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ABSTRACT-In this paper we use the variational Gutzwiller wave function to study the effects of the 

Coulomb electronic repulsive correlations on the plasma frequency and spin magnetic susceptibility of the 

Hubbard chain. 

Our results agree with experimental data for quasi-one-dimensional conductors: on the one hand the plasma 

frequency is reduced by the electronic correlations and on the other hand these correlations lead to an 

enhancement of the spin magnetic susceptibility. 

1, INTRODUCTION 

The strong interest in synthetic metals 

started in the early seventies with the ad- 

vent of TTF-TCNQ [1]. 

Many of these materials are highly 

anisotropic in their electrical properties 

and thus often referred to as "quasi-one- 

dimensional electronic systems". Such 

quasi-one-dimensionality follows from 

their structure, which is typically an array 

of rather weakly interacting metallic 

chains. 
In the case of the organic crystals [2], [3], 

the electronic conduction takes place 

along stacks of planar organic molecules. 

These molecules, which are the elemen- 

tary units of the linear chains, have a 1- 

electron orbital which is oriented in the 

direction perpendicular to the plane of 

the molecule and allows for overlap be- 

tween 7-orbitals of adjacent molecules 

and thus for electrical transport. 
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The z-orbitals of the linear chains can ei- 

ther receive electrons from donor 

molecules or give electrons to acceptor 

molecules. These processes allow chang- 

ing of the electronic density n=N/N, 
where N and N, are the numbers of 
conducting electrons and sites of the 

linear chain. 
When the electronic band, formed 

through the overlap between 1-orbitals, is 

partially filled, the organic crystals 
behave as narrow band one-dimensional 

conductors. 
The electronic structure of simple metals 

and alloys is in most cases well described 

by effective one-electron models where 

electron-electron interactions are taken 
into account through a self consistent 

field. This leads to the well-known model 

of Bloch for the conduction bands of 

metals and alloys. 
Nonetheless, there is experimental evi- 

dence that in the case of the novel non- 
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trivial conductors and superconductors, 

as for example the just mentioned 
synthetic metals and the high T, 

superconductors [4], the simple one- 
electron models are not sufficient to 
explain the electronic structure. These 
novel materials have in common the 

occurrence of low-dimensional effects 
(one and two dimensional) which imply a 
much more important role for the 
electron-electron interactions. 

In the case of the organic quasi-one-di- 

mensional metals the experimental values 

of the inverse of the plasma frequency 

and of the spin magnetic susceptibility, 

for example, are clearly enhanced in 

relation to those predicted by the model 

of Bloch [2],[3]. 

In this paper we use the one-dimensional 

Hubbard model [5] to describe the con- 

ducting m-electrons of the linear chains. 

The model is presented in Section 2. In 

Section 3 we apply the Gutzwiller varia- 

tional scheme [6] (which was recently 

extended to the case of attractive correla- 

tions by one of us [7]) to evaluate the 

plasma frequency and spin magnetic sus- 

ceptibility expressions. Section 4 gives a 

brief summary. 

While the results concerning the spin 

magnetic susceptibility have not been 

published elsewhere, a previous study 

about the correlation effects on the 

oscillator strength of optical absorption 

was presented in Reference [8]. 
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2. THE ONE-DIMENSIONAL HUBBARD 
MODEL 

The structure of many synthetic metals 
can be represented by an array of weakly 

interacting chains. In the present work we 
neglect the interaction between the 

chains, which can be introduced as a 

small perturbation. 
We consider N, identical molecules at. 

a 

positions xyejasjjel,........ »N, 

(we use units such that the lattice con- 

stant a = 1). The molecular Wannier 

wave function for a conducting electron 

at site x; and with spin o (o =+ >) is de- 
noted by $ (x - xj). We restrict our study 

to electronic densities such that n<1 (the 

results for n>1 are readily obtained if one 

replaces electrons by holes). Moreover - 

we only take into account the overlap 

between nearest neighbours electronic 

wave functions (x - xj) and g(x - xj41). 
The hopping or transfer integral is given 

by: é; 

t si ig== tj 
ie dé 

fos O*(x - XD Oi gx 2 YO - Xe) @ 

where m is the electronic mass and V(x) is 

the lattice potential.‘ 

The square of the transfer integral (1) is 

related to the probability for electronic 

hopping between nearest neighbour sites. 

