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ABSTRACT -The paper discusses how modelling with the computer can help Physics Education, for stu- 

dents in a wide age range, from Primary School to University. Different kinds of computational model- 

ling, including iterative dynamic models, qualitative models and object-oriented models are discussed, 

with examples. It is argued that the different types of models fit naturally into a developmental sequence, 

matching modelling at various ages to student's intellectual abilities. A radical re-sequencing of teaching 

about Mathematics in Physics is proposed. Similar ideas are discussed in Ogborn 1990 and 1991. 

1 Making models on the computer 

An example is often the best way to see 

something general. So let us begin by 

making a model. Consider something 

which interests most people: how to get 

money, specifically money for one's de- 

partment. All departments argue for 

more money in the coming year than 

they had in the previous year. Suppose 

to begin with that the increase is con- 

stant in each year. To model this in the 

modelling system we call ‘Cell Model- 

ling System’ or CMS (Ogborn and Hol- 

land 1986), we define three computa- 

tional cells which are rather like the cells 

of a spreadsheet, as in Figure 1. 

Each cell has a name of a variable in the 

first slot, and says how to calculate that 

variable in the second slot, using other 
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variables if required. Thus 'money' is 

calculated by adding ‘increase’ to the 

current value of 'money'. The cell 

‘increase’ defines a constant value (100). 

increase 

100 

  

100 

  

  

  

money money 

money + increase 
Lay 

  

          1000 year 
  

Fig. 1 A primitive model for increasing money 

The value of the variable appears in the 

last slot, putting any initial value re- 

quired in that slot before running the 

model. (The third slot, unused in Fig- 
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ure 1, is for comments.) When the 
model runs, the cell calculations iterate. 
Thus 'year' increases by unity at each it- 
eration, and 'money' increases linearly 

from the initial value 1000, adding 100 
on each iteration. Any cell can be con- 

verted into a graphics display, plotting 

any one variable against any other. The 

graph cell in figure 1 shows the linear 

increase of money with time. 
Of course, no department is satisfied 
with this! The large departments say 
that the increase should be in proportion 
to the money they have already. How 
big the multiplying factor is depends on 
how fiercely they argue. Figure 2 shows 
the disastrous model that results. 

  

year increase argument 
  

year+ 1 argument * money 0.2 
  

  

100 

  

0.2 

  

  

  

  

money + increase 
  

  

money money 

        1000   year 
  

Fig. 2 Exponential increase 

If the argument is strong enough to get a 

20 percent increase each year, the 

money grows exponentially. A wise 

administration realises that this will 

grow without limit until all the resources 

of the institution are absorbed. How- 

ever, exponential growth models are 

very relevant in for example bacterial 

growth and epidemics, while the corre- 

sponding exponential decay models are 

relevant in Physics to radioactive decay 

and to charge on capacitors. 

Suppose that a money limit is imposed, 

such that the increase calculated in Fig- 

ure 2 is further multiplied by a factor f 
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such as (1 - money/limit) so that as the 

money approaches the limit, the in- 

crease is reduced until at the limit it is 

zero. Figure 3 shows the resulting 

model. 

Figure 3 is logistic growth, common in 

population studies where a population 

initially grows exponentially until it 

starts to run out of food or space. As is 

now well known, ‘logistic growth mod- 

els can exhibit chaotic behaviour at large 

growth rates. If the parameter ‘argue’ in 

Figure 3 is made equal to about 2.0, the 

graph bifurcates and oscillates above and 

below the ‘limit’. At ‘argue' = 2.5 the 
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bifurcation has bifurcated, and at about 

2.9 the graph goes up and down chaoti- 

cally (see Figure 4). This behaviour, 

studied by Fiegenbaum on a pocket cal- 

culator, was an important source of our 

current ideas about chaos. Thus in a 

few simple steps we have gone from the 

trivial case of a linear increase, known 

to any child in secondary school, to near 

the edge of part of modern mathematics. 

  

  

  

  

  

  

  

  

  

              

  

  

  

        

year increase argument 

year +1 argument * money * f 0.2 

1 100 0.2 

money f 

money + increase 1 - money/limit 

1000 
year 
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5000 

5000 

Fig. 3 Logistic growth model. 

