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ABSTRACT —A molecular dynamics simulation of an ionic system has 

been done using a method recently suggested by Adams and Dubey for 

performing Ewald’s summation. The damped force method of Hoover and 

Evans for simulation in the N, V, T ensemble has also been used. The 

results show that static and dynamic properties are in good agreement with 

experiment and N, V, E molecular dynamics simulation. 

1 — INTRODUCTION 

The molecular dynamics method (MD) [1] which enables the 

numerical solution of the Newton’s equations for interacting 

many-body systems is now a well established approach in the 

study of classical fluids, and in particular, of ionic systems [2]. 

For these systems the truncation of the electrostatic energy con- 

tribution is not allowed and a crucial problem is to evaluate the 

electrostatic potential of a system of charges in a periodic cell. 

The classical method for calculating this potential was proposed 

by Ewald [3], but the expression obtained is rather complex, 

requiring two infinite summations, one in real space and the other 

in reciprocal lattice space. Nevertheless, it has been the method 

used so far, routinely, in molecular dynamics and Monte Carlo 
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simulations of ionic systems, although there exist other alterna- 

tives [4] used in the study of the One Component Plasma (OCP). 

Recently, Adams and Dubey [5, 6] derived a modified expres- 

sion for the Ewald’s summation which enables the potential of a 

periodic system of charges to be obtained in a very simple and 

efficient way. In this approach, the electrostatic energy for a 

system of N interacting charges in a periodic cell is written in 

terms of an effective pair potential uv, (r) : 

N-1 N 
qj S+ "4 Gi = Gy ti (Ty) (1) 

j> 

gCoul = 1/2 

M
Z
 

The term q?S is the energy due to the interaction between 

charge i and all its own periodic images. It is known as the self 

term and a neutral system it makes no contribution; r,; is a 

nearest image vector and wv,(r) is expanded according to: 

1 

w(r) =1/r+ A,r? + x (A, KH, (tr) + B, KHb, (*)) @) 
=4, n 6,.. 

where 1/r is the interaction between the charges in the basic cell, 

A,r? is the unique term which does not satisfy Laplace’s equation; 

it is the solution of Poisson’s equation and represents the con- 

tribution of the uniform neutralizing charge distribution that 

the Ewald summation puts around each charge. Finally the last 

terms is an expansion in Kubic Harmonics, which are polynomials 

of even order n> 4. For some values of n there are more 

than a single Kubic Harmonic. Adams and Dubey tabulated the 

Kubic Harmonics up to | = 20 and the degeneracy occurs for 

n= 12, 16, 18 and 20, i.e., B, = 0 except for these values of n. 

The coefficients A,, B, for the expansion in Kubic Har- 
monics KH, , KHb, [7], for simple cubic (SC) and truncated 

octahedral (TO) boundary conditions, were optimized by Adams 

and Dubey for several approximations y, [5,6]. The optimization 

was made to give the best fit of uy, to the true Ewald u(r). For 
molecular dynamics simulation ¥, and its gradient are easily 
obtained since the Kubic Harmonics are simple known analytic 

functions. 

In the present work we have employed SC periodic boundary 

conditions and ¥,'was expanded up to the tenth term. This choice 
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was determined by the results of the OCP study where y, is a 

very good approximation [6]. 

Most of the simulations of ionic systems by molecular 

dynamics have been done using the N, V, E ensemble. This makes 

the comparison with Monte Carlo and experimental results rather 

difficult. Following the pioneering work of Woodcock [8] on 

isothermal molecular dynamics, other methods have been proposed 

to perform MD at constant mean temperature [9-13]. We have 

employed the damped force method of Hoover [11] and Evans [12] 

since it has been shown [9] that the method gives results identical 

to those of the N, Z, E ensemble. 

The corresponding algorithm in the framework of the 

“leapfrog” form of the Verlet scheme has been given by Brown 

and Clarke [9]: 

vi (t) = vj (t-- At/2) + F,(t) At/2m (3) 

gp? = (3 (N—1) KgTp) /X m,v? (t) (4) 

v; (t + At/2) = v, (t—At/2) (28-1) +.F,(t) 8 At/m (5) 

ri (t + At) =r, (t) + v(t + At/2) at (6) 

v; (t) = [v(t + At/2) + v, (t — At/2) ]/2 (7) 

where v,’ (t) is a projected velocity, i. e., a velocity in the absence 

of a damped force. Tp is the pre-defined temperature and Ky, the 

Boltzmann constant. The damped force method reduces to simple 

scaling of the velocities and forces at each integration step. 

2 — MODEL 

Computations based on the above procedures have been 

carried out for molten NaCl at 1224.5 K and molar volume 

39.5 cm’ mol with 64 and 216 rigid ions in the basic MD cube. 

