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ABSTRACT-The time evolution operator for the quantum harmonic oscillator with time-dependent fre- 

quency is exactly obtained as a product of unitary operators. The calculation is greatly simplified by taking 

into account the equations of motion for the coordinate and momemtum operators in the Heisenberg rep- 

resentation. 

1. INTRODUCTION 

The driven harmonic oscillator is a useful 

model for many physical systems of 

practical interest. Among them we men- 

tion lattice vibrations in solids and energy 

transfer in molecular collisions [1-3]. It is 

also suitable for teaching purposes be- 

cause the Schrédinger equation is exactly 

solvable [1,4]. 

In this paper we are interested in the 

harmonic oscillator with time-dependent 

frequency (units are used so that h = m= 

L): 

H =4p2 + Awe? (1) P+ 5 

where [q,p] = i. It is our purpose to ob- 

tain the time evolution operator U(t) 
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that satisfies the equation 

.d 
ig U=H U (2) 

with the boundary condition U(0)=1. 

The solution of Eq. (2) can be written 

U=U 1U2U3, Uj = exp(-iai(t)Aj) (3) 

where a;(0)=0 and 

A me) A me. As = ae 1=7 9° 42=5 (aptpq), 43 = 5p (4) 

because the operators Aj form a Lie al- 

gebra: 

[Ay, Ag] = 2i Ay, [Ay, Ag] =i Ad, 
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On introducing Eq. (3) into Eq. (2) we 

are led to a set of nonlinear differential 

equations that determine exactly the 

functions ay(t) [5]. Besides, nonlinear 

functions of the a's can be found that 

satisfy classical equations of motion 

[3,6]. 

It is shown in the present paper that the 

latter functions and their relationship 

with the former ones can be much more 

easily obtained from the equations of 

motion for the coordinate and momen- 

tum operators in the Heisenberg repre- 

sentation. The procedure is discussed in 

Sec. 2 and its generalization to more 

complex problems is briefly outlined in 

sec. 3. 

2. THE METHOD 

In the Heisenberg representation any lin- 

ear operator O is written 

0, = UtOU (6) 

which satisfies the well known quantum 

mechanical equation of motion 

d dO 
q O=UtZ U+iUTX,oJU 7 

In particular, for the coordinate and mo- 

mentum we have 

d 
dt St = Pr > 
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i 2 dt Pt =~ Wt (8) 

that lead to 

d2 

Ge It = > W7% (9) 

Since the coordinate and momentum 

form a complete set of observables for 

the oscillator we expect to obtain all the 

relevant dynamical information about the 

system from Eqs. (8). 

It is clear that the solution of Eqs. (8) 

must be of the form 

Gt = Q1() p+ Qo) q 

Py = P(t) p + Pott) q (10) 

Where Q)(0)=P2(0)=0 and Q(0)=P;(0)=1. 

On introducing (10) into (8) we obtain 

the classical equations of motion 

Qj =P;. Pj =- wQ;, j=l.2 1) 

where the dot means time derivative, or 

Q=-wQ, jal2 (12) 

Only three of the four functions Q; and P; 

are independent since [4,P;] = Ut[q,p]U =i. 

Therefore, 

P1Q9 - PoQ {= 1 (13) 

which is actually the Wronskian for the 
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two independent solutions of (12). 

In order to obtain the relationship be- 

tween the functions P;, Qi and the func- 

tions a, we make use of the results in the 

Appendix. A straightforward calculation 

shows that 

U{p Uy =P - aya. 
U4p Up = exp(-ay)p. 
Uh4q Up = exp(ag)q. 
U4q Uz = 4 + agp, (14) 

which lead to (cf Eq. (10) ) 

P= exp(-a9) - a, a3exp(a3), 

Po = - a,exp(a9), 

Qy = a3exp(ay), 

Qo = exp(ag), (15) 

Finally, the time evolution operator can 

be written 

U= 
i expteen?)exp(-$in Qa gprpa)enp(-SBLp?) 

(16) 

which is the result obtained by Pechukas 

and Light [6] through a rather more in- 

volved procedure. It is worth noticing 

that the time dependence of the wave- 

function y(t)=U(t)w(0) is determined by 

the solutions of the equations of motion 

for the classical analog of (1). 
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3. CONCLUSIONS 

The method developed in the present pa- 

per is much simpler than the methods 

reported previously [3,5,6] because a 

remarkably less number of commutators 

is required. The reader can convince 

himself by obtaining the differential 

equations for the a's from Eqs. (2) and 

(3) [3,5]. In addition to this, the 

relationship between the functions aj and 

the functions P; and Qj follows 

immediately from the form of the coordi- 

nate and momentum operators in the He- 

isenberg representation. 

It must be noticed that the phase factor in 

U cannot be obtained from the quantum- 

mechanical equations of motion. For in- 

stance, suppose that 

5 
H#= pa Hiya, (17) 

jzl 
~ where Ay = q and As = p. Such an 
operator occurs in the treatment of a 

collinear collision of an atom with a 

diatomic molecule [3]. In this case the 

time evolution operator can be written 

6 
U=T] Uj, (18) 

jel 

where A¢ = 1. Clearly, the phase factor 

Ug = exp (-iag) does not appear in q, or 
P;- However, it can be easily obtained 

from (2). For example, direct inspection 

of the terms in (i CU)Ut = % shows that 
A6 = - Asag. 
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Owing to its great simplicity the present 

procedure can be applied to more com- 

plex problems. We have obtained the 

time evolution operator for an n- 

dimensional oscillator with linear and bi- 

linear terms in coordinate and momenta 

and arbitrary time dependent coefficients 

[7]. Such a model originates, for in- 

stance, in the semiclassical approximation 

to the collision between two molecules 

[2, 3, 8]. As far as we know only approx- 

imate solutions had been tried before for 

the simplest cases [2, 8]. 

4. APPENDIX 

Throughout this paper we had to calcu- 

late expressions of the form 

B (a) = T!BT (Al) 

where T = exp(-iaA) and A and B are 

linear operators. This can be easily done 

by taking into account that 

aaP = iT! [A,B]T (A2) 

Therefore, the nth derivative of B with 

respect to a can be written 

B®) = jn 7-1B, 7, (A3) 

where 

By = [A.Bp-1], = 1,2...., Bg=B  (A4) 
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We are thus led to the Taylor series 

HES (ia), (AS) 

which reduces to a polynomial of degree 

n when [A,B,] = 0. As an example con- 

sider A = p2 and B=q (n=! in this 

case). 

In some cases it is easier to obtain B_ by 

integrating the differential equation that 

comes from (A3). If, for instance, it is 

found that B' = gB_ then B = e&4 B. 

This certainly happens when A = qp+pq 

and B=p or B =q. Other situations are 

treated exactly in the same way. 
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