POTENTIALS 

The general equations derived above were applied to f.c.c. 

crystals in which the atoms interact by a Mye potential with 

exponents e, e’: 

e(p) =e [(o/p)*—(o/e)*], e>e (23) 

In this equation «, and o are constants that can be related to 

the cohesive energy «, and to the interatomic distance r, in the 

crystal (see ref. 9). The values of e, e’ used were combinations 

of 6, 9 and 12. A quantity of interest is the second derivative 

of «(p) at the minimum, which is a measure of the elastic 

stiffness of the bond between a pair of atoms. These values and 

other relevant parameters of each potential (taken from ref. 9) 

are included in Table 1. 

TABLE 1— Various parameters of the Mye potentials used 

  

| 6|9 Potential 6 | 12 Potential 9|12 Potential 

  

  
oft; 0.91710 0.91729 0.91747 

£9/ Fc 0.69769 0.46456 1.39026 

(d?2/dp2)* | 5.0646 7.8880 | 15.5292 

  

* Second derivative at the minimum <(¢) in &¢ units. 

With unit vectors, e,e.e;, parallel to the cube axes, the 

form of n is 

n=(a/2) Sn ej (24) 

where a is the lattice parameter (cube edge, a= Y2r,) and 

the n,; are integers such that 

=> n; = even integer (25) 
1 

In the following equation, n and n are expressed in a/2_ units. 
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The lattice sums that intervene in the calculation of the energy 

in the three deformation modes are of the following types. 

To obtain the energy in uniform deformation, it is necessary 
to calculate series of the type 

1 e 
= 3 Busst Se =X, (3s ) (26) 

where n* is related to n by eqs. 10 and 13, respectively for 

the unconstrained and constrained deformation modes. 

In the localized deformation mode the lattice sums for the 

energy are of the form 

n-P 

(n’)° 

where n’ is defined by eq. 19 and the sum is for all n such 

that n-P>0. 

Finally the sums that enter in Young’s moduli (eqs. 16 and 22) 

are of the types 

(27)   C.(3) = 

> (n-P)4 n-€t+® and > (n-P)* n-€+® ; q@ = 2,4 (28) 

summed for all n such that n-P>0. As already pointed out, 

in eqs. 26-28, n is expressed in a/2 units, so that the compo- 

nents n, are integers satisfying eq. 25. 

The sums S, and C, were calculated with great precision. 
A. direct sum was obtained up to a chosen value of n; the rest 

of the sum was obtained by replacing the corresponding part of 

the crystal by a continuum. The appropriate equations are derived 

in the Appendix. 

The sums (28) for Young’s moduli were calculated by direct 

sum up to n = 10 (in a/2 units). The maximum error in such 

truncated sums, estimated from values obtained for n = 15, is 1%. 

Calculations in the unconstrained mode were done exclusively 

for the tensile axis parallel to [002] and [111] directions. The 

method developed in section 2 was used to find the relaxed con- 

figuration which, in both cases, depends on one parameter only (*). 

(‘) This restriction to one parameter calculations is a constant in the 

literature. The method outlined in section 2 can, of course, be used to extend 

the calculations to other directions of tension. 
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The vectors t,,t: in the plane perpendicular to the tensile axis 

were chosen parallel to <110>, both for [002] and [111] tension, 

as shown in Fig. 3. The matrix D (eq. 7) then has a; = 0 and 

a= a — a. 

[110] 
/ / 

/ Ps 
/ pe 

[110] 0 0 [110] o ---+--- {ott] 
. ye Ty / 

\ 7 — tA 

\ ¢ ° 

Ty 

te Ld) O a/V2 

ec 

> O 

(002) C091) 

Fig. 3— Choice of vector bases in (002) and (111) planes. 

