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ABSTRACT-The knowledge of the present day temperature distribution within a basin is important both 
as a constraint for thermal evolution models, and as an indication of the processes that may have governed 
the thermal state of the basin through time. These aspects are essential for the complete understanding of 
gas and oil maturation in sedimentary basins. In this paper, general ideas about inversion and an inversion 
method to estimate geothermal gradients from bottom-hole temperature measurements are presented. 
Combining the gradients with thermal conductivity information makes it possible to estimate the heat flow 
density that constitutes the most important thermal parameter in geothermal studies. Bottom-hole tempera- 
ture measurements are generally abundant in sedimentary basins because of the high number of wells 
drilled for gas and oil exploration. However, they are of poor quality and in this case inversion methods 
have given better results than the traditional ones. 

1L.INTRODUCTION 

In spite of the fact that the distribution of 
temperature inside the Earth is probably 

one of the most fundamental parameters 

needed to understand its evolution and 
behaviour, it remains one of the most 

poorly determined Earth properties. 

Knowledge and evaluation of the internal 

temperature of the Earth is obtained 

through measurements of geothermal 

gradients in wells or, equivalently, 

through the calculation of heat flow 

density (HFD) near the surface. Unfortu- 

nately, reliable geothermal gradient mea- 
surements are relatively rare due to well 
drilling costs and scarcity of appropriate 
wells. Besides,” since the temperature 
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distribution within the Earth is a continu- 

ous function and the surface measure- 

ments are discrete, the problem of its in- 
terpretation is never unique. 

The problem of trying to determine the 

temperature distribution at a given depth 

is further complicated by the fact that 

there are uncertainties in the radiogenic 

heat production of rock formations and, 

at the same time, the heat transfer mode 

is generally very complicated, i.e., non 

steady-state conduction and convection 

of heat by fluid motion. Measurements of 

HFD at the Earth's surface provide, how- 

ever, Constraints on its internal tempera- 

ture distribution and therefore many heat 

flow density studies are being performed. 
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Because of hydrocarbon exploration, 

sedimentary basins provide a_ great 

amount of temperature data that can be 
used to determine, analyze and interpret 

the temperature distribution within the 
Earth. These data exist in the form of 

bottom-hole temperatures (BHT) and, de- 

spite their quantity, their quality is gen- 
erally low. Nevertheless, because of the 
large numbers of BHTs available for 
analysis, statistically significant informa- 

tion is contained in these data sets [2], 

(9],{10],(15],[18]. 
Several methods have been proposed to 
analyze BHTs measured in oil wells. 

There are essentially two ways of ap- 
proaching this problem. In the first one 

[2], [7], [8], [9], [16],. the calculation of 

geothermal gradients or heat flow density 

is considered a forward problem, while in 

the second one [10], [18], [19], it is consid- 

ered a linear discrete inverse problem. 

Inverse theory was developed by scien- 

tists and mathematicians who had differ- 

ent backgrounds and goals and, therefore, 
the resulting versions look different, in 
spite of the fact that they are fundamen- 

tally similar. There are three major ap- 

proaches to inverse theory [17], The first 

is based on probability theory. In this 

version the data (measured values) and 

the model parameters (estimated values) 

are treated as random variables and the 

emphasis is placed on the determination 

of their probability distributions. The 

second, developed from more determin- 
istic physical sciences, emphasizes the 

estimation of model parameters and as-. 
sociated errors rather than probabilistic 

distributions. The third approach was de- 
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veloped from the consideration that 

model parameters are intrinsically con- 
tinuous functions rather than discrete, as 

considered in the two first approaches. 

In this work only the Gaussian linear dis- 
crete inverse theory will be considered. A 
review of some of the linear inverse 

techniques will be presented as well as 

the way to apply them to the study of the 

temperature distribution inside the Earth 
using bottom-hole temperatures obtained 

in oil wells. 

2.GENERAL IDEAS AND DESCRIPTION 
OF DISCRETE INVERSE PROBLEMS 

Inverse theory consists of a set of math- 

ematical techniques for reducing data to 

obtain information about the physical 

world. The inferences and numerical or 

Statistical values obtained through the use 

of inverse theory, which are generally 

called "model parameters", are based on 

observations or simply "data". Of course, 
some relationship must exist between the 

data and the model parameters, usually a 

mathematical theory or model. Generally 

speaking, the phrase "inverse theory" is 

used in contrast to "forward theory". The 

latter is defined as the process of deter- 

mining the results of measurements or 

data based on some specific model. The 

former is defined as the process of esti- 

mating the model parameters from a 

tabulation of measurements or data and a> 

specific model. It is worthwhile to note 

that inverse methods do not provide any 

information about the model itself. How- 

ever, in some cases they can give some 
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insight on the correctness of a given 

model or a way of discriminating be- 

tween several possible models. 

