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ABSTRACT-A technique to calculate the coupling between mesons, in the framework of the Nambu-Jona- 

Lasinio model is proposed. The approach is based on the Time Dependent Hartree-Fock Theory and con- 

sists of a boson expansion including appropriate anharmonic terms. The technique is applied to the calcu- 

lation Of gon, » for the bound state solution as well as for the discretized solutions of the qq continuum. The 

physical meaning of these solutions is discussed. 

1. INTRODUCTION 

The interpretation of the mesonic spec- 

trum in terms of the underlying dynamics 

of strong interactions is nowadays an im- 

portant issue in particle physics. Both the 

difficulties of experimental identification 

of those mesons and the controversy 

about their quark structure show that 

many questions remain open [1],[2]. Dif- 

ferent approaches have focused on the 

scalar meson problem. Besides the con- 

ventional description of those mesons as 

qq states, which does not allow to fit all 

the data available, interpretations of their 

structure as multiquark states, glueballs 

or suitable combinations of those states 

have been explored [2],{3].{4].[5],[61.{7].[8}. 

The work here reported is part of a pro- 

gram of investigation of meson properties 
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within the framework of the Nambu- 

Jona-Lasinio (NJL) model [9] where the 

mesons are taken as qq excitations. The 

approach, based on the conventional 

Time Dependent Hartree-Fock (TDHF) 

formalism, as developed to deal with 

non-relativistic nuclear structure situa- 

tions, explores the analogy between the 

model and a many-body system of non- 

relativistic fermions [10]. The aim of the 

present work is, in the first place, to pre- 

sent a bosonization technique, which 

takes into account anharmonic terms re- 

sponsible for the couplings between 

mesons. The technique is here used to 

calculate the decay of the scalar-isoscalar 

mesons into two pions, within the 

framework of a SU(N; = 2) NJL model and 

applied to the bound state solution as 

well as to the discretized solutions of the 
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qq continuum. We hope to provide, in 

this way, some physical insight on the 

discretization of the continuum. This 

version of the model is, certainly, too 

simple to provide a realistic description 

of the scalar mesons and we do not ex- 

pect, in this preliminary work, to obtain 

accurate quantitative results. The tech- 

nique proposed might, however, be ap- 

plied to more sophisticated schemes and 

to the decay of other mesons. 

The NJL model is described by an effec- 
tive Lagrangian of relativistic fermions 
interacting through a two-body contact 

force. The gluonic degrees of freedom 

are assumed to be frozen. The model, 

which incorporates the basic symmetries 

of QCD and satisfies the relevant current 

algebra relations, provides an useful tool 

to investigate the low energy region of 

the hadronic spectrum. For zero current 

quark masses it allows for the description 
of the mechanism of dynamical chiral 
symmetry breaking, which leads to a 

vacuum of qq condensates associated with 

the emergence of massless collective 

excitations of qq with the quantum num- 

bers of pseudoscalar isovector mesons 

(the Goldstone pions) and with the occur- 

rence of a mass of dynamical origin for 

the constituent quarks. Excitations of qq 

states, with proper quantum numbers of 

mesons, may be extracted from the new 

vacuum. 

Although the pion sector is well de- 

scribed within the original versions of the 

model, problems with the description of 

the other mesons lead, for instance, to the 
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construction of generalized versions 

[11,12]. Interest in the excitation modes of 

the NJL model was restricted, until re- 

cently, to bound states. Although the ex- 
istence of the modes of the continuum 

was recognized, they were commonly 

disregarded. As a matter of fact, unless a 

confining mechanism is implemented in 

the model, unbound states would decay 

into qq pairs, being considered as unphys- 

ical. However, recently these modes have 

been object of interest [13,14,15,16]. In [13] 

a method for obtaining the solutions of 

the NJL model by means of a polynomial 
ansatz was proposed. This method leads 

to a discretization of the continuum and 

is equivalent to introducing a constraint 

on the qq relative motion. This might be 

faced as a modification of the original 

NJL model, in which effects of a confin- 

ing mechanism are incorporated. The 

same mechanism was recently imple- 

mented in the framework of an extended 

NJL model [14]. The results obtained for 

the meson spectrum are in good qualita- 

tive agreement with experience, provid- 

ing, therefore, support for the interpreta- 

tion of the mesonic excitations of the 

continuum. 

