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ABSTRACT — The recent appearance of markedly different non-over- 

lapping ranges for the first correction exponent of undirected lattice animals 

in 2 and 3 dimensions is examined. One of the earliest estimated ranges 

(in 2 dimensions) stood for nearly 8 years (the three-dimensional one is 

2 years old) and we try to gain a clear perspective on the question using 

newly extended series data. To the best of the present accuracy we feel the 

newly-analysed three-dimensional results favour a value closer to 0.64 than 

to any value below 0.5. (New central estimates of 0.45 from a Monte-Carlo 

randomization method have been proposed for the radius of gyration of lattice 

animals in 3 dimensions.) 

INTRODUCTION 

Lattice animals are by now a classical area of lattice statistics 

whose studies have influenced an enormous mass of material in 

most phenomenological subjects relating to cluster growth and 

kinetics, with a special emphasis on gelation, aggregation, polymers 

and percolation models. They are, of course, their essential 

geometrical substrate (in discrete models) and the corpus of exact 

(and well established) results on topological properties and their 

influence on critical exponents, growth parameters and dimensional 

dependence can be used as a testing ground for new developments 

in series studies, transfer matrix calculations or Monte-Carlo 

generation procedures. 

Real interest in lattice animals, per se, always an overlooked 

by-product of percolation enumeration in the 1970’s, was spurred 

on by Lubensky’s lengthy field theory on animal partitions 
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according to site valence and cyclomatic number [1], which 
predicted that the upper critical dimensionality was d, = 8 and 
that the restricted set of lattice animals with no closed loops (or 
cycles), called ‘lattice trees’, shared the same critical exponent 
as the complete set of animals for all dimensions and problems. 
Family [2], with small-cell renormalization, ‘Seitz and Klein [3], 
with Monte-Carlo tree generation in 2 and 3 dimensions, and Duarte 
and Ruskin [4], using series expansions, proved these results on 
lattice trees. The latter authors have also identified a restricted 
subset of lattices on which lattice trees collapse into neighbour- 
avoiding walks (a very different universality class from lattice 
animals). Ruskin and Duarte [5], have completed the series study 
for all dimensions using the hypercubic system. 

No radius of gyration or generating function exponent pre- 
dictions appear in [1] for animals with cycles. Also a very 
troublesome gap in exponent evolution for dimensions higher 
than 3 hindered any significant refining of the estimated interval 
for the generating function exponent (quoted as 6 = 1.55 + 0.10 
in [4] for 3 dimensions). Parisi and Sourlas [6] have established 
6 = 1, in 2 dimensions, and 6 = 1.5, in 3 dimensions, as well 
as v = 0.5, in 3 dimensions, exactly, while, two years later, 

Whittington, Torrie and Gaunt [7] have shown that a hierarchy 

of exponents was hidden in the cycle partition. No statements have 

been made on the correlation exponent v and its possible cycle 

dependence. Numerical results (limited to series expansion evi- 

dence) were not outstanding, particularly for the higher cycle 

values, but a consideration of the equivalent model for directed 

lattices, [8], where some growth constants are known exactly, 

lent additional (and better) support to the existence of such an 

hierarchy of exponents. 

Under the influence of all these results, attention has inevi- 

tably shifted from the leading exponents to the next correction 

exponent — the so-called first confluent singularity exponent, [9]. 

The earliest such attempt, due to Guttmann and Gaunt [10], 

virtually established a central estimate of 0.86 + 0.05 in 2 dimen- 
sions, which was successively extended to the radius of gyration 

series [11], to the first moment of the bond distribution [12] and 
later reobtained by alternative numerical manipulations [13]. 

Reference [11] also first proposed a value for the confluent 
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exponent in 3 dimensions (0 = 0.64 + 0.06), while trees (from 

an even shorter series than that available for animals) led to the 

same radius of gyration interval in 2 dimensions [14]. 