The one-particle model obtained by the 

choice t, j,;= t = constant, can be easily 
diagonalized, describing N conducting 

electrons in a band of width 4 t given by: 

Portgal Phys.- 20, pp.47-53, 1989/91



José Carmelo et al. - Electronic Correlations in one-dimensional conductors 
  

E(k) = -2 t cos(k) (2) 

where the k momentum values are re- 

stricted to the first Brillouin zone, kkl< x. 

In the ground state only the orbitals with 

Iki< kp and spin projections o = +4 are 

occupied (the one-dimensional Fermi 

surface is reduced to the two points 

+kp=+(mn)/2). 
The Hubbard model [5] contains, besides 

the hopping-term corresponding to the 

one-particle Hamiltonian described 

above, a many-body electronic potential 

which takes into account the Coulomb 

repulsive interaction between electrons 

on the same lattice site. Despite the 

drastic assumptions involved neglecting 

the long-range forces of the Coulomb 

repulsion, the Hubbard Hamiltonian has 

been quite successful in describing 

essential features of interacting electrons. 

The success of this model in describing, 

for example, some of the aspects of the 

physics of the novel synthetic metals is 

partially due to the screening of the long- 

range forces [9]. 

Besides the transfer integral (1), the 

Hubbard model includes the onsite 

repulsion parameter U, 

U= 

foxes “4 (x-xj)O%(X'-X)) 
2 

  

e 

Ix-x ‘I 
o (X-X))O_g(X'-*) 

(3) 

which is positive and measures the 

energy required to have two electrons of 

opposite spin projection on the same site. 
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The Hubbard model can describe two 

limiting situations. On the one hand for 

U =0, the electrons are delocalized and 

have band-like behaviour. On the other 

hand for U>>t, the weight of the 

electronic configurations showing double 

occupancy is drastically reduced, which 

implies a tendency for localization and 
antiferromagnetism if the density n is 
close to 1. In fact, in the particular case 

of the half-filled band, n = 1, the number 

of electrons N equals the number of 

lattice-sites N,, and no double occupancy 
implies the full localization of the 

electrons. 

In the intermediate regions ( Ut) we 

expect a cross-over from band-like to lo- 

calized behaviour. This is the most inter- 

esting regime for the physics of the syn- 

thetic crystals, which show simultane- 

ously metallic behaviour and properties 

which indicate a clear tendency for local- 

ization. 
In second quantization the Hubbard 

model reads: 

A A 

i= -t) [efetirie + Cfrio¢jol+UD (4) 

j.o 

where ci, (cjg) is the creation 
(annihilation) operator for an electron 

with spin © at site j, which is described 

by the wave function 9(x - xj) and f is 

the double occupancy operator given by: 
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A 

D= PS nignys Njo= Goria (5) 
j 

3. VARIATIONAL STUDY OF THE 
PLASMA FREQUENCY AND _ SPIN 
MAGNETIC SUSCEPTIBILITY FOR 
ARBITRARY ELECTRON DENSITY. 

The Hubbard Hamiltonian is a many- 

body model which is easier to handle 

than the complete Hamiltonian including 
the long-range forces of the Coulomb 

interactions, but still very difficult to 
diagonalize. In fact, this has only been 

achieved for a_ half-filled one- 

dimensional lattice [10]. For n # 1 the 

one-dimensional model was not fully 

solved but reduced to a system of 

coupled integral equations [10]. 

The variational ansatz introduced by 

Gutzwiller [6] is defined by: 

b> =e - nBy/2 ldsp > (6) 

where Ips; > is the Slater determinant 

which describes the ground state of (4) 

for U= 0 and 1 is a variational parameter. 

The application of the exponential opera- 

tor of the r.h.s. of Eq. (6) on the ground 

state wave function Idsj> reduces the 
weight of the configurations having dou- 

bly occupied sites. 
According to the variational principle of 
quantum mechanics, the best approxima- 

tion for the ground state energy is ob- 

tained by minimizing the functional 
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_ <olAllp> 
E= <olo> 

which leads to n=0 for U=0 and noo 

for U+ oo . We restrict the present study 

to the small U regime, i.e. u = U/4t <1. The 

use of the quantum mechanics machinery 

allows the evaluation of a small 

expansion of the energy (7). The detailed 

calculation is presented in reference {11]. 