The calculation of the decay amplitudes 

of those modes is an essential piece of 

information for a possible identification 

with physical resonances. In the present 

work we propose a method to calculate 
these quantities. 
This investigation is carried out within 
the framework of a TDHF formalism for 

the NJL model. Previously, _ this 

formalism was implemented in the small 
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amplitude limit of the mean field 

description leading to _ linearized 
equations of motion for the excitation 
modes, equivalent to the Random Phase 
Approximation (RPA) equations [10]. In 
this approximation the coupling between 
the normal modes is neglected but the 

effects of such couplings might be taken 
into account through adequate inclusion 
of anharmonic terms. The bosonization 
technique for calculating the onn 
coupling is an extension of the previous, 
treatment, consisting in enlarging the 
expansion of the effective Lagrangian in 
order to include anharmonic terms 
associated with the oxn coupling.[17]. An 
analogous role of anharmonicities in the 
damping of giant resonances of many- 

body systems is considered in [18]. 

We start with a brief review of the model 
and formalism and of the concepts in- 
volved in the discretization of the contin- 

uum. Then we present the description of 

the method for calculating g,,,..°The cal- 

culation of the decay amplitude for dif- 
ferent solutions of scalar modes follows 
straightforwardly. Finally, the results are 
discussed. 

2 DESCRIPTION OF THE METHOD 

2.1 Review of the Formalism. 

The dynamics of a many-body interacting 

system within TDHF formalism is de- 
scribed by a Hamiltonian of the generic 
form: 
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N 

H=> t@)+12¥ vij). 
i=l ij 

We write, therefore the Hamiltonian of 

the NJL model as: 

N 

H= > [ys (i)o(i).p; + Bmp) 
i=1 

-8, 5 (x; - x) B® BO H- ¥5 @ Ys @) 2.1) 
i#j 

(2) 

where mp is a small current quark mass 

(m, = mg = Mo), the t? (a = 1,2,3) are the 

SU(N; = 2) generators, B, y, and y,o are 

Dirac matrices and g is the coupling con- 

stant. The Hamiltonian (2) is left invariant 

under a chiral rotation in the y, -isospin 

space, if my = 0. The vacuum state is 

described by a Slater determinant of 
negative energy states, lp)>, with momen- 

tum lower than a cutoff A, or, equiva- 

lently, in terms of the HF density matrix: 

Po = 1/2 [I - (BM + ¥,0.p)/E] 8 (A? - p2) , (3) 

where E=(p?+M2)” and M is a variational 

parameter interpreted as the mass of the 

constituent quarks, which is given by the 
gap equation: 

1 - my /M = 26g > 
P 

@(A2 — 172) 
eC) 
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This equation was obtained by minimiz- 

ing with respect to M the functional of 

the energy: 

elp] = tr, p(1) t(1) +4 trytr, p(1)p(2)v(12), 
(5) 

where v4 (12) is the antisymmetrized 
two-body interaction. 

Deviations from the state of equilibrium 
lead to a deformed state lp>=U Ip >, 
which may also be described in terms of 
the general density matrix p = U py U*, 

where U is an unitary time-dependent 

operator. The time evolution of the 
system may be derived from the 

Lagrangian: 

LO = itr (UpgU*) -elp]. ©) 

Choosing U = exp(iS), where S$ is a hermi- 

tian single particle time-dependent opera- 

tor, and assuming that the fluctuations 

around the equilibrium configuration are 

small, the Lagrangian may be expanded 

up to second order in S, leading to 

LO = 4 <$y I[S.S]lbq > - ; <$y I[S , [H.S]]Iq > 

(7) 

By making use of the action principle, 

performing arbitrary variations with re- 

spect to the variational functions con- 

tained in § and assuming harmonic de- 

pendence on time, one obtains homoge- 

nous linearized equations of motion, 

equivalent to the RPA equations. 
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2.2 Discretization of the continuum 

The mesonic excitations of the vacuum 

below the qq threshold (E,=2M), investi- 

gated in [10], are solutions of exact RPA 
equations. The same treatment might 

easily be used to explore the region 
above the threshold (qq continuum). This 

region was, until recently, considered as 

not worthy of interest, due to the lack of 

confining mechanism in the model. 

However, as it is well-known, there is 

some strength which is not exhausted by 

the bound state solutions and is localized 

in the continuum, as explained in [13]. In- 

formation concerning meson properties 

should, therefore, lie also in the contin- 

uum of the model. The question is how 

this information can be extracted. 

This region was studied, within the 

framework of the formalism described 

above, using a technique which dis- 

cretizes the continuum [13]. The basis of 

the technique is very simple and consists 

in replacing the variational functions of 

the generators of the fluctuations, which 

are generic functions of p, by low order 

of polynomials. By using polynomials of 

the form a + bp, two discrete solutions of 

the RPA equations are obtained: one re- 

places the bound state solution and the 

other the continuum. The constraint 

imposed in the momentum space reduces 

the infinite number of continuum modes 

to one single mode, in an analogous way 

to what would be expected from a 

confining mechanism. In the modified 
model large values of the qq distance are 

forbidden. The masses obtained in this 
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way for the low-lying mesons are in good 

agreement with experiment. The lowest 

pseudoscalar-isoscalar mode always 

appears at zero energy, in the chiral limit, 

and small deviations of the current 

algebra relations are obtained. 