In the last 12 months, a much heralded breakthrough on series 

extensions (for lattices that can be divided into two equivalent 

sublattices — the so-called ‘bipartite’ or ‘loose-packed’ lattices) saw 

its first published results [15], while a successful Monte-Carlo 

thermal algorithm was put forward by Glaus as an efficient and 

precise tree-generator, giving growth parameters and generating 

function exponents as well as v estimates [16]. On the other hand, 

the ‘incomplete enumeration method’ of Dhar and Lam [17], 

grafting a Monte-Carlo randomization onto the exhaustive series 

enumeration process, has been tested by Lam [18, 19], on studies 

of the anisotropy and cycle partition of animals in 2 and 3 dimen- 

sions. Lam has also presented studies of the radius of gyration for 

total animals that show a considerable difference from the accepted 

confluences of all the other authors, quoting 9 = 0.5 + 0.05 and 

Q = 0.45 + 0.10, in 2 and 3 dimensions respectively. Cycle studies 

through an equivalent randomization have been independently 

undertaken by Wilkinson [20]. 

Our own approach to the subject [9] has followed the historical 

mainstream of animal statistics, particularly drawing on a signifi- 

cant amount of published but not analysed data (se also [12]) 

and it seems fair to assert the importance of such a viewpoint 

now that the subject is coming close to an explosive loss of 

overall perspective: references [8], [14] and [16], for example, 

have virtually no overlapping bibliography and reports on dynamics 

and growth (where the area is termed ‘static lattice animals’) 

emphatically ignore the historical perspective as if lattice animals 

were freshly born in the past 3 years. 

In this paper we undertake an analysis of the generating 

function for lattice animals in 3 dimensions, using the exact leading 

singularity exponent, © = 1.5, and studying the first moment of 

the site and bond distributions enumerated in [21] to scan the usual 

three-dimensional lattices. Our aim is to analyse these numbers 

in the light of Lam’s markedly different exponents for the radius 

of gyration — Glaus data analyses have always assumed the absence 

of non-analytical terms while reptation algorithms [3, 22] have not 

yet specialized to the evaluation of confluent corrections. We also 
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use the extended body-centered cubic evidence [15] to assess the 
gain represented in practical terms by the code-method develop- 
ments in 3 dimensions. 

ANALYSIS AND DISCUSSION 

As stated in the Introduction we report here on the attempt 
to get the confluent singularity, using the Privman-Fisher and 
Zinn-Justin estimators, for all series data in 3 dimensions available 
to us, either on pure or bond- and site-weighted lattice ani- 
mals [15,21]. Most of them and particularly the weighted distri- 
butions (see appended lists) appeared to be long enough to allow 
already a safe comment on the bound limits of the sequences. 

TABLE 1— Tabulated values of Xp bg. (8.5 being the number of animals 

with s sites and b bonds) worked out from refs. [15] and [21] 

  

s Simple Cubic Body-centered Cubic Face-centered Cubic 

2 3 4 6 
3 30 56 108 
4 261 660 1 602 
5 2 184 7 400 22 452 
6 17 937 81 344 308 118 
7 146 160 887 352 4 192 260 
8 1 187049 9 651 836 56 841 252 
9 9 631 140 104 896 328 769 801 944 

10 78 150 654 1 140 176 604 10 425 240 712 
11 634 544 034 12 400 948 880 

12 134 992 129 128 

_
 

(os
) 

1 470 871 228 200 

  

For s sites or bonds the asymptotic number of different ani- 
mals is usually assumed as 

N, = As? 5 (1+ Bs?+8(s)) 

132 Porigal. Phys. — Vol. 17, fasc. 3-4, pp. 129-142, 1986



  

M. C. T. P. CarvALHo — Estimators for 3-dimensional undirected lattice animals 

TABLE 2—Tabulated values of ¥, sg, worked out from ref. [21] 

  

  

b Simple Cubic Face-centered Cubic Diamond 

1 6 12 4 

2 45 198 18 

3 380 3712 88 

4 3 402 74217 455 

5 31 614 1 542 120 2 448 

6 300 980 32 866 554 13 494 

7 2 915 160 713 112 984 75 640 

8 28 595 115 15 678 677 670 429 255 

9 283 236 544 2 459 052 

10 2 827 120 098 14 191 320 

11 82 387 836 

12 480 652 244 

13 2 815 642 168 

  

where © and @ are the universal leading and confluent singularities 

respectively, ’, A and B lattice dependent constants and g(s) 

more rapidly vanishing confluences. Neglecting such power law 

correction terms higher than © and assuming © to be known 

exactly [6], we took the successive ratios (Privman-Fisher, [13]) 

Nex (@) = [RyS—Rs-x(s-k)]1/[8”—(s-k)"] 

for k = 1,2,... << s, with 

R, = [8° 2 NA] /[(8-1)° 2 Nya] 

and w= 1-aQ. 