To take another example, it is not hard 

to make the Lorenz model of convection 

currents in a fluid heated from above 

(see e.g. Marx 1987), as shown in Fig- 
ure 5. 
Air near the ground is warmed and rises, 
while air high in the atmosphere is 
cooled and falls. When the warm air has 
risen it is cooled, and when the cool air 
has fallen near the ground it is warmed, 
so the convection can continue. 
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(a) (b) 
  

            

  

Fig. 4 (a) bifurcation (b) chaos 

But if the convection is rapid, warm air 
is carried over the top of the convection 
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cell without having time to cool, and 
cool air is carried over the ground with- 
out warming. If cool air starts going up 
and warm air starts coming down, the 

convection rate will reduce or may even 

reverse. . 

ie 
Fiat 

warm air cooled 

<=— 

cool air falling ' 4 warm air rising 

ea 
cool air warmed 
  

Fig. 5 Convection current in atmosphere 

An _ idealised form of the Lorenz 

equations relating the rate of 

circulation to the horizontal and 

vertical temperature gradients is: 

dx/dt = 10(y - x) 

dy/dt = -xz +28x - y 

dz/dt = xy - (8/3)z 

and is easy to put into a modelling 

system such as that described 

here, and will generate the well 

known Lorenz _ strange attractor if 

x, y and z are plotted against one 

another. 
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2 DINAMIX: another modelling pro- 

gram 

DINAMIX is a modelling system devel- 

oped in Portugal in the project MINER- | 

VA by Vitor Duarte Teodoro of the 

Technological University in Lisbon. 

Unlike CMS, in DINAMIX models are 

expressed directly as differential equa- 

tions. 

As in Figure 6, a model in DINAMIX is 

written by giving one or more differen- 

tial equations, specifying initial values 

and constants, and asking for graphs. A 

stroboscopic graph option makes it pos- 

sible to show the motion as well as 

graphs of speed and position against 

time. 

Figures 7 and 8 show how the very ele- 

mentary model of Figure 6 can be de- 

veloped into a model of a harmonic os- 

cillator. 

Such a progression suggests how a com- 

puter modelling program can be used to 

teach calculus. Simple models like 

Figure 6 introduce the idea of a deriva- 

tive, and relate the derivative to the 

slope of a graph. In the model of Figure 
7 the derivative itself has a derivative, 
so that the slope of the graph of x 
against time is continually changing. In 

Figure 8, the rate of change of velocity 

is itself determined by x, which is 

changing. We have a negative feedback 

loop, from displacement to rate of 

change of velocity, which determines 
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Fig. 6 DINAMIX model of constant velocity 
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Fig. 7 DINAMIX model of constant acceleration under a constant force 
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Fig. 8 DINAMIX model of harmonic oscillator 
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the velocity, which itself determines the 

displacement. As in other cases we will 

see later, this is an example of a general 

system principle: 

negative feedback plus delay 

3 Iterative dynamic models 

All the models we have looked at so far 

are iterative dynamic models (Roberts et 

al 1983). Several systems for iterative 

dynamic modelling exist, amongst 
gives oscillation them: 

System machine country 
Dynamic Modelling System BBC/IBM UK 
Cell Modelling System BBC/IBM UK 
DINAMIX IBM Portugal 
STELLA Macintosh USA 

The Cell Modelling System (Ogborn and 

Holland 1986) came after our earlier 

Dynamic Modelling System (Ogborn 

1984). STELLA (1987) exploits the 

graphic capabilities of the Macintosh 

microcomputer. However, if one has no 

access to such a system and wants to 

  

[ 0.2 decay constant 
  

  

1000 initial value 

800 

640 each value is 

512 the previous value 

410 minus 

328 the decay constant 

262 times 

210 the previous value 

168 

134 

107       

avoid direct programming, the best so- 

lution is to use a commercial spreadsheet 

(Folha de Calcul) such as EXCEL 

(Ogborn 1986). Just to make the point, 

Figure 9 shows a model of radioactive 

decay built with a spreadsheet. 

