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ABSTRACT- A wire has a mass proportional to its length, the mass of a disk varies proportional to the 

squared radius, and the mass of an iron sphere is proportional to the third power of the radius. Therefore 

these objects have a dimension equal to one, two or three. FRACTALS are objects where the mass var- 

ies with some other power of the radius, and that power is called the fractal dimension D. We show 

examples, in particular from the physics of phase transitions, where D is smaller than the normal di- 

mension by B/V. 

1. INTRODUCTION 

Fractals today are spread all over the 

scientific literature and continents, as is 

quite appropriate for the person of 

Mandelbrot (from Lithuania, Poland, 

France, and the USA) who invented the 

general concept[1]. Fractal elements ap- 

peared centuries ago in Italian church 

paintings and flood dike constructions 

[2] and are inherent also in clouds and 

trees. Fractal Mandelbrot sets have been 

printed on covers of scientific journals 

without apparent relation to the content. 

The present review does not deal with 

fractals as a new and separate topic. In- 

stead it wants to relate them to examples 

from traditional physics and _ their 

teaching. 
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2.BASIC CONCEPTS 

If you look at the world around you, 

you can normally distinguish easily 

between man-made and natural objects: 

buildings, channels, and streets are 

Dominated by straight lines, whereas 

trees, rivers, and coast lines are more 

complicated. Traditional teaching of 

mathematics and physics deals with 

straight lines, circles, spheres and other 

simple objects; so how can we describe 

the more complicated objects like trees ? 

The circumference and area of a circle 

of radius R are 2nR and nR2, whereas 
surface and volume of a sphere are 4nR2 

and 4nR3/3, respectively. What are sur- 
face and volume of a tree with height 

R? Clearly that is a more difficult 
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question, and it is not just of academic 

interest: due to man-made combustion 

processes, the carbon-dioxide level in 

the atmosphere has increased signifi- 

cantly over the last century. This in- 

crease may, via the greenhouse effect, 

lead to an increase of the average tem- 

perature, causing larger deserts and 

flooding of low-lying areas. Trees 

counteract the greenhouse effect by con- 

suming carbon, dioxide through the 

surface of their leaves. So the effect of 

cutting a tree in the Amazon basin on 

the atmospheric temperature depends on 

the surface of a tree. 

Many objects follow simple power laws, 

and so we may generalize the above 

formulas to a proportionality between 

mass M and radius R: 

M oc RD 

with some empirical exponent D. Thus 

D = 2 and 3 for circle and sphere if we 

identify the volume with the mass; and 

D = 1 and 2 if instead we identify the 

surface with the mass. So in these simple 

artificial examples, D or D+1 equals the 

Euclidean dimension d of the space, 

depending on whether we look at volume 

or surface. Such objects are not called 

fractals. If, however, the exponent above 

d is different from the Euclidean 

dimension d or d-1 and thus in general 

not an integer, then we call these objects 

fractal with a fractal dimension D. 
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So what about the fractal dimension of 

plants ? Fig.1 shows diffusion-limited 

aggregates with 10 and 30 million sites 

on a plane, and the branches of this 

figure have a clear similarity with 

branches of plants. Comparing such 

aggregates of different mass (the mass is 

measured by the number of sites) one 

finds a fractal dimension near 1.7 on a 

plane, and about 2 on three-dimensional 

space. The power laws in such com- 

puter-generated objects are supposed to 

be valid only asymptotically, that means 

for large enough clusters. The author of 

Fig.1, Peter Ossadnik in Hans Herr- 

mann's group at HLRZ Supercomputer 

Center Jiilich, Germany, competes with 

Mandelbrot's group for the world 

record. In natural fractals, as opposed to 

computer-generated or mathematical 

objects, the power laws are often valid 

only in a suitable mass interval: Very 

young small trees, and extremely high 

trees, may show deviations. 

How is Fig.1 generated ? One starts 

with an occupied site in the center of the 

plane, and then one adds one particle 

after the other to the growing cluster in 

the following way: A new particle is put 

onto the plane somewhere away from 

the cluster. Then this new particle dif- 
fuses, that means’ it randomly moves in 
arbitrary directions like a molecule in 
the air. Once it hits the cluster it stays at 

that place forever and becomes part of 

the cluster. If we simplify the simulation 
by letting all particles move and sit on a 

Portgal Phys. 21, 3/4, pp.83-91, 1992  



  

Staufer, D. - Fractals and Phase Transitions 
  

square lattice only, we see the anisotropic 

lattice structure and get a lower fractal 

dimension if we simulate multi-million clus- 

ters. 

Fig.1 also illustrates the concept of 

self-similarity. A big branch looks quite 

similar to one of its small branches, and this 

small branch looks similar to a twig 

emanating from it. Alternatively, whole 

clusters with different numbers of sites look 

similar to each other, Fig.1. A mathematical 

  

  

description of "looks similar" is difficult, 

however, and therefore I recommend to talk 

about self-similarity only if one knows what 

it means, e.g for deterministic fractals like 

the Sierpinski gasket [1]. 