An exact and covariant treatment of the 

qq continuum of a SU(N;= 2) NJL model is 

reported in [15]. The masses of the 

mesons are identified with the center of 

gravity of the strength distribution. In [16] 

the continuum modes are also studied in 

the context of a generalized NJL model. 

All these approaches call for the attention 

of the continuum modes and predict val- 

ues for their masses. In order to clarify its 

physical meaning one should look at their 

decays. One could regard the decay of 

the continuum modes through two 

different mechanisms: 

-The Landau damping of the exact solu- 

tions, which means that the collective qq 

modes spread its strength over a multi- 

tude of continuum normal modes and 

lose their identity due to interference ef- 

fects. This does not correspond, in the 

original NJL model, to the true physical 

decay. This mechanism is prevented to 

occur in the modified model by our 

choice of the generating functions. 

-The two-body damping of the dis- 

cretized solutions in few normal modes, 

which we regard as the true physical de- 

cay. 
In order to calculate the decay amplitude 

of the resonances in specific channels one 

should implement the mechanism analo- 

gous to the two-body damping in many- 

body systems. This is achieved by per- 
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forming an adequate bosonization of the 

original Hamiltoni+n, including anhar- 

monic terms which are responsible for 

the decay of the normal modes. 

The bosonization technique described 

below is applied to the calculation of the 

decay of the exact bound state and of the 

discretized solutions of scalar-isoscalar 

mesons into mm. Convenient adaptations 

of the same technique might be used to 

calculate other decays. 

This will also allow to clarify the mean- 

ing of the discretization technique, which 

should by no means be regarded as an 

approximation in order to avoid the exact 

RPA treatment (which, anyway, does not 

present particular difficulties) but as a 

device to incorporate effects of confine- 

ment. 

2.3 Bosonization technique and calculation of 

Sonn 

Bosonization is nothing more than an 

identification of canonical coordinates. 

As is well-known, the RPA approximation 

is the lowest order of a boson expansion 

which maps a fermion subspace into a 

boson subspace, the HF vacuum, |bg>, 

being mapped into the RPA vacuum, | >, 

and the fermion operators into boson op- 

erators. In the present case we are inter- 

ested in an expansion in boson operators 

(canonical coordinates) up to third order. 

We start by expanding the functional of 

the energy e[p] in powers of S up to this 

order: 
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[Pp] = <glHlp> = <dglHldg> + + <bol(S.[H.STII9> 

+ 3y <ollSs[S.{8.HI]I6g>,(8) 

In order to make a connection with the 

RPA formalism it is convenient to write 

the generator of the fluctuations of the 

vacuum as: 

S=>D (a, O,c1%'+a* Ote ir!) (9) 
t 

where , is the frequency of a generic 

mode of excitation t and ©, , (Ot) are 
one-body fermion operators. These op- 

erators may be normalized by imposing 
the condition: 

<o (0, , Ot]ld9>=1, (10) 

The variables a, and a* are canonical co- 

ordinates. Expanded in’ these variables, 

the harmonic terms describe the energy 
of the modes and the anharmonic (third 

order terms) describe their decays. The 

harmonic term of the functional of the 

energy can be written as: 

eDat,aj=o,0ra, , (11) 

with: 

©, =< I[0,.[H, Ot]Ilo)>, (12) 

The harmonic RPA effective Hamiltonian 

may, therefore, be written as 

A=o,AtA,, (13) 

where At (A,) are boson operators. 

In order to calculate g,,,, we need the ap- 

propriate anharmonic perturbation. 

Writing S=S,+S, , and taking advantage 
of the form of the generator S (9), we eas- 

ily obtain the component of the third or- 
der term, relevant for describing the pro- 
cess o-11: 

ws * A * * 
Conn “ _— (a, a, Oy, + a, a, OG) ’ (14) 

with: 

honn = a < $y ![0,.[0+,[O+,HI]] + 

[OF,[0, [OF,HI]] + [OF,[OF,[O,.HI]]! 9 > . 

(15) 

By definition, g,,, 18 given by: 

Sonn ‘orn 20, (20,,) ’ (16) 

In order to describe a process in which 

one o at rest decays into two pions with 

Opposite momenta, one should have a 

perturbation Hamiltonian of the form: 

_yl + +at W= 219 Rone (W) A, A, +A) A,B). 