1000 

500 

Fig. 9 Spreadsheet model of exponential decay 
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These modelling systems are suitable for 

any problem involving solving differen- 

tial equations or finite difference equa- 

tions, which is to say, a great number 
of probiems in Science in general and in 

Physics in particular. Relevant applica- 

tions include: 

Physics 

Mechanics 

Projectiles, Planetary motion, 

Oscillator, Relativistic motion 

Electricity and magnetism 

RC circuits, LR circuits, LRC circuits, 

particles moving in electric and 

magnetic fields 

Optics 

Two slit interference, Diffraction at a 

slit, Diffraction grating 

Heat 

Conduction 

Chemistry 

Reaction rates 

Temperature dependence, 

Concentration dependence 

Equilibria 

Pressure dependence, Temperature 

dependence 

Analysis 

Titration, pH 

Transport 

diffusion, effusion, pumping 

Biology 

Populations 
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exponential growth, limited (logistic) 

growth 

Ecology 

competition between species, 

interdependence of species 

Animal and plant biology 

energy balance of organisms, animal 

and plant growth 

Cell biology 

enzyme reactions, cell growth, nerve 

impulses 

Applied and general problems 

Road traffic 

Home heating 

Electricity supply and demand 

Nuclear power stations 

Diet and slimming 

_ The general concept of iterative dynamic 

modelling is to identify important vari- 

ables which describe a system, and for- 

mulate how they change in time as a re- 

sult of the values of other variables and 

constants. The rules for evolution of a 

system are thus the rules for computing 

the next value of each variable. Such 

equations may have, but will not always 

(or even often) have, analytic solutions. 

The tradition in Science teaching has for 

a long time been to focus exclusively on 

those equations which do have analytic 

solutions. Let us compare the advan- 

tages and disadvantages of the computa- 

tional and analytic approaches: 
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Computational solutions 

Steps close to physical reality 

Accessible early in learning 

Adding complexity is easy 

Only particular solutions 

In general, each step of a computational 

solution corresponds to some real physi- 

cal relationship or process, and so has a 

direct interpretation in reality. The 

computational process reflects the physi- 

cal process The same can not be said of 

the procedures used to obtain analytic 

solutions: nothing physical corresponds, 

for example, to the process of integra- 

tion by parts. For these reasons, com- 

putational solutions are accessible earlier 

in learning, since learning the Physics is 

also learning the steps in the solution, 

while to obtain analytic solutions one 

normally needs other prior mathematical 

knowledge of functions and of methods 

of integration. 

Because the existence of analytic solu- 

tions is very sensitive to the detailed 

structure of the differential equations (in 

particular often requiring them to be lin- 

ear) adding a small real life complexity 

to a problem may produce a very sharp 

rise in the mathematical difficulty of 

100 

Analytic solutions 

Formal methods of integration 

Needs previous mathematics 

Adding complexity is difficult 

General, manipulable solutions 

solving it. Adding damping to an oscil- 

lator makes solving the equations harder, 

and adding non-linear damping may 

make an analytic solution impossible. 

By contrast, in computational solutions, 

adding complexity will often only add a 

line or two to a program. Figure 10 

fancifully sketches a relation between 

‘the difficulty of getting a solution and 
the amount of reality the model includes. 

  

Difficulty 

— analytic solutions 

  computational solutions 

    Reality 
  

  

Fig. 10 Difficulty and reality 

There is, however, a very good reason 

for the dominance of analytic solutions. 

An analytic solution, expressed in a 

closed form mathematical expression, is 

quite general and can itself be manipu- 

Portgal Phys. 21, 3/4, pp.1-14, 1992



  

  

Ogborn, J. - Modelling with the computer at all ages 
  

lated and operated on. By contrast, 

computational solutions are always par- 

ticular cases. One can move some way 

towards generality by varying parame- 

ters to generate families of solutions, 

but the computational solutions remain 

as displays of results rather than manipu- 

lable mathematical expressions. Thus 

analytic solutions will always have an 

(a) traditional sequence 
  

Laws of Physics 

important role to play. They are like 

diamonds, uniquely valuable, but rare 

and costly. The question is not whether 

to do without them in favour of compu- 

tation, but when and how to include 

them. Figure 11 contrasts the common 
traditional sequence of teaching with one 

which might serve us better (Ogborn 

1989). 

