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ABSTRACT — The mean-field renormalization group method is used to 

study the effect of the transverse field on the quantum Blume-Capel model; 

the critical surface in the temperature — crystal field coupling — transverse 

field space is obtained. The same method is applied to the Blume-Capel model 

with random crystal field interactions. Comparison is made with the results 

obtained by other methods. 

1 -- INTRODUCTION 

Spin-1 models with crystal and biquadratic interactions were 

firstly introduced by Blume, Emery and Griffiths [1] to describe 

phase separation and superfluid ordering in He*-He‘ mixtures, and 

have since been applied to order-disorder phenomena in adsorbed 

monolayers, multicomponent fluids and magnetic systems. Despite 

its simplicity the Blume-Emergy-Griffiths (BEG) model presents 

a complex phase diagram with first and second-order transition 

lines and tricritical points. Starting with the conventional mean-field 

aproximation used in the original paper [1], the model has since 

been investigated by diferent methods ranging from improved 

mean-field like approximations [2,3,4] to different RG _ ver- 

sions [5, 6, 7]; as a result, rather accurate estimates for the location 

of tricritical points and tricritical exponents are now available. 
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Alternatively some authors have studied the (d-1)-dim model in 

a transverse field 1 at T= 0 as an equivalent system to the 

d-dim classical BEG model [8, 9, 10, 11, 12]. However, as far as 

we know, no study of the classical-to-quantum crossover which 

arises by switching on the transverse field at TO has been 

presented: In this work we make use of MFRG (mean-field renor- 

malization group), a technique which has previously been applied 

to the transverse spin-1/2 Ising model [13] and to the Potts model 

in a transverse field [14]. This same method has already been 

applied to the study of classical spin-1 Ising model [15,16] and 

provides a reasonably accurate description of the phase diagram, 

namely the location of second-order phase transitions and tricritical 

points. The method is not entirely justified for first-order phase 

transitions, however its estimates of the first-order critical 

coupling are in some cases [17] better than those obtained by 

mean-field. This stands as one of the limitations of MFRG; on 

the other hand, the method has the advantage of enabling the 

calculation of the entire T-r phase diagram. 

2.1—MFRG for the quantum Blume-Capel model 

We start with an hamiltonian of the form 

2 
H=-J yx SiSj+%[D(S/) +r S*] 

<ij> i 

where S;, s are the corresponding spin-1 matrices. When Tf = 0 

this reduces to the classical Blume-Capel model. At T = 0, r +0 

this model is equivalent to the classical (d+ 1) Blume-Capel 

model [9]. 

MFRG is a model based on the comparison of two clusters 

of different size; the interactions within the clusters are treated 

exactly and the effect of the other spins is represented by a 

mean-field b which is assumed to scale like the order parameter 

itself. 
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We have chosen to compare one-spin and two-spin clusters, 

the main advantage being that calculations can then be done 

analytically. 

The hamiltonian for the one-spin cluster is then 

H, =r’ S¥+D’ (S;)?—-€;S} 

where C, = zJ’b’ represents the surrounding mean-field, and z is 

the number of nearest neighbours to one spin. 

If we assume b’ to be small (which is true in the vicinity 

of a second-order transition) we can work out a perturbation 

expansion for <S’> in powers of b’ and keep only the lienar 

term. This is done in the Appendix following the method of 

ref. [14]; one gets 

2 Z@) - sp +00") Z 

my = <5 PI BG CG Z) 

The hamiltonian for the two-spin cluster is 

Hy=P(sit $3) +D[(S1)2+ (S2)21- 

~J S[S3—Cy( Si + $3) 

Where C,;; = (z—1) Jb; and 

Z Z (2) 
_ Si + So _ 1 zy 

Myr — < >u > ———. . =. + 0(b*) (see Apendix) 
2 BCy ZY 

The MFRG assumption is that b’ and b must scale like m; and mj;; 

imposing this scaling relation for b’ and b, we arrive at the 

renormalization recursive relation for K’ (= J’ 8’), A’ (= D’ 8’), 

a’ (= I’ g’) and K, A, a (defined analogously). 

The fixed point equation associated with it 

    1 2H a, | ———- =: () 
z—1 2D |cKe, at, at) 2 BR, am, ot)”   

yields the phase diagram in the transverse field-temperature space. 
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2.2 — Results 

The phase diagram obtained from equation [1] for a Square 
lattice (z = 4) is chown in Fig. 1. For r = 0 the model reduces 
to the situation treated by de Alcantara Bonfim [15], i.e. the 
classical Blume-Capel model. This author has associated the tricri- 
tical coordinate, A,, to the maximum value taken by A in the 

  
            

  

Fig. 1 — Phase diagram of the quantum Blume-Capel model in the T-D-[ space 

——_—________. second-order transition 

oe first-order transition 

116 Portgal. Phys. — Vol. 18, fasc. 3-4, pp. 113-125, 1987



C. A. S. SANTOS et al. —MFRG study of Spin-1 Ising Models 

curve obtained from MFRG. This method does not envolve a 

calculation of the free energy necessary to locate the first-order 

line. However a study of this model by means of the linear chain 

approximation [4] has shown that in the A region where a pair 

of solutions exists, the upper branch of the curve can be inter- 

preted as giving the Curie temperature of a second-order phase 

transition, the tricritical point A, within 0.2% of the maximum 

value taken by A in that curve. We take this argument to support 

the, otherwise unjustified, assumption of de Alcantara Bonfim 

and associate the tricritical point with the point beyond which 

no solution exists to equation (1). The lower branch of the curve 

(shown in dash) represents an unstable solution. One knows from 

ground state energy considerations that the first-order line must 

cut the T=0 axis at 2D/zJ = 1, so at low temperatures the 

first-order line is certainly not well represented by the dashed line. 