After energy minimization we arrive at: 

E = Eypt Ecopr 

2K 
FP (8)   Eyp/ tNg = 4 sink p+ ul 

where Eyp denotes the energy obtained 

by the usual Hartree-Fock approximation 

and the correlation energy Eco, reads: 

Ecorr /t Na = 

4 (1 KEY 
2 4kp 3 

™ (sin kp )[ kp(n - kp) + sin? kp] 

  

  (9) 

As the kinetic energy T is related to the 

ground state energy (7) by T= t dE/dt [8], 

we obtain: 

ITl/t Na= (10) 

4kp 

7 sin kp [1 -u   
( sin? kp)[ kp (1 - kp) + sin? kp J 
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The function (10) decreases monotoni- 

cally with U for all densities. For the 
half-filled band case Eq. (10) reads: 

MM /tNg=201-0.1951 u?] (11) 

This result is in good agreement with the 
Bethe ansatz expansion of Reference [12], 

covering 91.4% of the exact coefficient. 
As we have already mentioned, experi- 

mental data show that the plasma fre- 

quency as determined by the partial sum 

rule (involving all intraband transitions) 
[2] is rather sensitive to correlation ef- 

fects, decreasing for increasing values of 
the Coulomb effective repulsion.The 

square of the plasma frequency is pro- 

portional to the f-sum rule, which for the 
one-dimensional Hubbard model is sim- 

ply proportional to the absolute value of 

the mean kinetic energy [8]. Thus the 
variational result (10) supports the experi- 

mental evidence that the oscillator 

strength of optical absorption of the syn- 

thetic quasi-one-dimensional metals is 
depressed by correlations. On the other 

hand, experimental data indicate an en- 
hancement of the magnetic susceptibility 
for increasing values of the effective 

Coulomb repulsion [2], [3]. 

The magnetic susceptibility for the one- 
dimensional Hamiltonian (4) has been 

calculated exactly for the half-filled band 

case [13]. 

The main purpose of the present paper is 

to use the variational wave function (6) to 
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derive a small U expansion for the spin 
magnetic susceptibility when n # 1 . 

Applying a magnetic field to the 
electronic system described by (4), a 
small U energy expansion of the r.h.s. of 

Eq. (7) can be evaluated by the method 

described in [11] for zero magnetic field. 

We omit here the details of the calcula- 

tions, which are more involved than the 
ones of Reference [11] because of the 

magnetization dependence of the energy. 
Nevertheless, although the free propaga- 

tors depend now on the spin indices, the 

diagrams which contribute to the correla- 

tion energy are the same as in the zero 

magnetic case. 
The small U spin magnetic susceptibility 
expansion derived from the variational 

wave function (6) reads: 

%=Xol1 + up up [1 - (kp) [1 - Jckp) Gekp)I } 
(12) 

where x =H3/(mtsin(kp)) is the Pauli 

susceptibility of the non _ interacting 

system, up=U/(2ntsin(kp))<1 and 

4x 
(xm? (1-35 

J(x) = (13)   

sin? (x) + x (1 - x) 

n2G(x) =1 + ; [sin? (x) + x(m - x)] + e - x) cot (x) 

(14) 

The magnetic susceptibility (12) is repre- 

sented in figure 1 as a function of u for 
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fixed values of carrier density. x is en- 
hanced by correlation effects, and this ef- 
fect is more pronounced for smaller val- 
ues of band filling. A detailed 

comparison with the numerical results of 
Shiba [14] is difficult because our results 

  

are restricted to small u_ values. 
Nonetheless the curves of the figure 
agree qualitatively with his results. As 
expected, the magnetic susceptibility is 

enhanced by correlations for all carrier 
densities. 
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Fig. 1:Magnetic Susceptibility as a function of u for different values of the electronic density as given by 
the Gutzwiller wave function. 

4. CONCLUSION 

In this paper we have studied the ground 
state properties of the Hubbard chain by 
means of the variational Gutzwiller 
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ansatz. Our results are restricted to the 

small U regime, but arbitrary density n. 

The main aim of the paper is to show 

that, in addition to a decrease of the 

plasma frequency as determined from the 
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partial sum rule [8], the Gutzwiller wave 

function predicts that the electronic 

correlations lead to an enhancement of 

the magnetic susceptibility for all 

densities n>0, in agreement with the 

experimental data for organic synthetic 

metals [2], [3]. 

Another typical effect of the electronic 

correlations in these materials, which has 

also been detected experimentally [15], is 

the occurrence of phonon diffuse X-ray 
scattering at 4 kp. 

The study of this problem requires the in- 
‘troduction of the electron-phonon cou- 

pling, which is out of the scope of the 

present work. A generalization of the 

present variational method to the study of 
the effects of the electronic correlations 

on the electron-phonon interaction is in 

preparation. 
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