  

  

  

  

N\ Analytic solutions of 
differential equations }— differential equations 
in Physics 

  

Numerical solutions of 

in Physics           
Differential and Fad 
integral calculus       

(b) a better sequence? 
  

Physics taught 
with numerical 

solutions 

  

        

Analytic solutions of 

differential equations 

    

  

Differential and 

integral calculus 

      

in Physics 

Numerical solutions: 

linear and non-linear 

problems 

  

      

Fig. 11 Traditional and computational learning sequences 
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Traditionally, we teach Physics and 
some calculus alongside one another, so 

as later to be able to develop analytic 

solutions for differential equations in 

Physics. Much later, perhaps only in 

graduate school, is the student intro- 

duced to numerical methods. The alter- 

native, which I believe would be better, 

is to teach Physics by means of some 

very elementary numerical methods, 

and to use this to"*develop the ideas of 

the calculus so as later to develop ana- 

lytic methods and numerical methods in 

parallel. 

4 Modelling without mathematics 

Up to now, what has been suggested is 

hardly revolutionary, and fits well with 

the nature of modern Physics. The next 

suggestion is however more shocking: it 

is that we need to begin modelling with- 

out, or with the absolute minimum of, 

mathematics. Consider what is needed if 

one is to make models of the kind dis- 

cussed so far: 

1 Imagining the world constituted of 

variables 

2 Conceiving physical relations as 

mathematical relations between vari- 

ables 

3 Giving appropriate values to variables 

4 Seeing a model as a structure with 

possibilities. 
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Of these, the first is perhaps the hardest. 

As Physicists we have become so used to 

imagining the world as analysable as the 

interaction of quantitative variables that 

we forget what a huge step in imagina- 

tion this is. There is good evidence, 

supported by commonsense observation, 

that young students see the world as 

built of objects and events, not as built 

of variables. 

We have built, and tested with students 

in the age range 12-14 years, a model- 

ling programme which focuses just on 

imagining variables and the connections 

between them, without having to spec- 

ify the form of mathematical relations. 

It was developed in the project Tools for 

Exploratory Learning, in association 

with Joan Bliss, Rob Miller, Jonathan 

Briggs, Derek Brough, John Turner, 

Harvey Mellar, Dick Boohan, Tim 

Brosnan, Babis Sakonidis, Caroline 

Nash and Cathy Rodgers. The back- 

ground to this project is given in Bliss 

and Ogborn (1988, 1989). The design of 

the modelling programme is in Miller et 

al (1990) and results are discussed in 
Bliss, Ogborn at al (1992) and Bliss and 

Ogborn (1992). 

The modelling system is called IQON 
(Interacting Quantities Omitting Num- 

bers). In IQON one creates and names 

variables, and links them together 

graphically. Again, the best 

introduction may be by example. 
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Figure 12 shows what the previous 

example of an oscillator looks like when 

expressed in IQON. 

fy d| 
aps 

Fig. 12 An oscillator in IQON 

  
  

          

  

A positive velocity progressively in- 

creases the displacement, through the 

'‘plus' link. But a positive displacement 

progressively. decreases the velocity, 

through the action of a spring, repre- 

sented via the 'minus' link. The out- 

come is that the system oscillates, a ex- 

ample of the principle mentioned before, 

that negative feedback plus delay gives 

oscillation. What is shown in Figure 12 

is all that the user has to do: to create 

and name two variables and to link them 

as shown. No equations are written at 

all. 

However, IQON is also intended for 

thinking about systems where we have 

much vaguer ideas about quantities and 

their relationships. Consider the quality 

of this very meeting. We may imagine 

that much depends on the quality of the 

workshops. If that is high, the partici- 

pants become happier and happier as the 

week goes by. But if they are happy 

they may perhaps participate more ac- 
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tively in workshops, so that the quality 

of workshops itself increases. Figure 13 

shows this idea expressed in IQON. 