Fig. 2 shows the phase diagram at T= 0, for a unidimen- 

sional lattce (z = 2), together with the predictions of mean-field 

and other RG methods [9, 11, 12] devised for the T = 0 case only. 

We can see that the curve obtained from equation (1) compares 

well with the estimates of the second-order lines as given by 

other RG techniques. However the intersection of the line of 

extremal points (T;, D,, Tr) with the T=0O plane does not 

coincide with the tricritical point as predicted by the other RG 

methods. Whether this is due to a failure of the criterium used 

by the Alcantara Bonfim for the location of the tricritical point 

within MFRG, or whether it is a limitation of the other RG methods 

is not clear at the moment. The techniques used by other authors 

are essentially real-space block spin RG schemes by which a few 

neighbouring spins are grouped into blocks, the intrablock 

Hamiltonian is diagonalized and its three lowest levels retained 

to define the new single-spin variables; this truncation procedure 

is certainly a limitation of these methods. In the MFRG method 

the contributions of all the energy levels of the two-spin cluster 

are duly accounted for in the derivation of the RG recursion rela- 

tion. On the other hand the MFRG procedure leads to just one 

equation relating K, a, A and K’, a’, A’, whereas a completely 

specified RG scheme requires more than one equation; thus, only 
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a few points in the critical surface obtained from equation (1) are 
actually fixed points of such a well specified procedure; in that 

respect, those other RG methods stand a better chance of 

  

  
  

0.2 0.4 6.6 0.8 4.0 - Dy 

J 

Fig. 2—Transverse field (7) against crystal-field (D) for the quantum 
Blume-Capel model at T = 0; denotes the critical point (MFA — mean-field 
approximation; MFRG — mean-field renormalization group;. VM — variational 

methods; FSS — finite size scaling; RG— block-spin renormalization group). 

appropriately locating first-order phase transitions, since these are 

then associated with critical coupling lying in the domain (of 

attraction of the so called ‘discontinuity fixed points’. 
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3 —BLUME-CAPEL MODEL WITH RANDOM 

CRYSTAL-FIELD COUPLING 

In this section we consider the effect of random crystal-field 

interactions on the phase diagram of the classical Blume-Capel 

system. A similar model has been studied by Kaneyoshi [18] by 

means of the differential operator technique. 

The hamiltonian of the system is then given by 

H=— 3 J S/S}—= D,(S;)? 
<ij> 

where D,; has a probability distribution of the form 

P(D,;) =x 8(D,—D) + (1—x) 8(D;) 

We get for the 1-spin and 2-spin clusters, after a configurational 

average has been performed: 

  
2ze® , - , 2Z 4 , , a a St SRI 
2e41 

si+ si 

my = <a = 2 (2-1) (27ATE 4 Ay / 

2 2 Qe%+1 
(4e74 coshk + 4e4+1)).x°kb + 2(z—1) ——_—_.. 

4 coshk + 5 

(1—x)7kb + 2(z—-1).(4e8*4 4+ e441) / 

(4e coshk + 2e°+3)).x(1—x) kb 

The critical lines derived from the MFRG fixed point equation 

are drawn in figures 3.1 and 3.2 for different values of the con- 

centration and in the case z = 3 (honeycomb lattice). 

The tricritical point disappears for x = 0.745; this differs from 

the value x = 0.68 obtained by Kaneyoshi. 
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Kel 

5   

  

3:1)     
0.5 4 15 “Dy 

  

3.2)     
0.5 tL 1.5 ~D/y 

Fig. 3— Temperature versus crystal field (D) for the classical Blume-Capel 

with random crystal field at two different concentrations — 3.1 — Pure case; 

3.2 —x = 0.8. 
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4 — CONCLUSIONS 

The use of MFRG has enabled us to treat the quantum 

Blume-Capel model at all temperatures and spatial dimensionality. 

In the limits T= 0 or r= 0 the results of the present work 

reasonably agree with those presented by other authors in what 

concerns the location of the line of second-order phase transitions. 

The tricritical point is also approximately located. The method is 

not appropriate to study first-order phase transitions and some of 

its assumptions are less justified at low temperatures when certain 

relevant correlations are not accounted for; these two limitations 

affect more critically the location of the tricritical point at low 

temperatures and this may be the reason for certain discrepancies 

with the results of other authors at T = 0. 

We have also applied MFRG to the Blume-Capel model with 

random crystal-field coupling. The results compare well with those 

obtained by other methods; this is probably due to the fact that 

dilution of the crystal-field coupling does not bring the tricriticral 

point to a low temperature range, as in the former case. 