We expected to be able to identify the range of the confluent 

singularity as a region of intersection of the \,,’s close to the 

values previously predicted for each lattice. The patterns were 

rather deceptive (even in 2 dimensions) as they failed to predict 
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a confluent singularity below 1 and gave the estimated values 
of A in the limit of Q going to zero instead - probably a sign that 
such ratios actually overemphasize the relevance of the dominant 
behaviour. 

A more straightforward adaptation of the method introduced 
in [13] would be to assume both \ and © as known, using the 
values of X obtained from standard extrapolants that mostly 
neglect confluent singularities despite the shortness of the series. 
We thus considered the ratios 

Asx (A, ©) = [R,—Rgy] /[8%-(s-k)%] 

with R, = gore y* N, and k <<s, that should display the values 
of the prefactor constant A for any s, and used them to establish 
bounds for © in a manner essentially dependent upon the trend 
of each curve. Fortunately, the regions of overlap for the various 
s values were highly sensitive to the varying values of ©, inside 
the quoted ranges, and this led us to reasonable estimates of 
both A and X that, for © = 0.64, do not conflict with the values 
pointed out before and even allow for a not overly optimistic nar- 
rowing of the error bounds for both values (to be compared with 

the values fitted in [10] to the ansatz N, = As” 2° esp (Bs )). 
The central values of A we found are lower, for most lattices 
and problems, than the earlier tentative ones of Guttmann and 
Gaunt [10]. 

In the light of previous estimates for the bond problems, 
considerable gain in the evolution of the sequences was brought 
up during the analysis just by trying a whole shift of the numbers 
of animals up to their corresponding size in bonds plus (or minus) 
one, an operation whose effects are negligible for large s. In fact, 
this implicitly defines new values A’ and B’ such that 

N, = As? a° [1+ Bs? + g(s)] 

=A’ (st+1)° 57" [14+ Bs +1)%+ g(s)] 

with A’=(A/A) (8 +1)/s)° and B’=B((s+1)/s)®, 
that go to A/d and B, respectively, for large s. Our results are 
summarized on Tables 3 and 4. 
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From our figures, in general, we think we can safely argue 

that, again due to the sensitivity of the plots (whose intersection 

regions are also monotonic as a function of ©), one may really 

accept the value of © in [11] for the animal generating function 

(note that the authors proposed it for the radius of gyration) if 

the published bounds of \ are to be taken as granted. These 

bounds cover the whole range of allowed values of © in the inter- 

TABLE 3—Results of 2 — 0.64 — intersection curves for three dimensional 

bond animals 

  

Lattice r A/x 

15.306 + 0.006   Body-centered cubic 

Site-weighted simple cubic 

Site-weighted face-centered cubic 

Site-weighted diamond 

10.655 + 0.006 

23.984 + 0.006 

6.137 + 0.001 

0.0205 + 0.0002 

0.0338 + 0.0003 

0.0114 + 0.0002 

0.0787 += 0.0004 

  

TABLE 4—Results of {= 0.64 -— intersection curves for three dimensional 

site animals ((1), (2) are overall estimates and (a), (b), (c), (d) the amplitude 

ranges consistent with them) 

  
  
  

Lattice 

Simple cubic 

Bond-weighted simple cubic 

Body-centered cubic 

Bond-weighted body-centered cubic 

Bond-weighted face-centered cubic 

8.347 + 0.005 (1) 

8.334 + 0.005 (1) 

11.182 + 0.006 (2) 

11.168 + 0.005 (2) 

13.900 + 0.005 

A 

0.180 + 0.002 (a) 

0.209 + 0.001 (b) 

0.139 + 0.001 (c) 

0.163 + 0.001 (d) 

0.168 + 0.001 

  