(a) initial setting 

  
  

He 
happiness of participants 

                
  

quality of workshops 

  

        
HH s| 
S| 
  

activity of participants 

(b) positive feedback causes runaway 

eo 
happiness of participants 

  
  

              
  

quality of workshops 

  

        

activity of participants 

Fig. 13 An IQON model for success of 

workshops 

This model is notably optimistic. It 

contains positive feedback, so that if as 

in Figure 13(a) the quality of workshops 

is somehow increased by a_ small 

amount, then after some time all the 

variables are driven to their positive 

limits. It does not matter whether the 

model is correct; what matters is that 

such effects are possible and will cer- 

tainly arise in some cases, whatever the 

details of the system. An increase in 

global temperature causing melting of 

polar ice, which by reducing reflectivity 

increases the energy absorbed from the 
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Sun and so leads to a further increase of 

global temperature is an example. 

In its present implementation, all IQON 

variables are alike. Any input from 

other variables simply modifies the rate 

of increase or decrease of a variable. 

Each has a central ‘neutral’ position at 

which its output has no effect. Figure 14 

shows this schematically. 

  
  

    
  

  
  

                  

t >> He 

TOOL 

Fig. 14 Behaviour of linked variables in 

IQON 

If variable 'A' is above ‘neutral’, a posi- 

tive link from it to variable 'B' drives 'B' 

up progressively until it reaches the limit 

of its box. Similarly, a negative link to 

'B' drives 'B' progressively down. Thus 

'A' determines the rate of change of 'B’. 

Multiple inputs to a variable are simply 

averaged, taking account of sign, to 

determine the rate of change, though 

some inputs can be given greater weight 

than others. The response of each vari- 

able is made non-linear, through a 

‘squashing function’ which restricts its 

values to the range minus one to plus 

one. A variable also has some 

(adjustable) internal damping. In fact, 

the behaviour is similar to that of some 
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forms of artificial neuron (McClelland 

and Rumelhart 1987). One may of 

course also regard a variable as a (non- 

linear) integrator of its inputs. 

These features mean that any system of 

inter-linked variables a user designs will 

have a smooth behaviour, with no ten- 

dency for variables to go to infinity or to 

produce large step function outputs, and 

that any system will have a unique stable 

condition from a given starting point. 

Figures 15 and 16 show two examples of 

models created by pupils aged about 13 

(Bliss and Ogborn 1992). 

    

                

    

              

  
  

attitude disease 

7 ~ 

sleep fitness health 
lal 

              
  

homework drinking good things 

Fig. 15 Nancy's IQON model for keeping fit 

Nancy (Figure 15) sees fitness depend- 

ing both on general health and on 

whether one is getting plenty of sleep, 

and additionally on attitude. Jokingly, 

she says that if the school gives her a lot 

of work to do at home she gets less 

sleep. Health she sees as affected posi- 
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tively by sensible diet and negatively by 

disease, in both cases sliding a little away 

from quantitative variables towards events. 

Disease has a direct negative effect on 

fitness, and also an indirect effect via 

attitude. The point is not whether Nancy is 

right, but that she has produced a model 

which is discussable, and whose results 

when run may surprise her and lead her to 

think some more. 

    >>—T]               

cars traffic lights +: 

  
congestion    

  

  

car parks 

Fig. 16 Burgess'IQON model for traffic 

congestion 

Burgess (Figure 16) was modelling traffic 

congestion. His ‘variables’ are more like 

objects than like amounts of something. 
Because of the feedbacks in the model, 
when it is run it can give surprising results. 

Increasing ‘car parks' can at first decrease 

‘congestion’ but, because of the loops 
between ‘cars’ and ‘car parks’ and between 

‘traffic lights' and 'congestion', the model 
is liable to oscillate. Again, what matters 
is that this is likely to lead the pupil to 
reconsider ideas. 
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Overall, the results of our studies with 

IQON (Bliss and Ogborn 1992) can be 

stated as follows: 

e all pupils could make some model 

e half or more made models with fairly 

sophisticated interconnections 

e those who made their own models 

were more radical in criticising or 

reformulating them than were those 

who were given previously prepared 

models 

e many had difficulty creating amount- 

like variables. The tendency was to 

create objects and events. 

esome pupils could argue about 

feedback effects 

e most pupils’ work produced discus- 

sable ideas, capable of leading to 

progress in modelling. 