The elastic moduli in uniform deformation can be expressed 

in terms of the elastic constants. In the unconstrained mode, the 

modulus for tension in the direction [p,p.p;] is easily found 

to be 

a= (1/pt) [A su + B(2 Sit Su) ] (29a) 

where 

A=pi t+ Pi + Pi 

B= pi pi + P2 Ps + PS Pi (29b) 

and the s,; are the elastic compliances. It is also easy to obtain 

equations for the Poisson ratio corresponding to [002] and [111] 

tension. In the constrained mode of deformation, the modulus is 

given by 

Y,=(1/pt) [Aen + B(2¢,, + 4Cu) | (30) 

where the c,; are the stiffnesses, related to the s;; by well-known 

equations [e. g. 16]. It is then possible, by calculating the con- 
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strained moduli for a few directions, to obtain all the c;,;, making 
use of Cauchy’s relation c,, = c,,. The Sj; are then calculated 
and, from them, the unconstrained moduli can be determined for 
the various directions of tension. 

In unconstrained deformation, the stress obtained from eq. 12 
is a nominal stress (force divided by the initial area). The true 
stress can easily be found from the values of « in the equilibrium 
configurations; it is obtained by multiplication of the nominal stress 
by a”. Finally, it is possible to obtain the transversal stress in 
constrained tension parallel to [002] and [111]. The transversal 
stress is a negative two-dimensional pressure p, which, for 
each w is given by 

P= 1/(ydo) -dE(p,«)/dS = 1/(¥ 2) - dE/da (31) 

where S is the area per atom in the plane perpendicular to the 
tensile axis (Soo. = 1/2 a a*?; Sy; =V3/4 «2 a?). The derivative 
is taken fora =1. 

5— RESULTS AND DISCUSSION 

All quantities will be expressed by taking «, (the cohesive 
energy per atom) and r, (the interatomic spacing in the crystal) 
as units. For example, elastic stiffnesses and Young’s moduli will 

be expressed in e, /r? units. 
Table 2 gives the values of the elastic constants c,; and s;, 

for each potential. The anisotropy ratio is also included. The 
anisotropy increases as the exponents in the potential decrease 
(increasing range). The elastic stiffnesses increase as the curvature 
of the potential at the minimum increases (cf. values in Table 1). 

TABLE 2— Elastic constants * 

  

  

  

| | 
Potential | Cu | Cy = Cy 84 | S55 | Say baipale lie 

| | | | 
| | | | 

| 23.21 | 13.88 0.0780 | -0.0292 0.0720 | 2.977 

6|12 | 3169 | 18.12 0.0540 | -0.0197 | 0.0552 | 2.672 

9) 12 | 48.62 | 26.60 0.0335 -0.0119 | 0.0376 | 2.415 

  

* Ci, in €¢ /r* units for each potential; Si in r3/ © units. 
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However, a simple correlation between the c;; and the curvature 

cannot be established. This is not surprising considering that the 

equilibrium distance in the crystal is always smaller than the 

equilibrium distance of a pair of atoms [9]. 

Fig. 4 shows the energy curves for constrained tension in 

the [111] direction for the three potentials. The location of the 

El€c/ra) 

275 

2.50 

2.25 

  

    
2.00 619 

6112 

175 9112 

1.0 11 1.2 1.3 1.4 H 

Fig. 4— Energy (in &¢/r*, units) as a function of uniform strain “ for 

tension parallel to [111] in the constrained deformation mode. Each curve is 

for the Mye potential indicated. The location of the inflection points is shown. 

inflection points is indicated. In Fig. 5 are shown the stress-strain 

curves corresponding to Fig. 4. Similar curves are obtained for 

other directions and for other deformation modes. 
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OlEc/r3) 

  

  

  
0 4. L i rt 1 4. 1 4. 

1.1 2 ip 14 L 

Fig. 5— Nominal stress-strain curve for [111] uniform constrained tension. 

Each curve is for the Mye potential indicated. 

In Table 3 are indicated the values of Young’s modulus for 

various orientations of the tensile axis in each deformation mode. 

As already explained, the moduli for the constrained and localized 

modes were determined directly from eqs. 15 and 22, while the 

unconstrained moduli were calculated from the elastic constants. 