In most inverse problems the data are a 

sequence of numerical values (d) and 

therefore vectors constitute a convenient 

means to represent them. The same ap- 

plies to the model parameters (m). These 
two quantities are generally related by 
one or more implicit equations such as 

f,(d,m) = 0 
f,(d,m) = 0 

(1) 

f, (dm) = 0 

where L is the number of equations. 

These equations can be compactly writ- 

ten as a vector equation 

f(d,m) = 0 (2) 

which summarizes what is known about 
how the data and the unknown model pa- 

rameters are related. The main purpose of 

the inverse theory is to solve these equa- 

tions for the model parameters. In gen- 

eral, the system of equations (1) consists 

of arbitrarily non-linear functions of the 

data and model parameters. Also, in most 

cases, it does not contain enough infor- 

mation to uniquely determine the model 

parameters. There are, however, many 

problems where the system of equations 

(1) takes one of several simple forms. If f 

is linear in both data and model parame- 

ters, equation (2) can be written as a ma- 

trix equation 
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fram) =0=F| | (3) 
m 

where F is a L«(M+N) matrix, M is the 

number of elements of the model 

parameter matrix, and N is the number of 

elements of the data matrix. If it is 

possible to separate the data from the 
model parameters and to form L=N equa- 
tions that are linear in the data and non- 
linear in the model parameters, then 

equation (2) can be written as 

f(d,m) = 0 = d - g(m) (4) 

where g(m) represents a non-linear func- 

tion of the model parameters. If in equa- 
tion (4) g is also linear, equation (2) can 

be written as 

f(d,m) = 0 = d-Gm (5) 

where G is a N*M matrix. 

Equation (5) corresponds to the simplest 

and best understood inverse problems 

and constitutes the foundation of the 

study of discrete inverse theory. Fortu- 
nately, this equation appears in many 

physical science problems, and even 

some non-linear problems can be reduced 
to it in certain cases. Matrix G is called 
the data kernel in analogy with continu- 

ous inverse theory where the function 

G(x,&) is the kernel of an integral equation 

[3], [4], [5] . 
The simplest solution to an _ inverse 

problem is an estimate of the model pa- 

rameters, m°*t, This consists on a numeri- 

cal sequence of values, which in certain 
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cases can be misleading. In fact, esti- 
mates in themselves do not give any in- 

formation about the quality of the solu- 

tions and therefore there is no control of 

the errors in the model parameters esti- 
mation. One way to partially solve the 

problem is to define either absolute or 
probabilistic bounds that allow an as- 

sessment of the degree of certainty of the 
solution. Absolute bounds imply that the 

true value of a given model parameter 
lies between two stated values, which is 

equivalent asserting an absolute error to 

the estimate. Probabilistic bounds imply 

that the estimate is likely to be between 

the bounds with some degree of cer- 

tainty; a generalization of this consists in 

stating the complete probability distribu- 

tion for the model parameters. 

There are three points of view that can be 
used to study Gaussian linear inverse 
problems [1], [17]. The first point of view 

[11] that is generally called the length or 

stochastic method, emphasizes the data 
and the model parameters themselves, 

and the method of least squares is used to 
estimate the model parameters with the 

smallest prediction error. This approach 

will be detailed in the next section since 

it seems to be the most suitable one to 
apply to geothermal problems. The sec- 
ond point of view [13] emphasizes the 

relationship between the data and the 
model parameters. It is called the method 

of generalized inverses and it provides a 
means to tell a well designed experiment 

from a poor one, even without knowing 

the numerical values of the data and 

model parameters. The third point of 

view is called the method of maximum 
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likelihood and it assumes that the opti- 

mum values of the model parameters 

maximize the probability that the ob- 

served data are in fact observed. This 
third point of view will not be described 
in this work. 

Before describing in a more formal way 

the stochastic inversion point of view it is 
useful to define the concepts of underde- 

termined, even-determined, and overde- 

termined inverse problems, and a priori 

information. 

Linear inverse problems are said to be 

underdetermined when equation (5) does 

not provide enough information to 

uniquely determine all the model parame- 

ters or, iri a simpler manner, when there 

are more unknown model parameters 

than data. This case generally happens 

when there are several solutions to the 

problem that have zero prediction error 

(by definition the prediction error is 

given by e; = df’ - d?™, where . a?” is 
the measured data and 4d?" is the pre- 
dicted data obtained using the estimated 

model parameters). 