These diffusion-limited aggregates were 

invented in 1981 and thus hardly constitute 

traditional physics subjects. Thus the next 

two sections instead deal with the phase 

transition between water and _ its vapor. 

  

  
  

Off-lattice DLA with 30,000,000 particles 
Peter Ossadnik, HLRZ, KFA Julich 

    
  

Off-lattice DLA with 10,000.00U particles 
Peter Ossadnik, HLRZ, KPA Julich 

Fig.1: Diffusion-limited aggregates, by P. Ossadnik, with 10 and 30 million sites (D = 1.7). 
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3. CLOUDS AND PERCOLATION 

When water vapor condenses in the at- 
mosphere, it forms small droplets 

around some solid particles which then 

grow to micron size. Many of these 
droplets form a cloud, and if the drop- 
lets grow too large they fall down as 
rain. How do clouds look like ? Clouds 
move in three dimensions but what we 

see from them are two-dimensional 

projections (except if the clouds are 

very transparent). The interior of these 

clouds, as projected onto a_ two- 

dimensional surface, is usually dense, 

and thus behaves like a circle: projected 

area cc R2 for a cloud of radius R. Thus 
the area is not fractal. More interesting 
is the perimeter of the cloud, that means 
the number of empty sites which touch a 
Cloud site after the projection. [We 
imagine the coordinates of the clouds to 
be discretized, where for example each 
Square meter corresponds to one site 
and is either wet (cloud) or dry 

(surrounding).] This perimeter for a 
simple circle would vary as R but for 
clouds it was found empirically to vary 
roughly as R1.3 or area2/3, Fig.2 shows 
a computer model of the cloud projec- 
tion[3] which agrees roughly with this 

fractal dimension. 

  
Fig.2: Computer model of three-dimensional cloud projected onto two dimensions (D = 1.3);from ref.3. 
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A simplified form of this computer model 

was investigated by two_ high-school 

students[4] who had not yet even studied 

at the university. They looked at 

percolation[5], a model originally in- 
vented by chemistry Nobel laureate Flory 

to describe the gelation of branched 

polymers (boiling eggs, milk-to-cheese 
transition, formation of gelatine pudding). 

On a simple cubic lattice first occupy the 

center site. Then add one site after the 

other by selecting a new neighbor of an 

already occupied site. Occupy _ this 

neighbor with probability p and leave it 

empty with probability 1-p. After a site is 

determined as being empty or occupied, it 

stays in that status during the whole 

process of building up this cluster. We 

now observe a transition: For probabilities 
P<Pc with a threshold pe near 0.3116 

only finite clusters are formed, whereas 

for p > Pc sometimes this growth process 

continues up to infinity (ie. until it 

touches the borders of the simulated 

lattice.) Right at p = pc _ the clusters are 

fractal with a fractal dimension D near 

2.53. In Ref.4 the authors produced such 

fractal clusters at p =pPc on an Amiga 
computer, projected them onto a two- 
dimensional plane, and found _ the 
perimeter of these projections to follow 

roughly the same power law as a function 

of radius or area as the clouds and as the 
more complicated model of ref.3. We see, 

good physics research can also be done on 

small computers and without a long 

university curriculum. Historically, the 
percolation problem seems to be the first 

case where phase transitions were coupled 
to fractal concepts [6]. 
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4.FRACTAL DROPLETS IN ISING MOD- 
ELS 

How can we understand by a simple 

model the phase transition between a 

liquid and its vapor ? The Ising model of 

1920 allows each site for a large lattice to 

be either occupied or empty; occupied 

sites attract each other. Mathematically 
this model has an interaction energy 

J= Die SiSe- BY Si 

where the "spin" §; is +1 for an occupied 

and -1 for an empty site and where i and 

k in the double sum correspond to nearest 

neighbors on the lattice. A simple cellular 

automata simulation for B=0 takes into 

account the conservation of energy: 

Starting with a random fraction p of all 

sites occupied, and the rest empty, we go 

sequentially through the lattice and flip a 

spin if and only if it has as many occupied 

as empty neighbors. Low p correspond to 

low energies and thus low temperatures, 

whereas p = 1/2 corresponds to a high 

energy at very: high temperatures. For p 

above a critical concentration, 7.55 

percent on the square lattice, after many 

sweeps through the lattice we have as 

many occupied as empty sites, which 

corresponds to a supercritical fluid like air 

at room temperature. For smaller p the 

majority of sites remains empty, corre- 

sponding to the vapor phase below the 

critical temperature. This model is 
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symmetric with respect to occupied 

and empty. Thus for p above 92.45 

percent, again we will not get a 

density of 1/2 but a majority of sites 

occupied, corresponding to the liquid 

phase at low temperatures, like very 

cold liquid air. Thus the Ising model, 

which can also be simulated by other 

methods, shows one fluid phase above 

the critical temperature, and two 

phases (vapor and liquid) below this 

temperature, just as real fluids so. The 

Ising behavior very near this critical 

temperature is known to agree even 

quantitatively with real fluids. 