In summary, we have a simple graphic 

modelling facility, for pupils to build such 
models out of just a few building bricks, 

and for them to be able to see some of the 

basic qualitative interactions at work, 

without yet having to consider exact 

functional relations between variables. The 

significant information is in the qualitative 

pattern of relationship and_ change 

amongst variables. : 

In Physics, one might begin with such 

qualitative models. Later, it would be 

time to see how well defined relation- 

ships in similar models can give more 

precise answers, in numerical simula- 

tions. 
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5 Modelling with objects and events 

If one wants to make computational 
models with young pupils - say 8 to 12 
years - then it would seem to be a good 
idea to: model not variables but objects 

and events. We have been developing a 

modelling system for this purpose, 

called WorldMaker (Boohan, Ogborn 

and Wright, forthcoming). 

A WorldMaker model of sharks preying 
on fish might look like Figure 17. 

  

      

    
  

  

  

  

  

  

  

  

Objects World 

*eX< Shak p< p< wT wv 

p< aa Ww p< 
y® Fish 

od L< 

SF TF hX< p< 

wT D< wT 

SF GF tp< 

VT p< p< wT vo 

Rules 

Rules for Sharks Rules for Fish 

Sharks eat Fish ’ Fish die 

t<| oe p< ww iat 

Sharks die ish breed 

ax =a Ww oy | yw” 

Sharks breed Fish move 

p< | ex | ex al a ww 

Sharks move 

p< -— p<                 

    

    

    

    

                      
  

106 

Fig. 17 Predator and prey in WorldMaker 
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A WorldMaker world consists of objects 

on a grid. Rules telling the objects what 

to do are defined graphically. Thus in 

Figure 17, the two kinds of object, 

sharks and fish, swim around the grid, 

being placed on it using drawing tools. 

Rules are specified by drawings, too. A 

shark next to an fish eats the fish. A 

shark on its own may die. A shark next 

to an empty space may breed or may 

move. The three rules for fish are 

similar to the last three rules for sharks. 

All rules have the form ‘condition - ef- 

fect’. Any rule can be set to ‘fire’ with a 

probability selected by a slider bar, so 

that for example relative breeding rates 

can be altered, or sharks can be made 

very long-lived. In this model, if 

sharks breed too fast, they can destroy 

the fish population and then themselves 

die out. As is well known, — such 

predator-prey systems can oscillate. 

The concept of WorldMaker derives 

from that of Von Neumann's cellular 

automaton (one of the best known in- 

stances being Conway's Game of Life), 

with the addition of moving objects each 

of which retains its identity, and of the 

possibility of random choices of allowed 

changes. A cell automaton consists of 

an array of cells, each of which has a 

small finite number of states. The state 

of a cell changes in relation to its own 

present state and those of its immediate 

neighbours. Thus the rules for evolu- 
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tion of the system are local rules, the 

same everywhere. A useful general ac- 

count is given by Toffoli and Margolus 

(1987). 

The system as a whole is not represented 

explicitly at all, but is visible to a per- 

son watching the model evolve, as some 

pattern of behaviour of the assembly of 

objects. 

A simple model suitable for young pu- 

pils addresses the question why buses in 

town always seem to come in groups. 

Figure 18 shows the idea. 

If buses stop to pick up people when 

they are there, the buses soon become 

clustered on the road around which they 

travel. WorldMaker allows directions 

of movement to be given to an object by 

the background it is on, making it sim- 

ple to construct paths or tracks for ob- 

jects. The example illustrates one of the 

several ways in which backgrounds and 

objects can interact, which include 

either changing the other into a different 

one. An example of such changes is a 

‘farmer’ who moves around the grid 

‘planting crops’ (i.e. changing bare earth 

to plants) and one or more ‘pests' who 

move around destroying the crops. 