Even-determined problems appear when 

there is just enough information to de- 

termine the model parameters. In this 
case there is only one solution to the 

problem and the prediction error is zero. 
Overdetermined problems happen when 

there is too much information contained 

in equation (5). In this case there are sev- 
eral solutions and the method of least 

squares is used to obtain the best approx- 

imate solution. Overdetermined problems 

have typically more data than unknown 

model parameters. 
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To obtain a solution to an inverse prob- 

lem it is necessary to choose one solution 

from the great number of solutions gen- 
erally available. This is particularly true 
in the underestimated problem. To 

achieve that, information that is not con- 

tained in equation (5) must be given. This 
extra information is called a priori in- 

formation [12] and generally quantifies 
expectations about the character of the 

solution that are not based on the actual 
data. 

3. THE LENGTH OR STOCHASTIC IN- 
VERSION METHOD 

In this method the main idea is to deter- 
mine the model parameters so that the 

predicted data are as close as possible to 

the observed data. The predicted data are 

calculated using the estimated model pa- 

rameters and, therefore, for each obser- 
vation it is possible to define the above- 

mentioned prediction error, e;. The best 

solution will then be that which makes 

the overall error E, defined as 

2 E= > e% (6) 

a minimum. In vector terms this can be 

written 

E=ele (7) 

where T means transpose and e is the 

vector column formed by the values of e¢,. 

Using the least squares method it is then 

possible to find the model parameters 
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that minimize a particular measure of the 
length of the estimated data, dt , from 
the observations, ds, 

The term norm is generally used to refer 

to some measure of length and is indi- 

cated by a set of vertical bars. Several 

norms can be used but the most common 

is the L, norm defined as 

1 
lel, = » le, - (8) 

This norm is used in the method of least 

squares to quantify length and implies 

that the data obey Gaussian statistics [17]. 

Using equation (7), it is possible to calcu- 

late the least squares solution to the linear 
inverse problem defined by equation (5): 

E=ele=(d-Gm)!(d- Gm) 

(9) 
N M M 

i Jj k 

  

Multiplying and reversing the order of 

the summations leads to 

E (10) 
M M N N 

mm, > Gj Gy-2 m; Y Gyjd+d dd, 
i j i - 

M
z
 

"! 
~
M
z
 

The derivatives 3E/dm, should now be 

computed. Performing this differentiation 

term by term gives for the first term 

3 M M N 

am, y YAM Y GjGx |= 
Fi. i 
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M M N 

DY Diqm + Fql DSi Ge = 
j«k i 

M oN 
2¥m YG Gi (11) 

k i 

The second term gives 

M N 

: 23m, [Em XS; dj 
J 

  

M N 

=-2 284 LG d= 
j i 

N 
-23Gid, (12) 

i 
The third term is of course zero because 

a (x Sm, [Sa] a0 . (13) 

Combining equations (11), (12) and (13) 

gives 

M N N 

3£/Om, = 0= 25m, YG, Gy - 2V Gd; 
k i i 

(14) 

which in matrix notation can be written 

as 

G'Gm -G'd=0 . (15) 

Assuming that [G™G}! exists, the solution 

for the model parameters estimate is 

mest = (G™G]!G"d. (16) 

When dealing with an inverse problem 

the question that always arises is if there 

is a solution to it and, in the affirmative 
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case, if the solution is exact.Equation (16) 

implicitly assumes that there is only one 

"best" solution. However, it can be 

proved that least squares fails if the num- 

ber of solutions that give the same mini- 

mum prediction error is greater than one 

[17]. That is the case, for instance, when a 

straight line must be chosen to pass 

through only one data point. Of course, 

in this situation the solution is non- 
unique and many possible straight lines 

can pass through the data point, each so- 

lution presenting zero prediction error. 

Data always contain noise that causes er- 

rors in the estimated model parameters. 