The values included in Table 3 for the constrained and localized 

modes are for tensile directions perpendicular to the more close 

packed lattice planes up to (135). Many other directions were 

calculated but in Table 3 we include only one more, for [1 15 19] 

tensile axis. The ratio of the moduli for [111] and [002] is also 

shown in Table 3, confirming that the anisotropy increases as the 

range of the potential increases. It is remarkable that the anisotropy 

of surface energy (and also of evaporation energy) varies in the 

opposite ‘way with the range of the potentials [9]. It is also 

noticeable that the unconstrained moduli are only slightly smaller 
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than the constrained ones for [111], but appreciably smaller 

for [002]. This is related to the small relaxation associated with 

tension along [111], reflected in the small value of the Poisson 

ratio, also listed in Table 3. In all modes, the extreme moduli are 

for [111] (maximum) and [002] (minimum). It is also noted that 

Poisson’s ratio increases with the range of the potential for [002] 

tension but decreases with the range for [111] tension. The 

behaviour in unconstrained tension 'was found to be anomalous at 

high strains in the sense that the transversal dimensions go through 

a minimum and then increase as the tensile strain increases. This 

result was previously reported in ref. [5]. 

The maximum stresses are indicated in Table 4 for various 

orientations of the tensile axis in each deformation mode studied. 

The largest maximum stress is in all cases for [111] tension while 

the smallest value was obtained for [0 30 38] among the directions 

investigated. The maximum stress is larger in the unconstrained 

mode than in the constrained one, but the difference is small. 

The maximum stress in localized deformation is appreciably 

smaller than in uniform deformation, by a factor that varies 

between 1.40 and 1.95. This factor increases from the 6|9 to 
the 9|12 potential. 

The transversal tension, p, at maximum stress in constrained 

deformation was calculated from eq. 31. The values of p are 

about 9 % and 31 % of the maximum stress, respectively for [111] 

and [002] tension. The lower value for [111] tension is related to 
the smaller transversal contraction that occurs in this case. 

Our results on maximum stresses and Young’s moduli for 

the 6|12 potential ‘were compared with those obtained by 

Macmillan and Kelly [5] for argon, using the same potential and 

appropriate values of the potential constants. The agreement is 

excelent, as we show with the following examples. The ratio 

of the extreme maximum stresses in constrained tension is 

3.42/2.64 = 1.295 in ref. [5], while our value is 2.856/2.215 = 1.289. 

The ratio om,, / Y, in [002] constrained tension is 0.083 in both 
calculations. The ratio of maximum true stresses in [002] uncon- 

strained and constrained tension is 3.45/3.17 = 1.088 in ref. [5] 

and 2.861/2.645 = 1.082 in the present work. 

Other characteristics of the critical state at maximum stress 

were determined in the calculations, related to the stored elastic 

energy and to the deformation at maximum stress. In Table 5 are 

108 Portgal. Phys. — Vol. 17, fasc. 1-2, pp. 93-115, 1986



M. A. ForTEs et al. — Tensile strengths of perfect crystals 

*ssoujS 
ond] 

SI 
O1[BII 

Ul 
eNnTeA 

pUODaS 
‘ssoI}S 

TeUTWIOU 
SI 

OI[eI 
Ul 

oNj[eA 
4SIIY 

(DV) 

 
 

 
 

  
 
 

  

€0°T 
ZO'T 

60°T 
son[ea 

COT 
col 

FOT 
67 

T 
SOT 

eet 
OUI9I}XO 

O
1
P
Y
 

CLL'T 
L
E
Z
 

€6P'T 
a 

ALA 
1
6
1
 

See'l 
8€ 

0€ 
0 

SLL'T 
926°C 

96F7'T 
60'S 

L6e'T 
800°C 

cel 

T08°T 
LOVE 

SIS‘T 
8Sh'S 

F
I
V
 

6c1S 
SII 

P8L'T 
LST'E 

e
I
‘
 

00s°¢ 
LIV'T 

lee? 
LAA 

. 