@) A= 8.350 +0.015 (a) A=—0.183 + 0.005 (c) A=0.141 + 0.005 

(?) A=11.175 0.015 (b) A=0.206+ 0.005 (d) A=0.161 + 0.005 

val there proposed although we do not feel confident enough to 

narrow this range (see Figs. 1-9). 
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In a sense we have just stressed the problem of relying on 
biased parameter estimates, a common practice with short series 
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Fig. 1 — Intersections of Ay (\)) for the Simple Cubic site animals for 

s=9, 10, ..., 13 and the input 2 = 0.64. 
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Fig. 2 — Intersections of AL, (\) for the bond-weighted simple cubic lattice 

animals for s= 7, 8, ..., 11 and the input Q = 0.64. 
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where any induced variations are quickly propagated. The 

Zinn-Justin estimators [23] are the simplest version of a direct 
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Fig. 3— Intersections of Ay (4) for the site-weighted simple cubic lattice 

animals for s = 7, 8, ..., 10 and the input 2 = 0.64. 
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Fig. 4— Intersections of As (4) for the body-centered cubic site animals 

for s=9, 10 ..., 13 and the input 0 — 0.64. 
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evaluation of the confluent singularity (up to corrections of 

order O(1/s)), provided we can use a reasonably good estimate 

1.68 
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Fig. 5— Intersections of A. (4) for the bond-weighted body-centered cubic 

lattice animals for s= 8, 9, ..., 13 and the input 2 = 0.64. 
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Fig. 6 — Intersections of Ai (\) for the body-centered cubic bond animals 

for s= 10, 11, ..., 14 and the input 2 = 0.64. 
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of the leading exponent (ideally it should be exactly known). 

It involves considering, for large s, the consecutive differences 

QO, = (Rs ra Ry 7 2 
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Fig. 7— Intersections of Ai (\) for the bond-weighted face-centered cubic 

lattice animals for s=6, 7, .... 10 and the input 2 = 0.64. 
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Fig. 9— Intersections of A. (1) for the site-weighted diamond lattice 
animals for s= 10, 11, ..., 13 and the input Q — 0.64. 

from the log-ratios 

R, = (InT, / T,4)7=—[(@Q+ 2) In(s— 1)/s}* = s/(a + 2) 

where 

T, = In (W, Weg /W2,) =BO(9+1)/s272 

and W, = s° N,. In other words, the T,’s are successive dis- 
crete logarithm derivatives, 

T, = (InW,~In W,4) /(s—(s—1)) 
— (In W,4—In W,.2) /((s—1) —(s—2)) 

which makes them less than ideal for short series. Finally, 
an averaging of two consecutive 0,’s may be required in order to 
damp any oscillations. They have been plotted against 1/s in Fig. 10 
where only bond-weighted body- and face-centered cubic sequences 
remain above 1 but with acceptably fast descending slopes. Their 
spreading makes it hard to believe that the picture will be dras- 
tically altered by adding a few more terms, however tempting a 
clue this might provide for the presence of more distant singu- 
larities, although the simple cubic site data show a troublesome 
final slope (line e, fig. 10). 
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In summary and to conclude we note that we have sampled 

two kinds of estimators in the search for a decisive position of the 

series approach concerning the disparity of values proposed for 

22.   

418. 

4. 

2x
10
 

10, 

  

  

      
OB 16. 20, 

(1/s) x100 

Fig. 10— Estimates of the confluent singularity exponent for the a: body- 

centered cubic site, b: site-weighted diamond, c: bond-weighted face-centered 

cubic, d: bond-weighted body-centered cubic, e: simple cubic site, f: site- 

weighted simple cubic, g: body-centered cubic bond and h: site-weighted 

face-centered cubic animals. 

the first confluent exponent of lattice animals in 3 dimensions. 

Falling into a band between 0.6 and 1.1, our results for the 

confluence of the generating function support the higher range 

(Q = 0.64 + 0.06 ) and certainly do not put in doubt the reliability 
and control of the methods used to locate singularities. For the 

Zinn-Justin estimators the extended series of [15] mainly confirm 

the trends one already obtains with data from [21] while in the 

Privman-Fisher version the last body-centered cubic figures added 

improve the tendency to a more favourable overlapping region. 

This paper contains the results of a communcation tc the 

Conferéncia Nacional de Fisica, Braga 1986. 

I wish to thank J. Duarte for sharing with me his impressions 

on the subject and for comments on the manuscript. 
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