Since the formulas to determine the 

model parameters are linear functions of 

the data (m°*t = Md + v, where M is a ma- 

trix and v is a vector), it is possible to 

calculate how the measurement errors 

influence the errors in the estimated 

model parameters. If the data have a dis- 

tribution characterized by some covari- 

ance matrix [cov d], the estimates of the 

model parameters have a distribution 

characterized by [cov m] = M[cov d]M! .If 

it is possible to assume that the data are 

uncorrelated and all of equal variance o7, 

simple formulas are obtained for the 

simple inverse problem solutions. The 

simpler least squares solution represented 

by equation (16) has covariance 

[cov m] = 0, (G'G}! . (17) 

that shows that the covariance matrix of 

the model parameters depends on the 

variance of the data [17]. 
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4.THE USE OF INVERSE THEORY IN 
HEAT FLOW STUDIES 

When analyzing the thermal state in 

sedimentary basins, one of the limiting 
factors is the quantity and quality of the 
temperature data available. Accurate 
temperature measurements are rare. 
However, for most basins, a great amount 

of data exists in the form of bottom-hole 
temperatures (BHTs) obtained during 

geophysical logging operations. Unfortu- 

nately, the quality of the BHT measure- 
ments is low. 

Numerous recent studies of basins have 

used BHTs for different types of 

geothermal analysis to try to find which 

gives the best results. One of the methods 
that has recently received attention is the 
linear inversion method which was first 

applied to the Michigan Basin [18]. In this 

method, the area under study is divided 

into m discrete layers, that may be forma- 

tions or lithologic units. Each of these 

layers is assumed to have constant ther- 

mal conductivity, K; (j=1,2,....m); heat 

flow density is assumed to be constant 

throughout the entire area. This implies 
that the geothermal gradients, 8 » are 

constant in each layer or formation. 
Using the thermal resistance method pro- 

posed in reference [6], the temperature at 

any depth can be obtained by 

T=Ty+q > (z;/k;)) (18) 

j 

where Ty is the temperature at the surface 
of the Earth, q is the heat flow density, z, 

is the thickness of the jth layer, and K;, is 
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the thermal conductivity of the same 

layer. After correcting BHTs by one of 

the available methods (the Horner plot 

technique, for instance [14]), equation (18) 
can be modified to: 

(BHT = To) = AT; = Yi; 8; (19) 

J 

where z;; is the thickness of the jth for- 
mation at the ith well. If the number of 

BHTs, n, is greater than the number of 

unknown formation geothermal gradi- 
ents, m, an overdetermined system of n 

equations in m unknowns exists and the 

BHT data can be inverted for the 
geothermal gradients, g; , in each forma- 

tion. These estimated gradients may then 

be used in a forward sense to calculate 

the best temperature field or, combined 

with thermal conductivity data, to esti- 

mate the heat flow density. 

In what follows, the variables that are 

generally used in heat flow density stud- 

ies will be substituted into the equations 
described in the previous paragraph. 

To apply inverse theory to geothermal 

studies two assumptions are usually 

made: first, heat transfer only occurs in 

the vertical direction and is purely con- 

ductive; second, the average geothermal 

gradients are constant over each forma- 

tion. Given these assumptions, equation 

(19) can be written in matrix form as 

T,5Z g (20) 
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where T, is the vector of n temperature 
differences, Z is a (nem) matrix of for- 
mation thicknesses, and g is the vector of 

m unknown geothermal formation gradi- 

ents. Because T, contains noise, and the 
model generally used is only an approx- 

imation to physical reality, it is unlikely 

that an exact solution exists. The inverse 

problem then becomes one of finding a 
set of formation gradients that minimizes 
the error 

r=T,-Z Bes (21) 

where g.,, is the best estimate of the true 
formation gradient. Therefore, for the ith 

well there is a residual, r, , given by 

m 

1, = AT; - by j Sest j (22) 

j=l 

where AT; is the measured temperature 

difference, and the second term on the 
right hand side of the equation is the es- 

timated temperature difference calculated 
using the inverse solution. Applying the 

least squares approach, the solution will 

be the one that makes the sum of the 

squares of the residuals, r, , a minimum. 

In terms of the variables common to heat 

flow studies, equation (16) takes the form 

t= (2"Z)'2Z7Te 
Since this equation does not preclude 
negative geothermal gradients as solu- 

tions and they are geologically unreason- 
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able, the solution must be constrained to 

be non-negative. This condition consti- 
tutes a priori information. 

The variance o, of the temperature is es- 

timated by 

o5= Dry /(n-m) (24) 
i=l 

and the variance o7 of the jth estimated 

geothermal gradient is the jth diagonal 

element of the covariance matrix [10] 

On=0q(27Z) . ) 
jj 

5. CONCLUSIONS 

Compared to other methods for process- 

ing BHT data sets, the linear inverse 

method described in the previous para- 

graphs has several advantages. An easy 
linear solution is generally obtained and 
the theory provides methods to deal with 

data error. Furthermore, insufficient data 

and non-uniqueness of the solution are 
explicitly dealt with. It also allows all the 

available data to be included in the calcu- 

lation, specifying how data of different 

quality should be weighted. Finally, it 

provides the means to estimate the vari- 
ance of the error in each model parame- 
ter, giving a relative and absolute mea- 
sure of the quality of the solution [19]. 