PLL 
T 

883°C 
c6Pr'T 

h
o
e
 

68E'T 
oc6e'T 

¥c0 

6LL'T 
cE0'E 

80ST 
€0r'e 

clr 
t 

a
A
 

eel 

68L'T 
P
C
O
S
 

60¢°T 
COSTS 

TIv't 
890°T 

toa & 

PLL'T 
828° 

66h'T 
EC'S 

TOr'T 
Pr6'T 

(AV) 

6F9'E 
- OLP'E 

198°C 
- 
€0L°S 

SESS 
- 88EC 

SI8'T 
Ochre 

FEST 
Gh9'S 

FIV'T 
EtE'S 

Z00 

9I9'E-996'E 
066°C 

- C88°C 
(P) 

0F9°S 
- L09°7 

FIST 
6
S
"
 

IS¢‘T 
968°7 

T9r'T 
689°C 

Ill 

P
a
U
I
W
L
]
S
U
O
I
U
N
 

P
a
U
I
D
A
z
Z
S
U
O
I
U
N
 

P
I
U
I
W
L
Z
S
U
O
I
U
N
 

pezi[eoor 
p
o
u
r
e
.
j
s
u
o
o
 

p
o
z
I
[
B
o
0
]
 

poure.zjsuo0o 
paz 

[Boo] 
p
o
u
r
e
i
j
s
u
0
.
 

Te1U2}0d 
21/6 

Te1}U230g 
ZT 

| 9 
Teyueiod 

6/9 

  
  
 
 

(syn 
{1 / 

°2) 
ssoxs 

u
N
U
I
X
x
e
W
 

—F> 
ATAVL 

109 Portgal. Phys. — Vol. 17, fasc. 1-2, pp. 93-115, 1986



M. A. ForTES et al. — Tensile strengths of perfect crystals 

‘son[BA 
oWaI}xe 

JO 
SOIeI 

oY} 
oIe 

S}oYOVIG 
Ul 

soNTeA 

 
 

(ITT) 
881°0- 

69T°0 

(801) 
*F1'0- 

€1'0 

(LT'T) 
6
0
2
'
0
 

- 
8L1°0 

(
I
'
D
 

s
f
0
-
 

910 

(eT) 
7
9
7
0
 

- 
L610 

(eI) 
¥20- 

810 

| Gar 
3
)
 

x
e
m
 a 

 
 

T
e
u
e
}
0
d
 

21/6 
T
e
U
9
}
0
d
 

21/9 
Tenuejod 

6|9 

(syun 
°1) 

g 

A
y
l
e
d
o
i
g
 

=
,
 

—
 

 
 

pezipeoo'{] 

 
 

(LET) 
F6F'0 

=19E'0 

(LIO'I) 
946°0 

0€66'°0 

(SSO'L) 
OIZI 

LPI'T 

(S€'T) 
9LF'0 

 EsE°0 

(ZZ0'1) 
ZL6'0 

ZE66'0 

(PLOT) 
LS@L 

OLT'T 

(FID) 
6EF'0 

98E°0 

(9Z0°1) 
896°0 

LE66°0 

(€90°T) 
€8@°T 

LOZ'T 

(syun 
21 /° 2) 

A8I9U9 
pat0}S 

»
 

| 
a 

 
 

{oo] 
=‘ [11] 

TeUe}0d 
ZI 

/ 6 
{zoo] 

= 
[111] 

TetjUa}0g 
21/9 

[200] 
[ttt] 

Tenuejod 
6|9 

A
y
l
o
d
o
i
g
 

  
 
 

p
o
u
l
e
i
j
s
u
o
o
u
y
,
 

 
 

(LPT) 
00S°0 

- 
OFE"0 

(POT) 
O@T- 

SIT 

(Stl) 
S9F'0 

- 1zE"0 

(SOL) 
PeT- 

SIT 

(9F'1) 
ZLP'0- 

FZE'0 

(90'T) 
8@I- 

I¢T 

| | (squn 
ta /°2) 

A819Ud 
PI10}S 

| 
of 

 
 