The same system was studied by Lantelme et al. [14], but they 

used the N, V,E ensemble and the classical Ewald’s summation. 
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The pair potential was the Born-Mayer-Huggins potential 

with parameters for NaCl reported by Adams and MacDonald [15]: 

$ij = 941 9;/% + By; exp (- aj) = Cy /r — Dj, /r (8) 

or 

yy = 9M + GRE + gDP + gRO (9) 

The simulation started from a face centred cubic lattice with 

randomly distributed velocities and the constraint of total zero 

momentum. The time step was 0.8 < 10-4 sec. Thermal equilibra- 

tion was attained after 1400 time steps. For 64 ions 2000 time 

steps were generated for averages, while for 216 ions they were 

based on 5000 additional configurations (10 runs of 500 configu- 

rations). The calculations were done on a VAX 11/730 system 

using double precision arithmetic. 

3 — RESULTS AND CONCLUSIONS 

(a) Thermodynamics 

Thermodynamical results are presented in the table I and 

compared with those of Lantelme et al. [14] and also with experi- 

ment. Comparison between the two molecular dynamics simula- 

tions shows a very good agreement. Identical Coulombic energies 

support the equivalence of both classical and modified Ewald 

summation methods. Furthermore, the results of a preliminary 

study with 64 particles (Table I) put into evidence a size inde- 

pendence of the method within the present approximation. The 

value of C,, calculated by the usual canonical energy fluctuation 

formula [16] is in good agreement with the N, V,E and experi- 

mental results. The pressure, calculated from the virial expres- 

sion, is about 1.3 kbar. 

(b) Structure 

The radial distribution functions are shown in the Fig. 1. For 

unlike ions (g,—) this function presents a first peak with 
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TABLE I — Thermodynamical data for NaCl 

  

  

  

V (cm3/mol) == 395 T= 1224.5 K 

N=216 N= 216 N= 64 

MD(N,V,E)[14]  MD(NV,T) — MD(N,V,T) Exp. 

U (kJ/mol) (a) ~ 680.2 — 682.7516 -6814+18 -692.7[17] 

67°" (kJ/mol) ~ 710.3 -~7133£16 -7120+18 

o°°" (kJ/mol) ~ 797.0 ~ 799.5 ~ 797.4 

g°? (kJ/mol) ~ 14.2 ~ 15.5 - 147 

¢°?  (&s/mol) ~2i = ‘9% -21 

oP (kJ/mol) 103.0 103.8 102.2 

C, W/Kmol) 56.9 53.1 + 4 48.5[18] 

P (kbar) 13 +08 

D, (10-4 cm? s-) 1.08 1.02 (b) 1.31[19] 
1.22 (c) 

D_ (10-4 cm? s~1) 0.988 0.94 (b) 0.959[19] 
0.90 (c) 

  

@) U=E,+¢ 

(b) From the mean square displacement 

DS 
a 

> lim 

tres 

_ is the kinetic energy. 

<|(r, ) — 1, 0) |2>/6t sa = +,- 

(c) From the velocity self-correlation function 

D= 
a 

height 3.6 at 2.64 A and a second maximum with height 1.33 at 

6.1 A. The radial distribution functions for like ions (g__ and 

lim (‘<v () . v,@)>(-s/t) ds;a=+,- 
EID 0 

g*+) are very similar as it is usual for the rigid ions model [2]. 

They present both a first maximum with values 1.76 and 1.66 

at 4.0 A and are identical after 5 A, reflecting equivalent long 

range interactions for anions-anions and cations-cations. 
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Fig. 1— Radial distribution functions for NaCl at 1224.5 K 

(c) Time dependent-properties 

Results for the mean square displacement, velocity and force 

self-correlation functions are presented in the figures 2, 3 and 4. 

These quantities were evaluated during the simulation and each 

curve is the average of nine. The self-diffusion coefficient can be 
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evaluated either from the mean square displacement of the ions, 

or from the integration of the velocity self-correlation function. 

However, it is known [14] that in the simulation of a finite size 

system, during a limited time, the two methods may give different 

results. A difference of 19% was obtained in the present work 

as shown in the Table I. 
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Fig. 2— Mean square displacements of the ions in A? 
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Fig. 3 — Velocity self-correlation functions for NaCl at 1224.5 K. 

Za C)==¥, Ct: ¥, (0)>/ SV CO.).*. Vo (0)>;a=+,- 

From this study it appears that the modified Ewald sum 

proposed by Adams and Dubey [5,6] is a pratical and efficient 

method to take into account long-range electrostatic interactions 

in the simulation of ionic systems. The agreement of our N, V, T 
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simulation with N, V, E molecular dynamics simulation shows the 

equivalence of these ensembles for finite size ionic systems. 
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Fig. 4— Force self-correlation functions for NaCl at 1224.5 K. 

Fy, (t)=<a, (t) . a, (0)>/ <a, (0) . a, (0) > where 

a(t) is the acceleration of the ions; a = + ,— 

One of us (F. Fernandes) is grateful to Dr. David Adams of 
Southampton University, England, for helpful discussions on the 
modified Ewald sum and for providing us with copies of his papers 
prior to publication. 
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