In the length point of view of the Gaus- 
sian linear inverse protiem, the data and 
model parameters are treated as random 

variables and it is assumed that they have 

a certain probability distribution, which 
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in fact constitutes a priori information. 

The inverse methodology then returns the 
minimum variance solution, that is, the 

solution that best fits within the probable 
ranges of the data and model parameters 

and minimizes the variance of the error 

in that solution. 

ACKNOWLEDGEMENTS 

This review was originally suggested by 

Dr. E. Kanasewich, who also gave sug- 
gestions which greatly improved the first 

draft of the manuscript. Dr. M. Victor 

and Dr. F. W. Jones are also thanked for 

their constructive comments and revision 

of the paper. This review was prepared 

while the author was at the Department 

of Physics of the University of Alberta, 
Canada, under a leave of absence from 

the Physics Department of the Univer- 

sity of Evora, Portugal. The author re- 
ceived financial support by the Univer- 
sity of Evora, the Junta Nacional de 

Investigagaéo Cientifica e Tecnolédgica, 

Portugal, and the University of Alberta 

through a teacher assistantship. 

REFERENCES 

[1] Aki, K. and Richards, P. G., Quantitative 

Seismology, Theory and Methods, II, W. H. 

Freeman and Co. (1980). 

[2] Andrews-Speed, C. P., Oxburgh, E. R., and 
Cooper, B. A. , Temperatures and depth--depen- 

dent heat flow in Western North Sea, Am. Assn. 
Petr. Geol. Bull., 68, 1764-1781 (1984). 
(3] Backus, G. E., and Gilbert, J. F., Numerical 

application of a formalism for geophysical in- 

Portgal Phys.- 20, pp. 11-20, 1989/91 

verse problems, Geophys. J. R. Astron. Soc., 13, 
247-276 (1967). 
[4] Backus, G. E., and Gilbert, J. F., The resolv- 

ing power of gross Earth data, Geophys. J. R. 
Astron. Soc., 16, 169-205 (1968). 
[5] Backus, G. E., and Gilbert, J. F., Uniqueness 

in the inversion of gross Earth data, Phil. Trans. 
Roy. Soc. London, Ser. A 266, 123-192 (1970). 

[6] Bullard, E. C., Heat flow in South Africa, 

Proc. R. Soc. London, Ser. A. 173, 474-502 

(1939). 
[7] Carvalho, H. D. S., and Vacquier, V., Method 
for determining terretrial heat flow in oil fields, 
Geophysics, 42, 584-593 (1977). 

[8] Carvalho, H. D. S., Purwoko, Siswoyo, 

Thamrin, M., and Vacquier, V., Terrestrial heat 

flow in the Tertiary Basin of Central Sumatra, 

Tectonophysics, 69, 163-188 (1980). 
[9] Chapman, D. S., Keho, T. H., Bauer, M. S., 

and Picard, M. D., Heat flow in the Uinta Basin 

determined from bottom hole temperature (BHT) 

data, Geophysics, 49, 453-466 (1984). 

[10] Deming, D., and Chapman, D. S., Inversion 
of bottom-hole temperature data: the Pineview 
field, Utah-Wyoming thrust belt, Geophysics, 53, 

707-720 (1988). 
[11] Franklin, J. N., Well-posed stochastic ex- 

tensions of ill-posed linear problems, J. Math. 

Anal. and Appl., 31, 682-716 (1970). 
{12] Jackson, D. D., The use of a priori data to 

resolve non-uniqueness in linear inversion, Geo- 
phys. J. Roy. Astron. Soc., 57, 137-157 (1979). 

[13] Kanasewich, E. R., Time sequence analysis 

in Geophysics, The University of Alberta Press 

(1985). 
[14] Lachenbruch, A. H., Brewer, M. C., Dissi- 

pation of the temperature effect of drilling a well 
in Artic Alaska, U.S. Geol. Surv. 1083C, 73-109 
(1959). 
[15] Lam, H. L., and Jones, F. W., A statistical 

analysis of bottom-hole temperature data in the 

Hinton area of West-Central Alberta, Tectono- 
physics, 103, 273-281 (1984). 

[16] Majorowicz, J. A., Jones, F. W., Lam, H. 

L., and Jessop, A. M., The variability of heat 

flow both regional and with depth in Southern 

19