Fig.3 shows the configuration 

obtained in a few seconds on a 

workstation at p = 0.15, that means at 

temperatures somewhat above the 

critical temperature. (Ref. 2b lists a 

simple BASIC program; I have used 

this problem to teach university 

students even in their first weeks.) 

Half of the sites are occupied and the 

other half is empty, but the 

distribution is not at all random: due 

to the interaction between neighboring 

sites the occupied sites tend to cluster 

together, and to leave large holes. 

These pictures are very similar to 

those obtained experimentally for real 

fluids in recent years[9] and give rise 

to critical opalescence, the strong 

scattering of light near the fluid 

critical point. 

Peres 
+e RRR 

  
Fig.3: Ising configuration for part of a 79*79 square lattice after 1000 sweeps through the lattice with 

the cellular automata algorithm. Only the occupied sites are shown. 
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Fig.4: A large droplet from Fig.3 shown isolated after taking into account the helical boundary 

conditions. The droplet was isolated manually (can you find my error ?); ref.5 gives a computer 

program. 

This critical point is known since more 

than a century, and van der Waals made 

the first theory for it in his 1873 thesis. 

Can we do better today ? Let us transform 

these impressions into a quantitative 

droplet picture[5]. A droplet is a group of 

neighboring occupied sites, as shown in 

Fig.4. 

(Experts require in addition that the sites 

are connected with a probability 1-exp(- 

2J/kpT).) 

In a classical ideal gas we have only single 

molecules, no larger droplets, and PV = 

NkgT connects pressure, volume, particle 

number, Boltzmann's constant, and 

absolute temperature. If we have N, 
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droplets of s molecules each, due to the 

clustering shown above, then 

PV = LN kpT 
Ss 

is a reasonable generalization, neglecting 

the interactions between different 

droplets. (Similarly, the total atmospheric 

pressure is the sum of the partial pressures 

of nitrogen, oxygen, water vapor, carbon 

dioxide, etc.) The number of molecules 

N=LNs 
Ss 

is even exact. We know that the density 

difference N--N of a vapor to the critical 
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density Nc (for molecules with unit mass 
in a unit volume) varies slightly below the 
critical temperature T; as (T;-T) 8. Here B 
= 1/8 or 0.32 in two and three dimensions 
is one of the critical exponents for which 
Kenneth G. Wilson got the 1982 Physics 

Nobel prize. Thus 

LX (N(T,)-N,(T))s & (T,-T)B 
Ss 

Another quantity of interest is the spa- 
tial extent € of the correlations, the 
correlation length. We expect it to vary 

as the typical cluster radius R,, or 

Eo D R22n/D 2n, 

The droplet radius then gives a fractal 
dimension d through RP «s. The cor- 
relation length, on the other hand, is 
known to diverge near the critical point 
as (T-T,)-Y. Scaling arguments[5] then 
give 

D = d-B/v 

for the fractal dimension in d dimen- 

sions; D = 15/8, 2.49, and 3 for d =2 to 
4 (in the van der Waals theory, 
D = d-1). The droplet volume varies as 

RJ, and thus the average density within 

a droplet decays as s/R@« 

sB/Dv= 5-1/5, (Here the critical 

exponent 6 relates pressure and density 

on the critical isotherm: 

P(T¢) - Pc = (N(T¢)-Ne)®.) due to this 
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decrease of the density with increasing 
droplet mass the critical droplets are 
fractal and differ from simple raindrops. 

[This fractal dimension is valid exactly at 
the critical point. Below the critical 
temperature we expect large droplets to be 
quite spherical, D = 3, whereas above the 
critical temperature they should be similar 
to the so-called lattice animals with D =2 
in three dimension. ] 

Thus we see that the fractal dimension can 
be expressed as a combination of critical 
exponents which were of interest to 
physicists since decades. And more 
qualitatively, the well-known critical 

opalescence is the scattering of light on 

fractal droplets. direct experimental 
determinations[9] of the droplet radius as 
a function of the number s of molecules in 
the droplet have, to my knowledge, not 
yet been made. Computer simulations[7] 
in the Ising model, on the other hand, 
have confirmed within about one percent 

the predicted values for D, nearly two 
decades after which the first speculations 
were published. Unfortunately, such 
accuracy is not yet good enough to 
distinguish between the fractal dimension 
of the Ising model and that of percolation, 
nor has the claim D=2 above T, been con- 

firmed reliably by simulations. 
But computers get faster and better every 
year, equilibrium is reached faster by 
flipping whole droplets together instead 
of only single spins[10], and I think that 
with hundreds of processors, coupled 
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together already today in large parallel 

computers[8], such accuracy may be 

possible now. Let us see if the 

experimental physicists beat the compu- 

tational physicists in the determination of 
fractal dimensions at the critical point of 

fluids. This Ising model is a nice example 
where old problems are getting solved 

better and better even today, through new 

ideas, faster computers, and international 
cooperation. 

We thank J.A.M.S, Duarte for advice on 
this conference. 
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