Another is shown in Figure 19, in which 

a creature moves purely at random, but 

moves frequently in the ‘light’ and rarely 

in the 'dark’. The-result is that any initial 

distribution of creatures ends up with 

most of them in the ‘dark’ region. 

107



  

Ogborn, J. - Modelling with the computer at all ages 
  

108 

Objects World 
  

HM Bus 

  @ Person 

    

        Places 
  

         

  

  

  
    

Road 

Path 

Rules 

Rules for Bus Rule for Person 

Bus on Road next to Person Person on Path next to empty 
on Path picks up Person Path moves 

  

        

  

  

  mi A-- 
Bus on Road next to empty 
R moves 

Ls > |= 

                                              
  

  
  

       

  

            
      
  

Fig. 18 WorldMaker for buses travelling in groups 
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Fig. 19 WorldMaker model of preferential random distribution 
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An even simpler system, is able to illus- 

trate molecular diffusion, as in Figure 

20. The walls can be drawn anywhere 

one likes, and the initial distribution can 

be varied. The educational lesson here 

is important. A large scale, macroscopic 

appearance of systematic change can be 

generated by what is at the microscopic 

level random. Exactly the same rule will 

produce the outward diffusion of parti- 

cles placed in a cluster at the centre of an 

otherwise empty screen. 

Objects World 
  

@ molecule 

Bal wall 

      

  

Rules 
  

molecule next to space jumps 

fe) Fie] 
Fig. 20 WorldMaker model of molecular 

diffusion. 

  

        

An adaptation of the model in Figure 20 

leads to a model of diffusion limited 

aggregation. One just adds another ob- 

ject, a seed, which does not move, and 

the additional rule that a molecule 

alongside a seed is captured and turns 

into a seed. Figure 21 illustrates the 

kind of fractal structure which can re- 
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sult. It is not as impressive as the ex- 

amples given by Professor Stauffer in 

his lecture (this issue) but students or 

teachers can make the model themselves. 

Other examples mentioned by Professor 

Stauffer can also be modelled, including 

cloud formation and the Ising model. 
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@ @ee@       

Rules 
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|@|e}+ ele 

  

  

    

  

          

Fig. 21 WorldMaker model of diffusion lim- 

ited aggregate 

Let us mention some other models, 

simple and more advanced, which 

WorldMaker makes possible. One is 

radioactive decay, in which the rule us 

simply that an object representing a nu- 

cleus has a finite probability of changing 

to a stable nuclide. Such a model is 

readily extended to a decay chain. 
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Marx (1984) gives the example of a for- 

est fire, which belongs to the large class 

of percolation problems. A cell can be 

empty, or can contain a tree which is 

alive or is burnt. Trees are placed at 

random with a certain density over the 
screen, and one of them is 'set on fire’ 

(figure 22). A tree burns if one or more 

of its neighbours burns. Will the fire 

travel all through the forest? It turns out 
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that there is a critical density of trees for 

this to be likely. An equivalent problem 

is that of whether a mixture of conduct- 

ing and insulating grains will be con- 

ducting, or of whether there are con- 

tinuous percolation paths for oil through 

cracked rock strata. Marx (1984, 1987) 

gives many other interesting similar 

ideas. 
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Fig. 22 Forest fire: one tree is set on fire - will all the forest burn? 

Simple examples of chemical reactions 
can be modelled by having cells filled 
with two or more species of ‘molecule’. 
Molecules may move to empty cells or 
may combine with others nearby to 
make product molecules, which them- 
selves may react in the reverse 
direction. 
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In teaching thermodynamics, use can be 

made of models in which energy quanta 

move from particle to particle at random. | 
Atkins (1984) describes a simple model in 

which cells have only two energy states, 

which offers an elegant introduction to 

temperature as understood statistically. 
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these models have the great advantage 

at the objects one is talking about are 

tly represented on the computer 

screen. If the work concerns sharks eating 

fish, there are icons of sharks and fish to 

look at. If the problem is about molecules, 

one looks at an array of entities 

representing molecules, not at a display of 

variables such as temperature and pressure 

(though the system¢ might in addition 

calculate these). The behaviour of the 

whole system is represented to the student 

by the visible pattern of behaviour of the 

objects, not as values of system variables. 