Better accuracy can be achieved by considering bigger clusters 

which means however that the fixed point equation no longer 

can be analytically obtained. 

We thank M. A. Santos for discussions and a critical reading 

of the manuscript. C. A. S. Santos acknowledges the financial 

support of Instituto Nacional de Investigacéo Cientifica under a 

‘Bolsa de Iniciacéo a Investigac¢ao’. 

APPENDIX 

The eigenvalues and eigenvectors of the isolated one-spin 

cluster 

Ho =r s¥+D(s7)” 

Portgal. Phys. — Vol. 18, fasc. 3-4, pp. 113-125, 1987 121



  
C. A. S. SANTOs et al.— MFRG study of Spin-1 Ising Models 

are the following 

  

  

  

  

  

  

E, =D’: U> = Chis—-| tej 

D’ 

E,=(D'+A)/2 |Us> = a t>+ 
V2(D'+A)?4+ 87 

4 2N2T Sai psy 
D’+A 

E,; = (D’—A/2; |U; > = alee (jf >+ 
V¥2(D’—A)?4+ 8r? 

4 220 |>>tl{[ >). 
D— A 

where A=/D’2 +4 [2 

The partition function Z, which corresponds to the hamilto- 

nian H,; can then be [14] 

Z, = 2 +2 + ov?) 

where Zz = 9 BP’ 4 4 B/2AD'+A) , .— B/2D'—A) | 

turbated: partition function and 
is the unper- 

  
10) — a¢2 (D’+ A)? ; 2 

1 (D’+A)?+4r? A =D 

(eo OP 2g PPOs) (D’— A)? 
(D’—A)?+4r? 

2 (e —B/2D'—A)_, | 

yi SF   

D’+A 

One then gets 

dinZ; 1 dz?) 
    

  

Zz _ = . mi , Coe 
B< Sj >; = dC; = ZO) dC; + O(b’2) = 

Z2) 
of Me a + O(b’?) 
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The hamiltonian for the isolated two-spin clusters is 

0 x x Zc 2 Ze 2 Z WZ 

Hy =r(S; +S) +DL(8;) + ($3) ]—J 8183 

This hamiltonian comutes with the site interchange operator 

and the «reflexion» operator P|m,m, > = |—m,—m, >; we can 

therefore search for the eigenvectors of H{, among the eigen- 

vectors of these operators. One obtains 

  

  

  

  

  

  

  

  

J+D+B 2r 
|\Vi >= . «|Uy> + | U,> 

ViJ+D+B)?+4r? LJ+D+B 
J+3D-B 

a oa 

J+ D-B 2T 

[V2 >= , *|U, > + | 0, > 
V(J+D+B)?+4r? LJ+D-B 

J+3D+B 
| a rar ecm aaa 2 

|V,; > =|U; > E, = D 

D-JjJ—C or 
|\V; >= . | Us > — Us > 

Y  (D-J-C)?+4r? D—J-C 

= 3D-I+C 
2 

D—-J+C oT 

| V (D—-J+C)?+4Tr? Feer i: : 
3D~J-—C 
ey cael 

  
  

where B=V4r?+(J+D)*, C= V4r?+(J—D)? and 

yest 

£(J,D,T,E,) = (E,(-J + 2D-E,) (J+ 2D-E,))/ VWF 
F = E2(J+2D—E,)?+2(-J + 2D—E,)2(J + 2D—E) + 

+ E2(—-J +2D—E,)? + E2(—J + 2D—Ex)2(J + 2D—ER) /1? 
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LP Vv27Tr 
. £(J,D, 1, E;, ) .(U,> + E 

k 
  

- 

J+2D-E, 
.|U;>+f(,D,0,Ex)|U;s> Ex, k=4,5,6,7 

f(J,D,T, Ex) |U,>— f(J,D,1,E,) . 

The E,’s are the solutions of equation 

[(2D—E, )?—J?] [E,(E,—D) —21?] + 2T7E, (2D—E,) = 0 

A perturbation expansion of 2s, = si> requires the calculation 

of matrix elements <V,| Si+ S3| V;>, of which only a few are 
nonzero. 

Following the same procedure as above we get 

Cr a — BE, Aji Z Zo. WT 
—_ 

1/2 <S;j + Sy>3; = ZO fey © "¥ E.=    

where the coefficients A;; are defined as | <V, | St fs Ss: | Vie |. 
The expressions for the nonvanishing elements are 

  

  

  

4y? 
An ~ Aw = “are+(3+D1B)° 

- 47? 
An = Aw = “Gre (I+ DB)? 

D—J—c): 
Ase = Axg = : . £ C5,D, tT, Ey) 477+ (D—-J-—C)? 

4q* -1] k= 45,67 
(D—J—C) (J-2D+E,) 
  

  

  

= Ay = Soles ae f? (J, D,r, Ex) Aan = Axo = 4r°+(D-J+C)? ° oes 

40% —1 | ?2;k=4,5,6,7 
‘D—-J+C) (J-2D+E,) 
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