(17) 

where W is the effective interaction RPA 

Hamiltonian and Bt(B), AT(A ) are cre- 

ation (annihilation) operators, respec- 

tively for o and n. 
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Here we take the following approxima- 

tion: 

Sonn 

20, (20,(k)) 

  

(18) Monn (k) = 

The transition amplitude is easily ob- 

tained through the Fermi Golden rule. In 

the chiral limit we have: 

Sie! Lo On Oe 

onn 1670, in} 

where the factor 3 comes from isospin 

degeneracy. The calculation of A,,, from 

pF honn= 48 Mx26 ¢ [ 5 |" elA2-p'| LE 
Pp 

i 
> FE OlA2-p?| re 

p p 

The variational functions L, and F, were 

taken as the eigenvectors of the RPA 

equations of previous works [10,13]. The 

numerical values were calculated in the 

chiral limit. 

3. DISCUSSION OF THE RESULTS 

We show in Table 1. numerical values 

fOr Wg, Sonn ANd Toqq, Obtained, respec- 

tively, for the bound state solution and 

for the discretized solutions of o decay- 

ing into two pions for 4 = 2M and differ- 

ent values of M. These input parameters 

obey the self-consistent equation and 
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(15) is straightforward. Bearing in mind 

that, within our formalism the pseu- 

doscalar-isovector modes and the scalar- 

isoscalar modes are described, respec- 

tively, by the generators: 

S? = [y.L, + i By; Lp], a= 1,2,3 (20) 
T 5] 52 

$5 =¥50.0F, + i Py, 0.2F, , (21) 

where L; and F;, (i=1,2) are variational 

functions depending on p? and t, one ob- 

tains: 

*2 + L*2 

@lA2—p?| 

Pp 

Li +F, L3) @1A2—p>| ] (22) 

were chosen so that the quantities < YY > 

and f, are in the range of its empirical 

values (see [10]). The numerical values 

shown are the result of an improved cal- 

culation, in relation to those included in 

[17]. The calculation of g,,, for Q.= 2M 

is useful as a check to our method. This 

decay has already been calculated by 

other authors using different techniques 

[19],[20] The value obtained for the decay 

width does not allow to identify this 

solution with an established physical 

particle. The problem of assigning a 

physical meaning to this solution is re- 

lated with the controversial existence of a 

scalar-isoscalar meson with a mass below 
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700 MeV. The behaviour of this solution already discussed. 

with temperature [19] and density [20] was 

Table 1. 

Conv. RPA Const. RPA 

M Dg Sonn! = Vong Dg Sonn! = Von 
(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) 
335 670 2861 660 716 3986 1184 

1269 1350 84 

350 700 2989 693 748 4112 1242 

1326 1410 87 
  

Table 1. Og, IZgzq_! and Cgzz for solutions obtained with the conventional RPA and the constrained RPA. 

The results for the couplings and decay 

widths of the modes obtained through the 
discretization technique are new and re- 

quire further consideration. 

As it was already mentioned, the poly- 

nomial ansatz leads to two modes, one 

replacing the exact bound state solution 

and the other replacing the continuum 

modes. The results obtained for the 

masses and decay widths support this in- 

terpretation. The comments made before 

concerning the solution w, = 2M apply to 

the first mode. The value obtained for the 

decay width is in agreement with the 

lack of experimental evidence for a 

resonant behaviour in the scalar-isoscalar 

channel in the region of 600 - 700 MeV [1]. 

The second mode might be interpreted as 

a low-lying scalar-isoscalar meson. The 

two lowest established scalar-isoscalar 

resonances are the f,(975) with decay 
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amplitude Tr = 34 MeV (75% into nm and 

25% into KK) and the f)(1400) with P= 150 
- 400 MeV (= 90% into mx and = 10% into 

KK) [1]. Although a SU(N, = 2) model 
cannot provide a realistic description any 

of those mesons, which have a 

component of strangeness, the f9(975) is 

more unlikely described by this version 

of the model (even at a qualitative level). 

A description of this meson as a qq State, 

even allowing for flavour mixing, is 

often considered unsuitable to account 

for its properties (namely its branching 

ratio into KK (25%), in spite of the small 
phase space available). Interpretations of 

this meson as a KK molecule seems more 

appropriate, while the f,(1400) is more 

commonly interpreted as a true resonance 

[1,6,21]. In view of this situation it seems 

reasonable to compare the present results 

for the second mode to the fo(1400). 
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Moreover, the numerical values obtained 

provide support to this comparison. We 

notice, however, that our value for the 

decay width is low compared to the 

estimated experimental value of the 

(1400). 
The present results should be regarded as 

essentially qualitative. The main point is 

that we show that it is possible to imple- 

ment a mechanism through which the 

discretized modes of the continuum can 

decay in specific meson channels. The 

bosonization technique, together with the 

polynomial ansatz, makes possible a 
consistent treatment of the modes of the 

continuum. The investigation of the ef- 

fect of giving to the scalar mesons a more 

complex structure in the framework of a 

generalized NJL model and the improve- 

ment of the present technique, are feasi- 

ble within the TDHF formalism. Research 

along these lines is being carried out. 
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