Te1}U9}0g 
ZI 

| 6 
T
e
j
U
9
}
0
q
 

21/9 
1enue}od 

6/9 
A
y
I
d
o
l
g
 

 
 

ssoijs 
W
N
W
I
x
e
u
l
 

je 
A3I9Ua 

pelo}s 
pue 

uOoNeUIIOJEaqg—G 
A
I
A
V
L
 

poureijsu0d 

Portgal. Phys. — Vol. 17, fasc. 1-2, pp. 93-115, 1986 110



M. A. ForTEs et al. — Tensile strengths of perfect crystals 

indicated, for each potential and each deformation mode, the 

ranges of values found for the various tensile directions. The 

extreme values of the deformation parameter, », at maximum 

stress occur for [111] and [002] tension, respectively for the 

largest and smaller ». The values of the stored energy vary only 

slightly with orientation; the extreme values correspond to tensile 

directions which depend on the potentital and are not in general 

low index directions. Neverthless the larger values seem to occur 

near [024] and the smaller values near [002] in uniform deformation 

and near [111] in localized deformation. It is also noted that the 

energy stored at maximum stress is not much different in the two 
modes of uniform deformation. 

The ratio between maximum stress and Young’s modulus is 

listed in Table 6. Nominal stresses were used in the case of 

unconstrained deformation. There is a fair uniformity in the values, 

TABLE 6—Ratio between maximum stress and Young’s modulus (x 100) 

  

  

    

  

Direction 6 | 9 Potential | 6 | 12 Potential | 9|12 Potential 

eect unconst.} const. | local. | unconst.) const. | local. unsonats| const. | local. 

obi 8.0 17.3 6.1 | 6.7 6.1 5.1 5.6 5.1 4.2 

002.—s—s«d18.6 =| «10.0 72 | 14.6 8.3 6.0 11.6 7.0 | 5.0 

022 | 6.0 | 66 | 5.2 | 5.5 | 44) 45 

113 7.1) 68 64 | 5.7 5.2 | 4.6 

133 6.4 6.5 5.4 5.4 4.6 4.4 

024 6.7 6.9 5.8 | 5.7 4.9 4.7 

224 | 6.8 6.5 5.8 | 5.4 4.9 4.4 

15 8.5) 71 70 | 5.9 59 48 
135 6.5 6.7 5.6 5.6 4.7 4.6                   

although the ratios for unconstrained deformation in [002] are 
noticeably larger. In general, then, the maximum stress ranges 
from Y/5 to Y/23. 

Using the values of (unrelaxed) surface energies calculated 
in ref. [9] for the same potentials, we determined the values of a 
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defined by eq. (1). The results are as follows. In constrained 

deformation a increases from the 6|9 to the 9| 12 potential. The 

extreme values for the 6/9 potential are 0.48-0.69; for 6| 12: 
0.51-0.70; and for 9/12: 0.57-0.82. The first value corresponds 
to [022] and the second to [002]. The values for unconstrained 

deformation (nominal stresses) are as follows (first value for [111], 

second for [002]): 6 | 9: 0.66-0.95; 6 | 12: 0.67-0.94: 9 | 12: 0.78-1.07. 

Finally, the values of a for localized deformation are sur- 

prisingly uniform: they range from 0.42 to 0.44 for each of the 6 | 9 

and 6| 12 potentials and from 0.45 to 0.50 for the 9 | 12 potential. 

Various correlations involving the energy stored at maximum 

stress have been attempted. For example, the ratio between the 

maximum stored energy and the surface energy ranges from 0.41 

to 0.53 in localized deformation. 

6 — SUMMARY 

The calculations described in this paper were aimed at 

studying the effect of the interatomic potential on various crystal 

properties with interest for the mechanical behaviour of materials. 

The tensile properties at low stresses (elastic stiffness) and at 

maximum stress (ideal strength, stored energy and deformation) 

were calculated for each Mye potential as a function of the 

direction of the tensile axis. The anisotropy of these properties 

was found to increase as the range of the attractive and/or 

repulsive terms in the potential increases. This is in contrast with 

the effect of range on the anisotropy of the surface energies. The 

anisotropy of the maximum stress is fairly small for all potentials, 

indicating that there is not a well-defined cleavage plane. 