In general, the rules for the behaviour of 

entities are simple and intuitive, usually 

relating directly to their behaviour in the 

real world. Despite this simplicity, quite 

complex and analytically intractable 

systems can be studied. 

6 Conclusions 

I have in this paper suggested three 

things: 

(a) that there is an important role in sci- 

ence teaching for quantitative system 

modelling; 

(b) that there is scope for qualitative 

computational modelling of systems of 

variables. 

(c) that use can be made of models 

which manipulate the objects in a system 
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rather than the variables, and that cell 

automata provide a useful formalism for 

this concept; 

Systems to provide for (a) already exist, 

and are in use in some schools, mainly in 

the upper age range. Those who cannot 

get or afford such a system, or who prefer 

an alternative already known to many 

pupils, can do a great deal with a spread- 

sheet program. The possibility is opened 

up of teaching Physics through modelling 

without having to wait until students know 

the calculus, and indeed of teaching the 

calculus in this way. 

Suggestion (b) is more radical. We have 

built and tested a prototype, and can say 

that with it quite young pupils can produce 

interesting models. There are good 

psychological reasons for thinking that 

qualitative reasoning about variables is 

important, because of its pervasiveness in 

all human thought. The opportunity 

offers for teaching quite young students 

about systems of variables and effects of 

feedback, before they are ready to deal 

with quantitative formalised relations 

between variables. 

Plenty of simulations which belong within 

the concept of (c) already exist, and are 
not difficult to program, though speed may 

be a problem. What I have suggested is 

the value of a generalized facility for 
building such models, and I have described 

one such system. Here we can see how 

the idea of modelling could be extended to 
pupils even in the Primary School. 
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I have tried to take a very broad view of 

what modelling with the computer might 

be, in the context of education. Thus 

let me finally try to put these thoughts in 

a more general perspective. 

I will begin by noting that the normal 

order in which people come to appreci- 

ate the role of computational models, is 

far from ideal. |The normal order is 

that first one is supposed to learn func- 

tional relations between quantities 

(Ohm's law, Newton's laws etc.), then 

some differential calculus, then integra- 

tion, then numerical methods, and fi- 

nally one is expected to see the unity in 

all this. This path is followed hardly 

any distance by most pupils, and the 

whole distance by almost none except 

the best doctoral students. 

This leads me to propose in a sense to 

reverse the normal order. We should 

perhaps concentrate from the beginning 

on form , defined at first loosely and 

then more precisely. At present we 

leave form until last, if we ever reach 

it at all. 

If it is true that children would find 

computational representations _ of 

objects easier to deal with than 

representations of system variables , 

then this suggests one kind of 

beginning with modelling in which the 

child tells the objects what to do, not 

the variables. Form is then 

represented by patterns of behaviour of 

collections of objects. 
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A second beginning, directed towards 

analysing systems into related variables, 

might be with modelling systems sup- 

porting qualitative reasoning, or patterns 

of cause and effect, involving variables. 

Here one has the possibility of looking at. 

form as the typical kind of behaviour of 

systems with a given structure. The 

reason why oscillators oscillate is fun- 

damentally the same. The reasons why 

stable systems are stable are often basi- 

cally similar. 

Thus, at this general level, I want.to em- 

phasize the very real importance, 

equally for young pupils and for the best 

experts, of qualitative reasoning about 

form. The young child can often guess 

how things may go, and can look at a 

model on the computer to see if it 'goes 

right’ or not. The expert is an expert just 

by virtue of having passed beyond the 

essential stage of being able to do de- 

tailed calculations, to have reached the 

even more essential stage of knowing 

what kind of calculation to do, and what 

kind of result it will give. 

To create a world, whether constituted 

of variables or of objects, and to watch 

it evolve is a remarkable experience. It 

can teach one what it means to have a 

model of reality, which is to say what it 

is to think. It can show both how good 

and how bad such models can be. And 

by becoming a game played for its own 
sake it can be a beginning of purely 

theoretical thinking about forms. The 
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microcomputer brings something of this 

within the reach of most pupils and 

teachers. 
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