The consideration of different tensile modes is another matter 

of interest in the paper. It ‘was concluded that in the localized 

deformation mode, the maximum stress is reduced by a factor 

of 1.5-2 compared to the values in uniform deformation. Finally, 

correlations between tensile properties and surface energy, such 

as eq. 1, were analysed and the numerical factors in the correla- 

tions were determined. 
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APPENDIX — CALCULATION OF LATTICE SUMS 

The sum S, defined in eq 26 is calculated term by term for 
all combinations of integers n, satisfying eq. 25 and such that 

n¥? + n# + n¥? <M? 

and the corresponding number of terms, or atoms, N, is counted. 

The vector n* is defined by eqs. 10 or 13. The rest of the sum is 

obtained from an integral over a continuum distribution in the 

region outside the sphere where the N atoms are located (Fig. 1). 

Since the volume per atom is (a°/4) D, where D = | det D| is the 
volume ratio between the strained and unstrained crystal, the 

radius R,(a/2) of the sphere is given by 

47 R} /3 = 2ND 

The rest of the series, Si, is obtained by integration in ? over 

the region outside the sphere, where the atomic density is 
4(a°D)": 

ioe) 

S.= (47/2) ff p> dp —27 R, D /(e-3) 
R, 

The series S, is then calculated from 

Seo= % pets 
e<™M 

When the value of M is changed from 10 to 15 the relative changes 

in the energy values obtained for the 6|9 potential are less than 

2.10-* %. The accuracy is even better for the other potentials. 

The series C,(8) defined by eqs. 27 and 19 is calculated 

term by term for all values of n,; such that 

n2+n2+n?2<M?; ni =n, + dp,/p 

where 38 is expressed in a/2 units. The corresponding N atoms 

are within a hemisphere centred at atom 0’, in the first plane 0’ of 
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crystal C’ (see Fig. 2). The radius of this hemisphere, R, (a/2 ), is 

given by (see ref. 9) 

(22/3) R3—7R2(8 + 1/p)=2N 

Note that 1/p + 8 is the interplanar spacing (in a/2 units) across 

the two half-crystals. Crystal C, outside the hemisphere, is replaced 

by a continuum distribution of lamella of thickness d,, centred 

in each plane, with an atomic density 4/a* (Fig. 2). The proce- 

dure is similar to that used for the sums that give the surface 

energy [9]. The integration region, outside the hemisphere, is the 

difference between: i) the volume below plane 0’ outside the 

hemisphere; ii) the volume of a lamella of thickness d,/2+ 8, 

adjacent to plane 0’, and outside the hemisphere. 

The integrals over these two regions are calculated in spherical 

coordinates, ? (in a/2 units), 6 and ¢. But 

n-P = ? cosd—$§ 

The integrals that give the rest of sum C,(8) are of the form 

(upon integration in ¢) 

Qa 
2 'f (pcos 4-5) pe ging dp dé 

where a factor 1/2, corresponding to the atomic density in a/2 

units, has been introduced. 

The integral over region i) is for @ between R, and o and 

for 6 between 0 and 7/2. The result is 

T 1 T 8 

Ce = 2(e-4) Re e-3 Rc 
    

The integration limits for region ii) are: ? between R, and 

(1/p + 8)/cos6@ and 6 between cos [(1/p + 8)/R,] and 7/2. 

The result is 

  
T 1 

w= 7 sy ti-r") 2p? e-2 Roe 
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The series C, is then calculated from 

C.(8)= 3% (n-P) p*#+Q-Ce 
p<™M 

Note that for § = 0 the result corresponds to that derived in ref. 9 

for the sums used in the calculation of surface energies (the 

series C, in that paper is related by a factor 2/p to the one being 

used here). 
When M is changed from 10 to 15, the relative change in the 

interaction energy E(0) obtained by this method for (002), poten- 

tial 6|9, is 6.10-° %. For the other potentials the error is even 

smaller. 
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